

What's
Principles of Complex Systems, CSYS/MATH 300
The
University of Vermont, Fall 2017
Story? Assignment 9 • code name: No! God, No! No, God, please, no!

Dispersed: Saturday, October 21, 2017.
Due: 11:59 pm, Friday, November 17, 2017.
Some useful reminders:
Deliverator: Peter Dodds
Office: Farrell Hall, second floor, Trinity Campus
E-mail: peter.dodds+pocs@uvm.edu
Office hours: 1:15 pm to $2: 30 \mathrm{pm}$ on Tuesday, $1: 15 \mathrm{pm}$ to $4: 45 \mathrm{pm}$ Thursday
Course website: http://www.uvm.edu/pdodds/teaching/courses/2017-08UVM-300
Bonus course notes: http://www.uvm.edu/pdodds/teaching/courses/2017-08UVM-
300/docs/dewhurst-pocs-notes.pdf

All parts are worth 3 points unless marked otherwise. Please show all your workingses clearly and list the names of others with whom you collaborated.

Please obey the basic life rule: Never use Excel. Or any Microsoft product except maybe Xbox (which sadly will likely not help you here.)

Graduate students are requested to use $\operatorname{LAT}_{\mathrm{E}} \mathrm{X}$ (or related $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ variant).
Email submission: PDF only! Please name your file as follows (where the number is to be padded by a 0 if less than 10 and names are all lowercase):
CSYS300assignment\%02d\$firstname-\$lastname.pdf as in CSYS300assignment06michael-palin.pdf

Please submit your project's current draft in pdf format via email. Please use this file name format (all lowercase after CSYS):
CSYS300project-\$firstname-\$lastname-YYYY-MM-DD.pdf as in
CSYS300project-lisa-simpson-1989-12-17.pdf where the date is the date of submission (and not, say, your birthdate).

1. $(3+3+3+3+3)$

We take a look at the $80 / 20$ rule, 1 per centers, and similar concepts.
Take x to be the wealth held by an individual in a population of n people, and the number of individuals with wealth between x and $x+\mathrm{d} x$ to be approximately $N(x) \mathrm{d} x$.

Given a power-law size frequency distribution $N(x)=c x^{-\gamma}$ where $x_{\text {min }} \ll x \ll \infty$, determine the value of γ for which the so-called 80/20 rule holds. In other words, find γ for which the bottom $4 / 5$ of the population holds $1 / 5$ of the overall wealth, and the top $1 / 5$ holds the remaining $4 / 5$.

Assume the mean is finite, i.e., $\gamma>2$.
(a) Determine the total wealth W in the system given $\int_{x_{\text {min }}}^{\infty} \mathrm{d} x N(x)=n$.
(b) Imagine that $100 q$ percent of the population holds $100(1-r)$ percent of the wealth.

Show γ depends on q and r as

$$
\gamma=1+\frac{\ln \frac{1}{(1-q)}}{\ln \frac{1}{(1-q)}-\ln \frac{1}{r}}
$$

(c) Given the above, is every pairing of q and r possible?
(d) Find γ for the $80 / 20$ requirement ($q=r=4 / 5$).
(e) For the " $80 / 20$ " γ you find, determine how much wealth $100 q$ percent of the population possesses as a function of q and plot the result.

