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Solutions to 122 Matrixology (Linear Algebra)—Practice exam #4
University of Vermont, Fall Semester

1. Draw the ‘big picture’ of how AZ = b works when A is an m x n matrix. Indicate
on your diagram the following:

Solution:

R" R

Column Space

Row Space

‘e €
Left Null
Space

Null Space d=m-—r

d=n-—r

2. For the four general cases of Ax = b below:

(a) give an example reduced row echelon form matrix Ra;



(b) sketch the appropriate cartoon abstract ‘big pictures’;

(c) indicate the number of possible solutions (0, 1, or co);

(d) and note whether or not nullspace and left nullspace are equal to {0} (Y/N).

Solution:
- i N(A) | N(AT)
case example R A big picture solutions — {6}? = {6}7
S 1 0 0
B 010 1 always Y Y
n= 00 1
o 1 0 0 &
; ’ 01 0 & oo always N Y
n=r 001 1
[1 0 0]
m>r 010
> 00 1 Oorl Y N
n=r 00 0
[0 0 0|
m>r L 0@ =
) 0 1 £ 4 0 or o0 N N
O

3. Given a matrix A and its transpose AT have the following reduced row echelon

forms, respectively,

1200 -1
Ra=]10010 3
0001 O

answer the following questions.
(a) Solution: m = 3, n =5,

dim C(AT) =3, dim C(A) = 3,

and Ror= | 0

-}
o O = O O




dim N(A) = 2, dim N(AT) = 0. 0

(b) Find bases for A's row space and column space.
Solution: We read these off the non-zero rows of R and Rar:

A basis for row space is

([t ] o] [o])
2 0 0
O |,[1|,]0
0 0 1
L -1 3] LO]]
and for column space:
1 0 0
0O{,1/11],(0
0 0 1

(c) Find a basis for A’s nullspace

Solution: The free variables are x5 and x5 and the pivot variables are
x1,x3 and z4. We express the pivot variables in terms of the free variables:

T, = —2x9 + x5, 3 = —3x5, x4 = 0. We therefore have
[ (Bl | [ _21'2 + ﬂj5 i [ _2 | [ 1 ]
T i) 1
= | x3 | = —3xs =xo| O 4+ x5 | —3
Ty 0 0
L Ty ] L T5 i L 0 ] L 1 ]

where x5 and x5 € R. One possible basis for nullspace is therefore

B T B T )

-2 1

. =3

o O O



4. LU decomposition:

Find U for the following matrix

2 -1 2
A= 4 1 4
-4 11 0

Write down each row operation, the multipliers l51, I31, and l32, and the
corresponding elimination matrices Es;, E3;, and Es,.

Solution:
2 -1 2 > 2 -1 2 e 2 -1 2
R2’ R3’
A= 4 1 4] s 0 3 0| _g. |0 3 0
-4 11 0 2R1 -4 11 0] (Rt L O 9 4
> 2 -1 2
R3’
—R3 0 3 0
3R1 0 0 4
So we have: l21 = 2, l31 = —2, and l32 = 3;
1 00 100 1 0 0
E21 = -2 1 0 s E31 = 010 s and E32 = 0 1 0 y
0 01 2 01 0 -3 1
and
2 -1 2
U=|0 3 0
0 0 4
OJ
5. This question carries on with the the preceding question’s A.
(a) What are the pivots of A?
Solution: From U: d; =2, dy = 3, and ds = 4. O

(b) Write down a general formula for |A| in terms of its pivots (remembering that
in general, row swaps may be needed to reduce A to U), and compute the
determinant of the A we have here.

Solution:

Al = :l:ﬁdi
i=1

4



where + depends on the number of row swaps (+ if even, - if odd).
[A[=(2)-(3)-(4) = 24. m
(c) Write down the inverses of the elimination matrices and compute
L= E§11E§11E§21-
Solution: We flip the sign of the —I;;'s to find the inverses of the E's:
1 00 1 00 1 00
Ey'=1210|, Ej=|0 10]|,and Ejy =[0 1 0
001 -2 01 0 31

The matrix L is lower triangular and built out of the multipliers we found in the
previous question. We know that the inverses of the E's combine in a simple way:

1 0 0 1 00
L: l21 1 0 = 2 1 0
l31 I3 1 -2 31
O
. Least squares approximation:
(a) Given
1 1 7
A=1]1 -1 and b= | —1
1 1 3
solve the normal equation ATAZ* = AT,
Solution: First build the normal equation:
1 1
ATA — 1 1 1 T 3 1 .
1 -1 1 1 3
1
Convert the right hand side:
7
- 1 1 1 9
Ty = — —_=
Ab_{1—11} 31 [11]‘

Since AT A is invertible, we can compute the solution as

e-wnews 1 ) [8]-42]-2)



0

(b) Find p'and €, the components of b that live in column space and left nullspace

respectively.

Solution: The simplest way to find p'is to use the fact that Az* = p. So

1 5 5
rear= 1A [2]-] 5
1 5
The error vector € is given by b— p:
7 5 2
e=|-1|—-]|-1|=1(0
3 5 -2

A quick check shows that é'is orthogonal to the columns of A and to p’(gasp).
O

. The Gram-Schmidt process:

Consider the subspace S of R? that is spanned by the following two linearly
independent vectors:

Find an orthonormal basis vectors (§; and §») for S using the (exciting)
Gram-Schmidt process.

Solution:
(Tl = C_il = 1
o 1 2 1
R 3 1
=0 — =@ = | —1 3 1 =3 —4
fh 1 9 1
We normalize to find
1
7 1| and g 1 4
0=z nd g =—=| -
2 18 1



8.

1
(b) Consequently, for the matrix A = | 1 —1 | find the factorization A = QR
1
(i.e., find Q and R).
Solution:
2 1
R
Q=3 /&
2 1
3 V18
and

O
(a) Find the eigenvalues and eigenvectors of the following matrix:
A { 30 }
3 1
Solution: For the eigenvalues, we solve |A — AI| = 0 for \:
|A — M| =(3=N)(1-=2).
Let's assign these eigenvalues as \; = 3 and A\, = 1. Eigenvectors:
. 2 . 0
U1:|:3:| and’U2:|:1:|.
O

(b) Write down A's diagonalized counterpart A and the transformation matrices
S and S71.

Solution:

[3 0 20 L1100
A[O 1],5[3 1},andS 2[_32]



(c) Hence determine A™ where n is arbitrary.

Solution:

1
2

N 3" 0
A" =SA"S _{31 0 1

=Y
~3agroy o)

9. Computing determinants: Given

A_:

S
(NGRS V)
w N O

(a) Write down the minor matrices My, May, and Mjss, compute the cofactors
C1a, Co, and Cj3o, and hence find det(A).

Solution:

4 2 4 0 4 0
M12—[2 3],1\/[22—{2 3}71\/-[32—{4 2]

Using Cij = (—1)Z+]|MU , we have 012 = —8, 022 = 12, and 032 = —8.
Al =300, aCia = (2) - (=8) + (4) - (12) + (2)(~8) = 16.

(b) Also find |A| by reducing A to an upper triangular matrix with 1's on the
leading diagonal.
Solution:
4 2 0 _ 4 20 _ 4 2 0
Al=1{4 4 2 [ R2 = ] 02 2 [ R - ] 0 2 2
2 2 3 R2-1R1 2 2 3 R3- 3 R1 0 1 3
_ 420 11
[ R = ] 02 2|=@)2)(2)]0 1 =16
PRl 0000 2 0 0



10. Positive Definite Matrices

Let f(l’ T2, Ig) = 2I2 + I% + 633:23 + 21‘11’2 — 4ZE1$3 + 45(72[[‘3.

L1

(a) Rewrite f(z1,22,23) as | #1 @2 a3 | A | 2o | where A is a symmetric
3

matrix.

Solution:

2 1 -2 T

f(xl,LUQ?.’L’g) = [ 1 T2 XT3 } 1 1 2 )
-2 2 6 T3

(b) Determine the signs of eigenvalues by finding the pivots.

Solution:
2 1 =2 2 1 =2
A= 1 1 2 reducesto U= | 0 % 3
-2 2 6 0 0 —-14

1
)9
negative eigenvalue. O

The pivots are thus 2, 5, —14 and we must have two positive eigenvalues and one

(c) Write down the definition of positive definiteness. Is this matrix positive
definite?

Solution: A positive definite matrix is one that has all eigenvalues > 0.

Therefore, our A is not positive definite. O

11. Singular Value Decomposition

(a) Consider the matrix:

A:}912.
518 —6

Determine the singular value decomposition of A, i.e., find the three
matrices U, ¥, and V7T such that A = UXVT.

(Reminder: Ad; = o;i; and AT Av; = 020;.)

Solution:
1 1
ATA_L[145 60 ] _1720 12]
51 60 180 51 12 36



Sneaky trick #37: Find eigenvalues for the matrix 5ATA = [ ?2) ;(25 } and

then divide them by 5 to find the eigenvalues of ATA.

0=[5ATA — \I| = (29 — \)(36 — \) — 122 = A2 — 65\ + 1044 — 144 =
A2 — 65X\ 4900 = (X — 45)(A — 20). One can see the factorization just by
making some reasonable guess, or by using the quadratic formula. The
eigenvalues for 5AT A are therefore 45 and 20 and for AT A we then have
A1 =45/5=9and Ay =20/5 = 4.

Therefore, 01 = V9 =3 and 0y = V4 = 2.

Next task: we find the eigenvectors of ATA to obtain the v vectors. (We
must be careful with the factor of 5.)

A1 = 9: we have the nullspace problem

; 1729 12 9 0
— (ATA — 9D = (= - 7
0= )i (5{12 36] {0 9})1’1

L[ 16 12 ]
12 —9 | "

5

N 3 :
We can see that v; = % { 4 ] where we have correctly normalized the vector.

. . . . . 4
And since 97 L 05, we can also simply see that v, = é [ 5 }

The above then gives us

30 113 4
3= dv=vt==C i
{OQ]anV A% 5[4 _3]

Last, the connection Av; = o;u; gives

o-[31]

Multiplying everything together indeed gives A = UX VT,

The Big Picture: lllustrate how A maps between the happy basis vectors
that are the 0;'s and 4;'s. (Please draw the particular Big Picture not the
abstract Big picture.)

Complete your picture by adding a unit circle in row space and the ellipse
that A creates in column space by transforming this circle.
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Solution:

Vv
’)(7/
4 ~
/A'V ’/?’ul
/\,l N
i m A A
y Al
0.otful ! ° 0,
0.4[4
/AOZ’«ZV"A«

12. (a) True or False (2 pts):

vi.

The nullspace of a nontrivial 1 x 3 matrix A is a 2-D plane in R3:
Solution: True. The equation of the plane is given by AZ = 0. U

ii. The product ATA is symmetric for any n x n matrix A:

Solution: True. (ATA)T = AT(AT)" = ATA O

An n X n matrix cannot be diagonalized if one or more eigenvalues of A
are 0:
Solution:
diagnolizable depends on its eigenvectors being a basis for R™ or not.
O

False. Such a matrix has no inverse. Whether or not it is

. The matrix M = [t} |9] transforms a vector's representation from the

basis {7, U} to the natural basis:
Solution: True. O

. The determinant of a matrix A is equal to the sum of A's eigenvalues:

Solution: False. The determinant is equal to the product of the
eigenvalues. O

The matrices A and AT have different eigenvalues:

Solution: False. |A — AI| = [(A — AD)T| = |AT — AI"| = [AT — AI|.
O

11



(b) Find the determinant of the following matrix (1 pt):

cos(1) cos(2) -+ cos(n)
A cos(n + 1) cos(n + 2) -+ cos(2n)
cos(n(n —1)+1) cos(n(n—1)+2) --- cos(n?)

Solution: We use multilinearity of determinants, the sum rule for cosines
(i.e., cos(z +y) = cos(z) cos(y) — sin(z) sin(y)), and the fact that if two
rows of a matrix are equal, then its determinant is 0.

We find that det(A,) = 0 for n > 3. It's enough to see the general proof
working with Aj.

cosl cos2 cos3
det(As3) = | cos4 cos5 cos6
cos7 cos8& cos9

cos 1 Cos 2 cos 3 cos 1 cos 2 cos 3
=] cos3cosl cos3cos2 cos3cos3 |—| sin3dsinl sin3dsin?2 sin3dsin3
cos7 cos 8 cos 9 cos 7 cos 8 cos9

cosl cos?2 cosl cos2 cos3

=cos3| cosl ¢ cos3 | —sin3| sinl sin2 sin3

cos8& cos9 cos7 cos& cos9

(now work on the third row with the sum rule:)

cosl cos?2 cosl cos2 ¢

= —sin3cos6| sinl si sin3 | +sin3sin6| sinl sin 3

cos2 cos3 S1 sin?2 sinJ3

We can see that the above treatment works for all n > 3. Only the first
three rows need to be manipulated to obtain the same result.
Also, we see that |A;| = cos1 # 0.

Therefore, |A,| =0 for n > 3.
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