

What's
Principles of Complex Systems, CSYS/MATH 300
The
University of Vermont, Fall 2017
Story? Assignment 6 • code name: Ghee Buttersnaps AKA The Heater ©

Dispersed: Friday, October 6, 2017.
Due: 11:59 pm, Friday, October 13, 2017.
Some useful reminders:
Deliverator: Peter Dodds
Office: Farrell Hall, second floor, Trinity Campus
E-mail: peter.dodds+pocs@uvm.edu
Office hours: $1: 15 \mathrm{pm}$ to $2: 30 \mathrm{pm}$ on Tuesday, 1:15 pm to $4: 45 \mathrm{pm}$ Thursday
Course website: http://www.uvm.edu/pdodds/teaching/courses/2017-08UVM-300
Bonus course notes: http://www.uvm.edu/pdodds/teaching/courses/2017-08UVM-
300/docs/dewhurst-pocs-notes.pdf

All parts are worth 3 points unless marked otherwise. Please show all your workingses clearly and list the names of others with whom you collaborated.

Please obey the basic life rule: Never use Excel.
Graduate students are requested to use $A \mathbb{A} T_{E X}$ (or related $T_{E X}$ variant).
Email submission: PDF only! Please name your file as follows (where the number is to be padded by a 0 if less than 10 and names are all lowercase): CSYS300assignment\%02d\$firstname-\$lastname.pdf as in CSYS300assignment06michael-palin.pdf

Please submit your project's current draft in pdf format via email. Please use this file name format (all lowercase after CSYS):
CSYS300project-\$firstname-\$lastname-YYYY-MM-DD.pdf as in
CSYS300project-lisa-simpson-1989-12-17.pdf where the date is the date of submission (and not, say, your birthdate).

1. The 1- d theoretical percolation problem:

Consider an infinite 1- d lattice forest with a tree present at any site with probability p.
(a) Find the distribution of forest sizes as a function of p. Do this by moving along the 1-d world and figuring out the probability that any forest you enter will extend for a total length ℓ.
(b) Find p_{c}, the critical probability for which a giant component exists.

Hint: One way to find critical points is to determine when certain average quantities explode. Compute $\langle l\rangle$ and find p such that this expression goes boom (if it does).
2. Show analytically that the critical probability for site percolation on a triangular lattice is $p_{c}=1 / 2$.
Hint—Real-space renormalization gets it done.:

Direct link: http://www.youtube.com/watch?v=JlkbU5U7QqU
3. $(3+3)$

Coding, it's what's for breakfast:

(a) Percolation in two dimensions (2- d) on a simple square lattice provides a classic, nutritious example of a phase transition.
Your mission, whether or not you choose to accept it, is to code up and analyse the L by L square lattice percolation model for varying L.
Take $L=20,50,100,200,500$, and 1000.
(Go higher if you feel $L=1000$ is for mere mortals.)
(Go lower if your code explodes.)
Let's continue with the tree obsession. A site has a tree with probability p, and a sheep grazing on what's left of a tree with probability $1-p$.
Forests are defined as any connected component of trees bordered by sheep, where connections are possible with a site's four nearest neighbors on a lattice.

Each square lattice is to be considered as a landscape on which forests and sheep co-exist.
Do not bagelize (or doughnutize) the landscape (no periodic boundary conditions-boundaries are boundaries).
(Note: this set up is called site percolation. Bond percolation is the alternate case when all links between neighboring sites exist with probability p.)
Steps:
i. For each L, run $N_{\text {tests }}=100$ tests for occupation probability p moving from 0 to 1 in increments of 10^{-2}. (As for L, you may use a smaller or larger increment depending on how things go.)
ii. Determine the fractional size of the largest connected forest for each of the $N_{\text {tests }}$, and find the average of these, $S_{\text {avg }}$.
iii. On a single figure, for each L, plot the average $S_{\text {avg }}$ as a function of p.
(b) Comment on how $S_{\text {avg }}(p ; N)$ changes as a function of L and estimate the critical probability p_{c} (the percolation threshold).

Helpful reuse of code (intended for black and white image analysis): You can use Matlab's bwconncomp to find the sizes of components. Very nice.
4. $(3+3)$
(a) Using your model from the previous question and your estimate of p_{c}, plot the distribution of forest sizes (meaning cluster sizes) for $p \simeq p_{c}$ for the largest L your code and psychological makeup can withstand. (You can average the distribution over separate simulations.)
Comment on what kind of distribution you find.
(b) Repeat the above for $p=p_{c} / 2$ and $p=p_{c}+\left(1-p_{c}\right) / 2$, i.e., well below and well above p_{c}.
Produce plots for both cases, and again, comment on what you find.

