P	What's	Principles of Complex Systems, CSYS/MATH 300
o	University of Vermont, Fall 2017	
C	The	Story?
S	Assignment 5 • code name: Beetlejuice, Beetlejuice, ...	

Dispersed: Thursday, September 28, 2017.
Due: 11:59 pm, Friday, October 6, 2017.
Some useful reminders:
Deliverator: Peter Dodds
Office: Farrell Hall, second floor, Trinity Campus
E-mail: peter.dodds+pocs@uvm.edu
Office hours: $1: 15 \mathrm{pm}$ to $2: 30 \mathrm{pm}$ on Tuesday, $1: 15 \mathrm{pm}$ to $4: 45 \mathrm{pm}$ Thursday
Course website: http://www.uvm.edu/pdodds/teaching/courses/2017-08UVM-300
Bonus course notes: http://www.uvm.edu/pdodds/teaching/courses/2017-08UVM-
300/docs/dewhurst-pocs-notes.pdf

All parts are worth 3 points unless marked otherwise. Please show all your workingses clearly and list the names of others with whom you collaborated.

Please obey the basic life rule: Never use Excel.
Graduate students are requested to use $A T_{E} X$ (or related $T_{E X}$ variant).
Email submission: PDF only! Please name your file as follows (where the number is to be padded by a 0 if less than 10 and names are all lowercase):
CSYS300assignment\%02d\$firstname-\$lastname.pdf as in CSYS300assignment06michael-palin.pdf

Please submit your project's current draft in pdf format via email. Please use this file name format (all lowercase after CSYS):
CSYS300project-\$firstname-\$lastname-YYYY-MM-DD.pdf as in CSYS300project-lisa-simpson-1989-12-17.pdf where the date is the date of submission (and not, say, your birthdate).

1. $(3+3+3+3+3+3$ pts) Generalized entropy and diversity:

For a probability distribution of $i=1, \ldots, n$ entities with the i th entity having probability of being observed p_{i}, Shannon's entropy is defined as [2]:
$H=-\sum_{i=1}^{n} p_{i} \ln p_{i}$. There are other kinds of entropies and we'll explore some aspects of them here.
Let's use the setting of words in a text (another meaningful framing is abundance of species in an ecology). So we have word i appearing with probability p_{i} and there are n words.

Now, a useful quantity associated with any kind of entropy is diversity, D [1]. Given a text T with entropy H, we define D to be the number of words in another hypothetical text T^{\prime} which (1) has the same entropy, and (2) where all words appear with equal frequency $1 / D$. In text T^{\prime}, we have $p_{i}=1 / D$ for $i=1, \ldots, D$.

Diversity is thus a number, and behaves in number-like ways that are more intuitive to grasp than entropy. (Entropy is still the primary thing here.)
Determine the diversity D in terms of the probabilities $\left\{p_{i}\right\}$ for the following:
(a) Simpson concentration:

$$
S=\sum_{i=1}^{n} p_{i}^{2}
$$

(b) Gini index:

$$
G \equiv 1-S=1-\sum_{i=1}^{n} p_{i}^{2}
$$

Please note any connections between diversity for the Simpson and Gini indices.
(c) Shannon's entropy:

$$
H=-\sum_{i=1}^{n} p_{i} \ln p_{i} .
$$

(d) Renyi entropy:

$$
H_{q}^{(\mathrm{R})}=\frac{1}{q-1}\left(-\ln \sum_{i=1}^{n} p_{i}^{q}\right)
$$

where $q \neq 1$.
(e) The generalized Tsallis entropy:

$$
H_{q}^{(\mathrm{T})}=\frac{1}{q-1}\left(1-\sum_{i=1}^{n} p_{i}^{q}\right)
$$

where $q \neq 1$.
Please note any connections between diversity for Renyi and Tsallis.
(f) Show that in the limit $q \rightarrow 1$, the diversity for the Tsallis entropy matches up with that of Shannon's entropy.
2. $(3+3$ points) Zipfarama via Optimization:

Complete the Mandelbrotian derivation of Zipf's law by minimizing the function

$$
\Psi\left(p_{1}, p_{2}, \ldots, p_{n}\right)=F\left(p_{1}, p_{2}, \ldots, p_{n}\right)+\lambda G\left(p_{1}, p_{2}, \ldots, p_{n}\right)
$$

where the 'cost over information' function is

$$
F\left(p_{1}, p_{2}, \ldots, p_{n}\right)=\frac{C}{H}=\frac{\sum_{i=1}^{n} p_{i} \ln (i+a)}{-g \sum_{i=1}^{n} p_{i} \ln p_{i}}
$$

and the constraint function is

$$
G\left(p_{1}, p_{2}, \ldots, p_{n}\right)=\sum_{i=1}^{n} p_{i}-1 \quad(=0)
$$

to find

$$
p_{j}=e^{-1-\lambda H^{2} / g C}(j+a)^{-H / g C} .
$$

Then use the constraint equation, $\sum_{j=1}^{n} p_{j}=1$ to show that

$$
p_{j}=(j+a)^{-\alpha} .
$$

where $\alpha=H / g C$.
3 points: When finding λ, find an expression connecting λ, g, C, and H.
Hint: one way may be to substitute the form you find for $\ln p_{i}$ into H 's definition (but do not replace p_{i}).

Note: We have now allowed the cost factor to be $(j+a)$ rather than $(j+1)$.
3. $(3+3)$ Carrying on from the previous problem:
(a) For $n \rightarrow \infty$, use some computation tool (e.g., Matlab, an abacus, but not a clever friend who's really into computers) to determine that $\alpha \simeq 1.73$ for $a=1$. (Recall: we expect $\alpha<1$ for $\gamma>2$)
(b) For finite n, find an approximate estimate of a in terms of n that yields $\alpha=1$.
(Hint: use an integral approximation for the relevant sum.)
What happens to a as $n \rightarrow \infty$?

References

[1] L. Jost. Entropy and diversity. Oikos, 113:363-375, 2006. pdf [J
[2] C. E. Shannon. A mathematical theory of communication. The Bell System Tech. J., 27:379-423,623-656, 1948. pdf ©

