

Solutions to 122 Matrixology (Linear Algebra)—Practice exam \#4 University of Vermont, Fall Semester

1. Draw the 'big picture' of how $\mathbf{A} \vec{x}=\vec{b}$ works when \mathbf{A} is an $m \times n$ matrix. Indicate on your diagram the following:
(a) Which space is R^{m} and which is R^{n}.
(b) Row space, column space, nullspace, and left nullspace.
(c) The dimensions of the above subspaces in terms of r, m, and n.
(d) How A maps vectors.
(e) Where the vectors $\vec{x}=\vec{x}_{r}+\vec{x}_{n}$ and $\vec{b}=\vec{p}+\vec{e}$ live.
(f) The appropriate orthogonality of subspaces.

Solution:

2. For the four general cases of $\mathbf{A} \vec{x}=\vec{b}$ below:
(a) give an example reduced row echelon form matrix \mathbf{R}_{A};
(b) sketch the appropriate cartoon abstract 'big pictures';
(c) indicate the number of possible solutions (0,1 , or ∞);
(d) and note whether or not nullspace and left nullspace are equal to $\{\overrightarrow{0}\}(Y / N)$.

Solution:

case	example $\mathbf{R}_{\mathbf{A}}$	big picture	\# solutions	$\begin{aligned} & N(\mathbf{A}) \\ & =\{\overrightarrow{0}\} ? \end{aligned}$	$\begin{aligned} & N\left(\mathbf{A}^{\mathrm{T}}\right) \\ & =\{\overrightarrow{0}\} ? \end{aligned}$
$\begin{aligned} m & =r \\ n & =r \end{aligned}$	$\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$		1 always	Y	Y
$\begin{aligned} m & =r \\ n & >r \end{aligned}$	$\left[\begin{array}{cccc}1 & 0 & 0 & \bigotimes_{1} \\ 0 & 1 & 0 & \bigotimes_{2} \\ 0 & 0 & 1 & 1\end{array}\right]$		∞ always	N	Y
$\begin{gathered} m>r, \\ n=r \end{gathered}$	$\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$		0 or 1	Y	N
$\begin{gathered} m>r, \\ n>r \end{gathered}$	$\left[\begin{array}{cccc}1 & 0 & \bigcirc \bigcirc & < \\ 0 & 1 & z & \wedge \\ 0 & 0 & 0 & 0\end{array}\right]$		0 or ∞	N	N

3. Given a matrix \mathbf{A} and its transpose \mathbf{A}^{T} have the following reduced row echelon forms, respectively,

$$
\mathbf{R}_{\mathbf{A}}=\left[\begin{array}{ccccc}
1 & 2 & 0 & 0 & -1 \\
0 & 0 & 1 & 0 & 3 \\
0 & 0 & 0 & 1 & 0
\end{array}\right] \text { and } \mathbf{R}_{\mathbf{A}^{\mathrm{T}}}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

answer the following questions.
(a) Solution: $m=3, \quad n=5, \quad r=3$,

$$
\operatorname{dim} C\left(\mathbf{A}^{\mathrm{T}}\right)=3, \operatorname{dim} C(\mathbf{A})=3
$$

$\operatorname{dim} N(\mathbf{A})=2, \operatorname{dim} N\left(\mathbf{A}^{\mathrm{T}}\right)=0$.
(b) Find bases for A's row space and column space.

Solution: We read these off the non-zero rows of $\mathbf{R}_{\mathbf{A}}$ and $\mathbf{R}_{\mathbf{A}^{T}}$:
A basis for row space is

$$
\left\{\left[\begin{array}{c}
1 \\
2 \\
0 \\
0 \\
-1
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1 \\
0 \\
3
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
0 \\
1 \\
0
\end{array}\right]\right\}
$$

and for column space:

$$
\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right\} .
$$

(c) Find a basis for A's nullspace

Solution: The free variables are x_{2} and x_{5} and the pivot variables are x_{1}, x_{3} and x_{4}. We express the pivot variables in terms of the free variables: $x_{1}=-2 x_{2}+x_{5}, x_{3}=-3 x_{5}, x_{4}=0$. We therefore have

$$
\vec{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{c}
-2 x_{2}+x_{5} \\
x_{2} \\
-3 x_{5} \\
0 \\
x_{5}
\end{array}\right]=x_{2}\left[\begin{array}{c}
-2 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+x_{5}\left[\begin{array}{c}
1 \\
0 \\
-3 \\
0 \\
1
\end{array}\right]
$$

where x_{2} and $x_{5} \in R$. One possible basis for nullspace is therefore

$$
\left\{\left[\begin{array}{c}
-2 \\
1 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
1 \\
0 \\
-3 \\
0 \\
1
\end{array}\right]\right\}
$$

4. LU decomposition:

Find U for the following matrix

$$
\mathbf{A}=\left[\begin{array}{ccc}
2 & -1 & 2 \\
4 & 1 & 4 \\
-4 & 11 & 0
\end{array}\right]
$$

Write down each row operation, the multipliers l_{21}, l_{31}, and l_{32}, and the corresponding elimination matrices $\mathbf{E}_{21}, \mathbf{E}_{31}$, and \mathbf{E}_{32}.

Solution:

$$
\begin{aligned}
& \mathbf{A}=\left[\begin{array}{ccc}
2 & -1 & 2 \\
4 & 1 & 4 \\
-4 & 11 & 0
\end{array}\right] \underset{\substack{\text { R2' } \\
\text { R2 } 2 \\
2 R 1}}{\sim}\left[\begin{array}{ccc}
2 & -1 & 2 \\
0 & 3 & 0 \\
-4 & 11 & 0
\end{array}\right] \underset{\substack{\text { R3' } \\
\text { R3 } \\
(-2) \mathrm{R} 1}}{\underset{2}{\longrightarrow}}\left[\begin{array}{ccc}
2 & -1 & 2 \\
0 & 3 & 0 \\
0 & 9 & 4
\end{array}\right] \\
& \underset{\substack{\text { R3' } \\
\text { R3 } \\
\text { 3 R1 }}}{\leadsto}\left[\begin{array}{ccc}
2 & -1 & 2 \\
0 & 3 & 0 \\
0 & 0 & 4
\end{array}\right]
\end{aligned}
$$

So we have: $l_{21}=2, l_{31}=-2$, and $l_{32}=3$;

$$
\mathbf{E}_{21}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], \quad \mathbf{E}_{31}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
2 & 0 & 1
\end{array}\right], \text { and } \mathbf{E}_{32}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -3 & 1
\end{array}\right] ;
$$

and

$$
\mathbf{U}=\left[\begin{array}{ccc}
2 & -1 & 2 \\
0 & 3 & 0 \\
0 & 0 & 4
\end{array}\right]
$$

5. This question carries on with the the preceding question's \mathbf{A}.
(a) What are the pivots of A?

Solution: From U: $d_{1}=2, d_{2}=3$, and $d_{3}=4$.
(b) Write down a general formula for $|\mathbf{A}|$ in terms of its pivots (remembering that in general, row swaps may be needed to reduce \mathbf{A} to \mathbf{U}), and compute the determinant of the \mathbf{A} we have here.

Solution:

$$
|\mathbf{A}|= \pm \prod_{i=1}^{n} d_{i}
$$

where \pm depends on the number of row swaps (+ if even, - if odd). $|\mathbf{A}|=(2) \cdot(3) \cdot(4)=24$.
(c) Write down the inverses of the elimination matrices and compute $\mathbf{L}=\mathbf{E}_{21}^{-1} \mathbf{E}_{31}^{-1} \mathbf{E}_{32}^{-1}$.

Solution: We flip the sign of the $-l_{i j}$'s to find the inverses of the E's:

$$
\mathbf{E}_{21}^{-1}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], \quad \mathbf{E}_{31}^{-1}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
-2 & 0 & 1
\end{array}\right], \text { and } \mathbf{E}_{32}^{-1}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 3 & 1
\end{array}\right]
$$

The matrix \mathbf{L} is lower triangular and built out of the multipliers we found in the previous question. We know that the inverses of the E's combine in a simple way:

$$
\mathbf{L}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
l_{21} & 1 & 0 \\
l_{31} & l_{32} & 1
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
2 & 1 & 0 \\
-2 & 3 & 1
\end{array}\right]
$$

6. Least squares approximation:
(a) Given

$$
\mathbf{A}=\left[\begin{array}{cc}
1 & 1 \\
1 & -1 \\
1 & 1
\end{array}\right] \quad \text { and } \quad \vec{b}=\left[\begin{array}{c}
7 \\
-1 \\
3
\end{array}\right]
$$

solve the normal equation $\mathbf{A}^{\mathrm{T}} \mathbf{A} \vec{x}^{*}=\mathbf{A}^{\mathrm{T}} \vec{b}$.
Solution: First build the normal equation:

$$
\mathbf{A}^{\mathrm{T}} \mathbf{A}=\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & -1 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 1 \\
1 & -1 \\
1 & 1
\end{array}\right]=\left[\begin{array}{ll}
3 & 1 \\
1 & 3
\end{array}\right]
$$

Convert the right hand side:

$$
\mathbf{A}^{\mathrm{T}} \vec{b}=\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & -1 & 1
\end{array}\right]\left[\begin{array}{c}
7 \\
-1 \\
3
\end{array}\right]=\left[\begin{array}{c}
9 \\
11
\end{array}\right]
$$

Since $\mathbf{A}^{\mathrm{T}} \mathbf{A}$ is invertible, we can compute the solution as

$$
\vec{x}^{*}=\left(\mathbf{A}^{\mathrm{T}} \mathbf{A}\right)^{-1} \mathbf{A}^{\mathrm{T}} \vec{b}=\frac{1}{8}\left[\begin{array}{cc}
3 & -1 \\
-1 & 3
\end{array}\right]\left[\begin{array}{c}
9 \\
11
\end{array}\right]=\frac{1}{8}\left[\begin{array}{l}
16 \\
24
\end{array}\right]=\left[\begin{array}{l}
2 \\
3
\end{array}\right] .
$$

(b) Find \vec{p} and \vec{e}, the components of \vec{b} that live in column space and left nullspace respectively.
Solution: The simplest way to find \vec{p} is to use the fact that $\mathbf{A} \vec{x}^{*}=\vec{p}$. So

$$
\vec{p}=\mathbf{A} \vec{x}^{*}=\left[\begin{array}{cc}
1 & 1 \\
1 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
2 \\
3
\end{array}\right]=\left[\begin{array}{c}
5 \\
-1 \\
5
\end{array}\right]
$$

The error vector \vec{e} is given by $\vec{b}-\vec{p}$:

$$
\vec{e}=\left[\begin{array}{c}
7 \\
-1 \\
3
\end{array}\right]-\left[\begin{array}{c}
5 \\
-1 \\
5
\end{array}\right]=\left[\begin{array}{c}
2 \\
0 \\
-2
\end{array}\right]
$$

A quick check shows that \vec{e} is orthogonal to the columns of \mathbf{A} and to \vec{p} (gasp).
7. The Gram-Schmidt process:

Consider the subspace \mathbf{S} of R^{3} that is spanned by the following two linearly independent vectors:

$$
\vec{a}_{1}=\left[\begin{array}{l}
2 \\
1 \\
2
\end{array}\right], \quad \text { and } \quad \vec{a}_{2}=\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]
$$

Find an orthonormal basis vectors (\hat{q}_{1} and \hat{q}_{2}) for \mathbf{S} using the (exciting) Gram-Schmidt process.

Solution:

$$
\begin{gathered}
\vec{q}_{1}=\vec{a}_{1}=\left[\begin{array}{l}
2 \\
1 \\
2
\end{array}\right] . \\
\vec{q}_{2}=\vec{a}_{2}-\frac{\vec{q}_{1}^{\mathrm{T}} \vec{a}_{2}}{\vec{q}_{1}^{\mathrm{T}} \vec{q}_{1}} \vec{q}_{1}=\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]-\frac{3}{9}\left[\begin{array}{l}
2 \\
1 \\
2
\end{array}\right]=\frac{1}{3}\left[\begin{array}{c}
1 \\
-4 \\
1
\end{array}\right] .
\end{gathered}
$$

We normalize to find

$$
\hat{q}_{1}=\frac{1}{3}\left[\begin{array}{l}
2 \\
1 \\
2
\end{array}\right] \text { and } \hat{q}_{2}=\frac{1}{\sqrt{18}}\left[\begin{array}{c}
1 \\
-4 \\
1
\end{array}\right]
$$

(b) Consequently, for the matrix $\mathbf{A}=\left[\begin{array}{cc}2 & 1 \\ 1 & -1 \\ 2 & 1\end{array}\right]$ find the factorization $\mathbf{A}=\mathbf{Q R}$ (i.e., find Q and R).

Solution:

$$
\mathbf{Q}=\left[\begin{array}{cc}
\frac{2}{3} & \frac{1}{\sqrt{18}} \\
\frac{1}{3} & \frac{-4}{\sqrt{18}} \\
\frac{2}{3} & \frac{1}{\sqrt{18}}
\end{array}\right]
$$

and

$$
\mathbf{R}=\mathbf{Q}^{T} \mathbf{A}=\left[\begin{array}{cc}
3 & 1 \\
0 & \sqrt{2}
\end{array}\right]
$$

8. (a) Find the eigenvalues and eigenvectors of the following matrix:

$$
\mathbf{A}=\left[\begin{array}{ll}
3 & 0 \\
3 & 1
\end{array}\right]
$$

Solution: For the eigenvalues, we solve $|\mathbf{A}-\lambda \mathbf{I}|=0$ for λ :

$$
|\mathbf{A}-\lambda \mathbf{I}|=(3-\lambda)(1-\lambda) .
$$

Let's assign these eigenvalues as $\lambda_{1}=3$ and $\lambda_{2}=1$. Eigenvectors:

$$
\vec{v}_{1}=\left[\begin{array}{l}
2 \\
3
\end{array}\right] \text { and } \vec{v}_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] .
$$

(b) Write down A's diagonalized counterpart Λ and the transformation matrices S and S^{-1}.

Solution:

$$
\boldsymbol{\Lambda}=\left[\begin{array}{ll}
3 & 0 \\
0 & 1
\end{array}\right], \mathbf{S}=\left[\begin{array}{ll}
2 & 0 \\
3 & 1
\end{array}\right], \text { and } \mathbf{S}^{-1}=\frac{1}{2}\left[\begin{array}{cc}
1 & 0 \\
-3 & 2
\end{array}\right]
$$

(c) Hence determine \mathbf{A}^{n} where n is arbitrary.

Solution:

$$
\begin{aligned}
\mathbf{A}^{n}=\mathbf{S} \boldsymbol{\Lambda}^{n} \mathbf{S}^{-1} & =\left[\begin{array}{ll}
2 & 0 \\
3 & 1
\end{array}\right]\left[\begin{array}{cc}
3^{n} & 0 \\
0 & 1
\end{array}\right] \frac{1}{2}\left[\begin{array}{cc}
1 & 0 \\
-3 & 2
\end{array}\right] \\
& =\frac{1}{2}\left[\begin{array}{cc}
2 \cdot 3^{n} & 0 \\
3\left(3^{n}-1\right) & 2
\end{array}\right] .
\end{aligned}
$$

9. Computing determinants: Given

$$
\mathbf{A}=\left[\begin{array}{lll}
4 & 2 & 0 \\
4 & 4 & 2 \\
2 & 2 & 3
\end{array}\right]
$$

(a) Write down the minor matrices $\mathbf{M}_{12}, \mathbf{M}_{22}$, and \mathbf{M}_{32}, compute the cofactors C_{12}, C_{22}, and C_{32}, and hence find $\operatorname{det}(\mathbf{A})$.

Solution:

$$
\mathbf{M}_{12}=\left[\begin{array}{ll}
4 & 2 \\
2 & 3
\end{array}\right], \mathbf{M}_{22}=\left[\begin{array}{ll}
4 & 0 \\
2 & 3
\end{array}\right], \mathbf{M}_{32}=\left[\begin{array}{ll}
4 & 0 \\
4 & 2
\end{array}\right]
$$

Using $C_{i j}=(-1)^{i+j}\left|\mathbf{M}_{i j}\right|$, we have $C_{12}=-8, C_{22}=12$, and $C_{32}=-8$.
$|\mathbf{A}|=\sum_{i=1}^{3} a_{i 2} C_{i 2}=(2) \cdot(-8)+(4) \cdot(12)+(2)(-8)=16$.
(b) Also find $|\mathbf{A}|$ by reducing \mathbf{A} to an upper triangular matrix with 1's on the leading diagonal.

Solution:

$$
\begin{aligned}
& |\mathbf{A}|=\left|\begin{array}{lll}
4 & 2 & 0 \\
4 & 4 & 2 \\
2 & 2 & 3
\end{array}\right| \underset{\substack{\mathrm{R}^{2}=\\
\mathrm{R} 2-1 \mathrm{R} 1}}{=}\left|\begin{array}{lll}
4 & 2 & 0 \\
0 & 2 & 2 \\
2 & 2 & 3
\end{array}\right| \xlongequal[\substack{\mathrm{R} 3 \\
\mathrm{R} 3-\frac{1}{2} \mathrm{R} 1}]{=}\left|\begin{array}{lll}
4 & 2 & 0 \\
0 & 2 & 2 \\
0 & 1 & 3
\end{array}\right| \\
& \binom{=}{\mathrm{R} 3-\frac{1}{2} \mathrm{R} 1}\left|\begin{array}{lll}
4 & 2 & 0 \\
0 & 2 & 2 \\
0 & 0 & 2
\end{array}\right|=(4)(2)(2)\left|\begin{array}{ccc}
1 & \frac{1}{2} & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right|=16 .
\end{aligned}
$$

10. Positive Definite Matrices

Let $f\left(x, x_{2}, x_{3}\right)=2 x^{2}+x_{2}^{2}+6 x_{3}^{2}+2 x_{1} x_{2}-4 x_{1} x_{3}+4 x_{2} x_{3}$.
(a) Rewrite $f\left(x_{1}, x_{2}, x_{3}\right)$ as $\left[\begin{array}{lll}x_{1} & x_{2} & x_{3}\end{array}\right] \mathbf{A}\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$ where \mathbf{A} is a symmetric matrix.

Solution:

$$
f\left(x_{1}, x_{2}, x_{3}\right)=\left[\begin{array}{lll}
x_{1} & x_{2} & x_{3}
\end{array}\right]\left[\begin{array}{ccc}
2 & 1 & -2 \\
1 & 1 & 2 \\
-2 & 2 & 6
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] .
$$

(b) Determine the signs of eigenvalues by finding the pivots.

Solution:

$$
\mathbf{A}=\left[\begin{array}{ccc}
2 & 1 & -2 \\
1 & 1 & 2 \\
-2 & 2 & 6
\end{array}\right] \text { reduces to } \mathbf{U}=\left[\begin{array}{ccc}
2 & 1 & -2 \\
0 & \frac{1}{2} & 3 \\
0 & 0 & -14
\end{array}\right]
$$

The pivots are thus $2, \frac{1}{2},-14$ and we must have two positive eigenvalues and one negative eigenvalue.
(c) Write down the definition of positive definiteness. Is this matrix positive definite?

Solution: A positive definite matrix is one that has all eigenvalues >0.
Therefore, our \mathbf{A} is not positive definite.
11. Singular Value Decomposition
(a) Consider the matrix:

$$
\mathbf{A}=\frac{1}{5}\left[\begin{array}{cc}
9 & 12 \\
8 & -6
\end{array}\right] .
$$

Determine the singular value decomposition of \mathbf{A}, i.e., find the three matrices $\mathbf{U}, \boldsymbol{\Sigma}$, and \mathbf{V}^{T} such that $\mathbf{A}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\mathrm{T}}$.
(Reminder: $\mathbf{A} \hat{v}_{i}=\sigma_{i} \hat{u}_{i}$ and $\mathbf{A}^{\top} \mathbf{A} \hat{v}_{i}=\sigma_{i}^{2} \hat{v}_{i}$.)
Solution:

$$
\mathbf{A}^{\mathrm{T}} \mathbf{A}=\frac{1}{5}\left[\begin{array}{cc}
145 & 60 \\
60 & 180
\end{array}\right]=\frac{1}{5}\left[\begin{array}{ll}
29 & 12 \\
12 & 36
\end{array}\right]
$$

Sneaky trick \#37: Find eigenvalues for the matrix $5 \mathbf{A}^{\mathrm{T}} \mathbf{A}=\left[\begin{array}{ll}29 & 12 \\ 12 & 36\end{array}\right]$ and then divide them by 5 to find the eigenvalues of $\mathbf{A}^{T} \mathbf{A}$.
$0=\left|5 \mathbf{A}^{\mathrm{T}} \mathbf{A}-\lambda \mathbf{I}\right|=(29-\lambda)(36-\lambda)-12^{2}=\lambda^{2}-65 \lambda+1044-144=$ $\lambda^{2}-65 \lambda+900=(\lambda-45)(\lambda-20)$. One can see the factorization just by making some reasonable guess, or by using the quadratic formula. The eigenvalues for $5 \mathbf{A}^{\mathrm{T}} \mathbf{A}$ are therefore 45 and 20 and for $\mathbf{A}^{\mathrm{T}} \mathbf{A}$ we then have $\lambda_{1}=45 / 5=9$ and $\lambda_{2}=20 / 5=4$.
Therefore, $\sigma_{1}=\sqrt{9}=3$ and $\sigma_{2}=\sqrt{4}=2$.
Next task: we find the eigenvectors of $\mathbf{A}^{\mathrm{T}} \mathbf{A}$ to obtain the v vectors. (We must be careful with the factor of 5.)
$\lambda_{1}=9$: we have the nullspace problem

$$
\begin{gathered}
\overrightarrow{0}=\left(\mathbf{A}^{\mathrm{T}} \mathbf{A}-9 \mathbf{I}\right) \vec{v}_{1}=\left(\frac{1}{5}\left[\begin{array}{ll}
29 & 12 \\
12 & 36
\end{array}\right]-\left[\begin{array}{ll}
9 & 0 \\
0 & 9
\end{array}\right]\right) \vec{v}_{1} \\
=\frac{1}{5}\left[\begin{array}{cc}
-16 & 12 \\
12 & -9
\end{array}\right] \vec{v}_{1} .
\end{gathered}
$$

We can see that $\hat{v}_{1}=\frac{1}{5}\left[\begin{array}{l}3 \\ 4\end{array}\right]$ where we have correctly normalized the vector.
And since $\hat{v}_{1} \perp \hat{v}_{2}$, we can also simply see that $\hat{v}_{2}=\frac{1}{5}\left[\begin{array}{c}4 \\ -3\end{array}\right]$.
The above then gives us

$$
\boldsymbol{\Sigma}=\left[\begin{array}{ll}
3 & 0 \\
0 & 2
\end{array}\right] \text { and } \mathbf{V}=\mathbf{V}^{\mathrm{T}}=\frac{1}{5}\left[\begin{array}{cc}
3 & 4 \\
4 & -3
\end{array}\right]
$$

Last, the connection $\mathbf{A} \hat{v}_{i}=\sigma_{i} \hat{u}_{i}$ gives

$$
\mathbf{U}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

Multiplying everything together indeed gives $\mathbf{A}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\mathrm{T}}$.
(b) The Big Picture: Illustrate how A maps between the happy basis vectors that are the \hat{v}_{i} 's and \hat{u}_{i} 's. (Please draw the particular Big Picture not the abstract Big picture.)
Complete your picture by adding a unit circle in row space and the ellipse that A creates in column space by transforming this circle.

Solution:

12. (a) True or False (2 pts):
i. The nullspace of a nontrivial 1×3 matrix \mathbf{A} is a 2-D plane in \mathbb{R}^{3} :

Solution: True. The equation of the plane is given by $\mathbf{A} \vec{x}=\overrightarrow{0}$.
ii. The product $\mathbf{A}^{\mathrm{T}} \mathbf{A}$ is symmetric for any $n \times n$ matrix \mathbf{A} :

Solution: True. $\left(\mathbf{A}^{\mathrm{T}} \mathbf{A}\right)^{\top}=\mathbf{A}^{\mathrm{T}}\left(\mathbf{A}^{\top}\right)^{\top}=\mathbf{A}^{\mathrm{T}} \mathbf{A}$
iii. An $n \times n$ matrix cannot be diagonalized if one or more eigenvalues of \mathbf{A} are 0 :
Solution: False. Such a matrix has no inverse. Whether or not it is diagnolizable depends on its eigenvectors being a basis for R^{n} or not.
iv. The matrix $\mathbf{M}=\left[\vec{v}_{1} \mid \vec{v}_{2}\right]$ transforms a vector's representation from the basis $\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$ to the natural basis:
Solution: True.
v. The determinant of a matrix \mathbf{A} is equal to the sum of A's eigenvalues:

Solution: False. The determinant is equal to the product of the eigenvalues.
vi. The matrices \mathbf{A} and \mathbf{A}^{T} have different eigenvalues:

Solution: False. $|\mathbf{A}-\lambda \mathbf{I}|=\left|(\mathbf{A}-\lambda \mathbf{I})^{\mathrm{T}}\right|=\left|\mathbf{A}^{\mathrm{T}}-\lambda \mathbf{I}^{\mathrm{T}}\right|=\left|\mathbf{A}^{\mathrm{T}}-\lambda \mathbf{I}\right|$.
(b) Find the determinant of the following matrix (1 pt):

$$
\mathbf{A}_{n}=\left[\begin{array}{cccc}
\cos (1) & \cos (2) & \cdots & \cos (n) \\
\cos (n+1) & \cos (n+2) & \cdots & \cos (2 n) \\
\vdots & \vdots & \ddots & \vdots \\
\cos (n(n-1)+1) & \cos (n(n-1)+2) & \cdots & \cos \left(n^{2}\right)
\end{array}\right]
$$

Solution: We use multilinearity of determinants, the sum rule for cosines (i.e., $\cos (x+y)=\cos (x) \cos (y)-\sin (x) \sin (y)$), and the fact that if two rows of a matrix are equal, then its determinant is 0 .
We find that $\operatorname{det}\left(\mathbf{A}_{n}\right)=0$ for $n \geq 3$. It's enough to see the general proof working with \mathbf{A}_{3}.

$$
\operatorname{det}\left(\mathbf{A}_{3}\right)=\left|\begin{array}{ccc}
\cos 1 & \cos 2 & \cos 3 \\
\cos 4 & \cos 5 & \cos 6 \\
\cos 7 & \cos 8 & \cos 9
\end{array}\right|
$$

$$
\begin{gathered}
=\left|\begin{array}{ccc}
\cos 1 & \cos 2 & \cos 3 \\
\cos 3 \cos 1 & \cos 3 \cos 2 & \cos 3 \cos 3 \\
\cos 7 & \cos 8 & \cos 9
\end{array}\right|-\left|\begin{array}{ccc}
\cos 1 & \cos 2 & \cos 3 \\
\sin 3 \sin 1 & \sin 3 \sin 2 & \sin 3 \sin 3 \\
\cos 7 & \cos 8 & \cos 9
\end{array}\right| \\
=\cos 3\left|\begin{array}{ccc}
\cos 1 & \cos 2 & \cos 3 \\
\cos 1 & \cos 2 & \cos 3 \\
\cos 7 & \cos 8 & \cos 9
\end{array}\right|-\sin 3\left|\begin{array}{ccc}
\cos 1 & \cos 2 & \cos 3 \\
\sin 1 & \sin 2 & \sin 3 \\
\cos 7 & \cos 8 & \cos 9
\end{array}\right|
\end{gathered}
$$

(now work on the third row with the sum rule:)

$$
=-\sin 3 \cos 6\left|\begin{array}{ccc}
\cos 1 & \cos 2 & \cos 3 \\
\sin 1 & \sin 2 & \sin 3 \\
\cos 1 & \cos 2 & \cos 3
\end{array}\right|+\sin 3 \sin 6\left|\begin{array}{ccc}
\cos 1 & \cos 2 & \cos 3 \\
\sin 1 & \sin 2 & \sin 3 \\
\sin 1 & \sin 2 & \sin 3
\end{array}\right|
$$

We can see that the above treatment works for all $n \geq 3$. Only the first three rows need to be manipulated to obtain the same result.
Also, we see that $\left|\mathbf{A}_{1}\right|=\cos 1 \neq 0$.
Therefore, $\left|\mathbf{A}_{n}\right|=0$ for $n \geq 3$.

