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Principles of Complex Systems, CSYS/MATH 300
University of Vermont, Fall 2017

Assignment 7 • code name: I’ve made a huge tiny mistake 

Dispersed: Thursday, October 12, 2017.
Due: 11:59 pm, Friday, October 27, 2017.
Some useful reminders:
Deliverator: Peter Dodds
Office: Farrell Hall, second floor, Trinity Campus
E-mail: peter.dodds+pocs@uvm.edu
Office hours: 1:15 pm to 2:30 pm on Tuesday, 1:15 pm to 4:45 pm Thursday
Course website: http://www.uvm.edu/pdodds/teaching/courses/2017-08UVM-300
Bonus course notes: http://www.uvm.edu/pdodds/teaching/courses/2017-08UVM-
300/docs/dewhurst-pocs-notes.pdf

All parts are worth 3 points unless marked otherwise. Please show all your workingses clearly
and list the names of others with whom you collaborated.

Please obey the basic life rule: Never use Excel. Or any Microsoft product except maybe Xbox
(which sadly will likely not help you here.)

Graduate students are requested to use LATEX (or related TEX variant).

Email submission: PDF only! Please name your file as follows (where the number is to be
padded by a 0 if less than 10 and names are all lowercase):
CSYS300assignment%02d$firstname-$lastname.pdf as in
CSYS300assignment06michael-palin.pdf

Please submit your project’s current draft in pdf format via email. Please use this file
name format (all lowercase after CSYS):
CSYS300project-$firstname-$lastname-YYYY-MM-DD.pdf as in
CSYS300project-lisa-simpson-1989-12-17.pdf where the date is the date of submission
(and not, say, your birthdate).

1. (3 + 3 + 3) Highly Optimized Tolerance:
This question is based on Carlson and Doyle’s 1999 paper “Highly optimized
tolerance: A mechanism for power laws in design systems” [1]. In class, we made
our way through a discrete version of a toy HOT model of forest fires. This paper
revolves around the equivalent continuous model’s derivation. You do not have to
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perform the derivation but rather carry out some manipulations of probability
distributions using their main formula.
Our interest is in Table I on p. 1415:

We will assume that the local event size is inversely re-
lated to the local density or cost of the resource, so that
A(x)!R"!(x), where typically ! is positive. This relation-
ship arises naturally in systems with spatial geometry "e.g.,
in the forest fire analogy#, where in d dimensions we can
think of R(x) as being (d"1)-dimensional separating barri-
ers. In that case A(x)$R"d(x). In some systems the rela-
tionship between A(x) and R(x) is difficult to define
uniquely, and in some cases reduces to a value judgement.
Here our spatially motivated assumption that A(x)
!R"!(x) is important for obtaining power law distributions.
If we assume an exponential relationship between the size of
an event and its cost %e.g., A$ln(R)&, we obtain a sharp
cutoff in the distribution of events. In essence, this is because
it becomes extremely inexpensive to restrict large events be-
cause the cost of resources decreases faster than the size of
the event to any power. Alternately, one could define a cost
function for cases in which there is a large social or ethical
premium "e.g., loss of life# associated with large events. This
could lead to a cutoff in the distribution due to a rapid rise in
the total allocation of resources to prevent large events. In
this case, the heavy tails would occur in the cost C and not in
the event size A.
To obtain the HOT state we simply minimize the ex-

pected cost %Eq. "1#& subject to the constraint %Eq. "2#&. Sub-
stituting the relationship A(x)!R"!(x) into Eq. "1#, we ob-
tain

E"A'#!!
X
p"x#R"'!"x#dx. "3#

Combining this with Eq. "2#, we minimize E(A') using the
variational principle by solving

(!
X
%p"x#R"'!"x#")R"x#&dx!0. "4#

Thus the optimal relationship between the local probability
and constrained resource is given by

p"x#R"'!"1"x#!const. "5#

From this we obtain

p"x#$R'!#1"x#$A""'#1/!#"x#$A"*"x#, "6#

where *!'#1/! . This relation should be viewed as the
local rule which sets the best placements of the resource. As
expected, greater resources are devoted to regions of high
probability.
As function of x, Eq. "6# shows that p(x) and A(x) scale

as a power law. However, we want to obtain the distribution
P(A) as a function of the area A rather than the local coor-
dinate x. It is convenient to focus on cumulative distribution,
Pcum(A), which is the sum of P(A) for regions of size
greater than or equal to A. We express the tails of Pcum(A) as

Pcum"A #!!
A"x#$A

p"x#dx!!
p"x#%A"*

p"x#dx, "7#

where the integral is evaluated over the subset of x in which
the local value A(x) is greater than the specified value A.

Under what conditions does this relationship lead to
heavy tails? Certainly not all p(x) lead to power laws in
P(A) %equivalently, Pcum(A), which has power law tails if
P(A) has power law tails, with one power higher in the
exponent&. For example, if p(x) is concentrated within a fi-
nite region, then the resource would optimally be concen-
trated within that region, and the distribution P(A) would a
priori have zero weight for events greater than the area as-
sociated with the mass concentration of p(x). Here the most
extreme case is a point mass at a particular location, p(x)
!((x"x*), which could be enclosed by a high density of
the resource, so that all activity is confined to x*. Alter-
nately, if p(x) is spatially uniform, then R(x) and A(x)
would be uniformly distributed, and P(A) would be a point
mass at a fixed area determined by the resource constraint
and the system size.
While counterexamples such as those we have just de-

scribed can be constructed, a broad class of distributions
p(x) leads to heavy tails in P(A). The case for d!1 with
monotonic p(x) and restricting X to x$0 is particularly
simple "and forms the basis for the more general case#. In
this special case, the change of variables from p(x) to P(A)
is straightforward, and we obtain

Pcum"A #!!
p"1"A"*#

+

p"x#dx!pcum„p"1"A"*#… , "8#

where pcum(x) is the tail of the cumulative distribution for
the probability of hits and p"1 is the inverse function of p, so
that p"1(A"*) is the value of x for which p(x)!A"*.
We can use Eq. "8# to directly compute the tail of

Pcum(A) for standard p(x), such as power laws, exponen-
tials, and Gaussians. Table I summarizes the results, where
we look only at tails in the distributions of x and A, and drop
constants. We obtain a power distribution for Pcum(A) in
each case, with a logarithmic correction for the Gaussian.
For higher dimensions, suppose that the tails of p(x) can

be bounded above and below by

pl" "x"#,p"x#,pu" "x"#, "9#

where "x" denotes the magnitude of x. The specific form of
Eq. "9# effectively reduces the change of variables to quasi-
one-dimensional computations. With this assumption, Eq. "7#
can be bounded below by

TABLE I. In the HOT state, power law distributions of the
region sizes Pcum(A) are obtained for a broad class of probability
distributions of the hits p(x), including power law, exponential, and
Gaussian distributions as shown here.

p(x) pcum(x) Pcum(A)

x"(q#1) x"q A"*(1"1/q)

e"x e"x A"*

e"x2 x"1e"x2 A"*% log(A)&"1/2
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and Equation 8 on the same page:

P≥(A) =

∫ ∞

p−1(A−γ)

p(x)dx = p≥
(
p−1

(
A−γ

))
,

where γ = α + 1/β and we’ll write P≥ for Pcum.
Please note that P≥(A) for x−(q+1) is not correct. Find the right one!
Here, A(x) is the area connected to the point x (think connected patch of trees
for forest fires). The cost of a ‘failure’ (e.g., lightning) beginning at x scales as
A(x)α which in turn occurs with probability p(x). The function p−1 is the inverse
function of p.
Resources associated with point x are denoted as R(x) and area is assumed to
scale with resource as A(x) ∼ R−β(x).
Finally, p≥ is the complementary cumulative distribution function for p.
As per the table, determine p≥(x) and P≥(A) for the following (3 pts each):

(a) p(x) = cx−(q+1),
(b) p(x) = ce−x, and
(c) p(x) = ce−x2

.

Note that these forms are for the tails of p only, and you should incorporate a
constant of proportionality c, which is not shown in the paper.

2. The discrete version of HOT theory:
From lectures, we had the following.
Cost: Expected size of ‘fire’ in a d-dimensional lattice:

Cfire ∝
Nsites∑
i=1

piai
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where ai = area of ith site’s region, and pi = avg. prob. of fire at site i over a
given time period.
The constraint for building and maintaining (d− 1)-dimensional firewalls in
d-dimensions is

Cfirewalls ∝
Nsites∑
i=1

a
(d−1)/d
i a−1

i ,

where we are assuming isometry.
Using Lagrange Multipliers, safety goggles, rubber gloves, a pair of tongs, and a
maniacal laugh, determine that:

pi ∝ a−γ
i = a

−(1+1/d)
i .

3. (3 + 3 + 3 + 3)
A courageous coding festival:
Code up the discrete HOT model in 2-d. Let’s see if we find any of these
super-duper power laws everyone keeps talking about. We’ll follow the same
approach as the N = L×L 2-d forest discussed in lectures.
Main goal: extract yield curves as a function of the design D parameter as
described below.
Suggested simulations elements:

• Take L = 32 as a start. Once your code is running, see if L = 64, 128, or
more might be possible. (The original sets of papers used all three of these
values.) Use a value of L that’s sufficiently large to produced useful statistics
but not prohibitively time consuming for simulations.

• Start with no trees.
• Probability of a spark at the (i, j)th site: P (i, j) ∝ e−i/ℓe−j/ℓ where (i, j) is

tree position with the indices starting in the top left corner (i, j = 1 to L).
(You will need to normalize this properly.) The quantity ℓ is the
characteristic scale for this distribution. Try out ℓ = L/10.

• Consider a design problem of D = 1, 2, L, and L2. (If L and L2 are too
much, you can drop them. Perhaps sneak out to D = 3.) Recall that the
design problem is to test D randomly chosen placements of the next tree
against the spark distribution.

• For each test tree, compute the average forest fire size over the full spark
distribution: ∑

i,j

P (i, j)S(i, j),
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where S(i, j) is the size of the forest component at (i, j). Select the tree
location with the highest average yield and plant a tree there.

• Add trees until the 2-d forest is full, measuring average yield as a function of
trees added.

• Only trees within the cluster surrounding the ignited tree burn (trees are
connected through four nearest neighbors).

(a) Plot the forest at (approximate) peak yield.
(b) Plot the yield curves for each value of D, and identify (approximately) the

peak yield and the density for which peak yield occurs for each value of D.
(c) Plot distributions of tree component sizes S at peak yield. Note: You will

have to rebuild forests and stop at the peak yield value of D to find these
distributions. By recording the sequence of optimal tree planting, this can be
done without running the simulation again.

(d) Extra level: Plot size distributions for D = L2 for varying tree densities
ρ = 0.10, 0.20, . . . , 0.90. This will be an effort to reproduce Fig. 3b in [2].

Hint: Working on un-treed locations will make choosing the next location easier.

4. (3 + 3 + 3)
Estimating the rare:
Google’s raw data is for word frequency k ≥ 200 so let’s deal with that issue now.
From Assignment 2, we had for word frequency in the range 200 ≤ k ≤ 107, a fit
for the CCDF of

N≥k ∼ 3.46× 108k−0.661,

ignoring errors.

(a) Using the above fit, create a complete hypothetical Nk by expanding Nk

back for k = 1 to k = 199, and plot the result in double-log space (meaning
log-log space).

(b) Compute the mean and variance of this reconstructed distribution.
(c) Estimate:

i. the hypothetical fraction of words that appear once out of all words
(think of words as organisms here),

ii. the hypothetical total number and fraction of unique words in Google’s
data set (think at the species level now),

iii. and what fraction of total words are left out of the Google data set by
providing only those with counts k ≥ 200 (back to words as organisms).
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