| P | What's | Principles of Complex Systems, CSYS /MATH 300 <br> o <br> C |
| :--- | :---: | :---: |
| S | The | University of Vermont, Fall 2017 |
| S | Story? | Assignment $4 \bullet$ code name: Only two hours from the beach $\square$ |

Dispersed: Friday, September 22, 2017.
Due: By 11:59 pm, Friday, September 29, 2017.
Some useful reminders:
Deliverator: Peter Dodds
Office: Farrell Hall, second floor, Trinity Campus
E-mail: peter.dodds+pocs@uvm.edu
Office hours: $1: 15 \mathrm{pm}$ to $2: 30 \mathrm{pm}$ on Tuesday, $1: 15 \mathrm{pm}$ to $4: 45 \mathrm{pm}$ Thursday
Course website: http://www.uvm.edu/pdodds/teaching/courses/2017-08UVM-300
Bonus course notes: http://www.uvm.edu/pdodds/teaching/courses/2017-08UVM-
300/docs/dewhurst-pocs-notes.pdf

All parts are worth 3 points unless marked otherwise. Please show all your workingses clearly and list the names of others with whom you collaborated.

Please obey the basic life rule: Never use Excel.
Graduate students are requested to use $A \mathbb{A} T_{E X}$ (or related $T_{E X}$ variant).
Email submission: PDF only! Please name your file as follows (where the number is to be padded by a 0 if less than 10 and names are all lowercase): CSYS300assignment\%02d\$firstname-\$lastname.pdf as in CSYS300assignment06michael-palin.pdf

Please submit your project's current draft in pdf format via email. Please use this file name format (all lowercase after CSYS):
CSYS300project-\$firstname-\$lastname-YYYY-MM-DD.pdf as in CSYS300project-lisa-simpson-1989-12-17.pdf where the date is the date of submission (and not, say, your birthdate).

1. Code up Simon's rich-gets-richer model.

Show Zipf distributions for $\rho=0.10,0.01$, and 0.001 . and perform regressions to test $\alpha=1-\rho$.
Run the simulation for long enough to produce decent scaling laws (recall: three orders of magnitude is good).

Averaging over simulations will produce cleaner results so try 10 and then, if possible, 100.

Note the first mover advantage.
2. $(3+3+3$ points) For Herbert Simon's model of what we've called Random Competitive Replication, we found in class that the normalized number of groups in the long time limit, $n_{k}$, satisfies the following difference equation:

$$
\begin{equation*}
\frac{n_{k}}{n_{k-1}}=\frac{(k-1)(1-\rho)}{1+(1-\rho) k} \tag{1}
\end{equation*}
$$

where $k \geq 2$. The model parameter $\rho$ is the probability that a newly arriving node forms a group of its own (or is a novel word, starts a new city, has a unique flavor, etc.). For $k=1$, we have instead

$$
\begin{equation*}
n_{1}=\rho-(1-\rho) n_{1} \tag{2}
\end{equation*}
$$

which directly gives us $n_{1}$ in terms of $\rho$.
(a) Derive the exact solution for $n_{k}$ in terms of gamma functions and ultimately the beta function.
(b) From this exact form, determine the large $k$ behavior for $n_{k}\left(\sim k^{-\gamma}\right)$ and identify the exponent $\gamma$ in terms of $\rho$. You are welcome to use the fact that $B(x, y) \sim x^{-y}$ for large $x$ and fixed $y$ (use Stirling's approximation or possibly Wikipedia).

Note: Simon's own calculation is slightly awry. The end result is good however.

## Hint-Setting up Simon's model:

http://www. youtube.com/watch?v=0TzI5J5W1K0
The hint's output including the bits not in the video:
3. What happens to $\gamma$ in the limits $\rho \rightarrow 0$ and $\rho \rightarrow 1$ ? Explain in a sentence or two what's going on in these cases and how the specific limiting value of $\gamma$ makes sense.
4. $(6+3+3$ points $)$

In Simon's original model, the expected total number of distinct groups at time $t$ is $\rho t$. Recall that each group is made up of elements of a particular flavor.

In class, we derived the fraction of groups containing only 1 element, finding

$$
n_{1}^{(g)}=\frac{N_{1}(t)}{\rho t}=\frac{1}{2-\rho}
$$

(a) $(3+3$ points $)$

Find the form of $n_{2}^{(g)}$ and $n_{3}^{(g)}$, the fraction of groups that are of size 2 and size 3.
(b) Using data for James Joyce's Ulysses (see below), first show that Simon's estimate for the innovation rate $\rho_{\text {est }} \simeq 0.115$ is reasonably accurate for the version of the text's word counts given below.
Hint: You should find a slightly higher number than Simon did.

Hint: Do not compute $\rho_{\text {est }}$ from an estimate of $\gamma$.
(c) Now compare the theoretical estimates for $n_{1}^{(g)}, n_{2}^{(g)}$, and $n_{3}^{(g)}$, with empirical values you obtain for Ulysses.

The data (links are clickable):

- Matlab file (sortedcounts = word frequency $f$ in descending order, sortedwords = ranked words): http://www.uvm.edu/pdodds/teaching/courses/2017-08UVM300/docs/ulysses.mat
- Colon-separated text file (first column = word, second column = word frequency $f$ ):
http://www.uvm.edu/pdodds/teaching/courses/2017-08UVM300/docs/ulysses.txt

Data taken from http://www.doc.ic.ac.uk/~rac101/concord/texts/ ulysses/http://www.doc.ic.ac.uk/~rac101/concord/texts/ulysses/. Note that some matching words with differing capitalization are recorded as separate words.

