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Solutions to 122 Matrixology (Linear Algebra)—Practice exam #4

University of Vermont, Fall Semester

1. Draw the ‘big picture’ of how Ax⃗ = b⃗ works when A is an m× n matrix. Indicate

on your diagram the following:

(a) Which space is Rm and which is Rn.

(b) Row space, column space, nullspace, and left nullspace.

(c) The dimensions of the above subspaces in terms of r, m, and n.

(d) How A maps vectors.

(e) Where the vectors x⃗ = x⃗r + x⃗n and b⃗ = p⃗+ e⃗ live.

(f) The appropriate orthogonality of subspaces.

Solution:

Space

Left Null

R
m

~0

~0

d = m − r

d = r

Row Space
Column Space

R
n

Null Space

~xn

~xr

A ~xn = ~0

A~xr = ~p

A~x∗ = ~p

d = n − r

d = r

~x∗ = ~xr + ~xn

~p

~b

~e

□

2. For the four general cases of Ax⃗ = b⃗ below:

(a) give an example reduced row echelon form matrix RA;
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(b) sketch the appropriate cartoon abstract ‘big pictures’;

(c) indicate the number of possible solutions (0, 1, or ∞);

(d) and note whether or not nullspace and left nullspace are equal to {⃗0} (Y/N).

Solution:

case example RA big picture
#

solutions

N(A)

= {⃗0}?
N(AT)

= {⃗0}?

m = r

n = r







1 0 0

0 1 0

0 0 1






1 always Y Y

m = r,

n > r







1 0 0 o1

0 1 0 o2

0 0 1 1






∞ always N Y

m > r,

n = r















1 0 0

0 1 0

0 0 1

0 0 0

0 0 0















0 or 1 Y N

m > r,

n > r







1 0 Y Q

0 1 E j

0 0 0 0






0 or ∞ N N

□

3. Given a matrix A and its transpose AT have the following reduced row echelon

forms, respectively,

RA =





1 2 0 0 −1

0 0 1 0 3

0 0 0 1 0



 and RAT =















1 0 0

0 1 0

0 0 1

0 0 0

0 0 0















,

answer the following questions.

(a) Solution: m = 3, n = 5, r = 3,

dim C(AT) = 3, dim C(A) = 3,
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dim N(A) = 2, dim N(AT) = 0. □

(b) Find bases for A’s row space and column space.

Solution: We read these off the non-zero rows of RA and RAT :

A basis for row space is









































1

2

0

0

−1















,















0

0

1

0

3















,















0

0

0

1

0









































and for column space:











1

0

0



 ,





0

1

0



 ,





0

0

1











.

□

(c) Find a basis for A’s nullspace

Solution: The free variables are x2 and x5 and the pivot variables are

x1, x3 and x4. We express the pivot variables in terms of the free variables:

x1 = −2x2 + x5, x3 = −3x5, x4 = 0. We therefore have

x⃗ =















x1

x2

x3

x4

x5















=















−2x2 + x5

x2

−3x5

0

x5















= x2















−2

1

0

0

0















+ x5















1

0

−3

0

1















where x2 and x5 ∈ R. One possible basis for nullspace is therefore









































−2

1

0

0

0















,















1

0

−3

0

1









































□
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4. LU decomposition:

Find U for the following matrix

A =





2 −1 2

4 1 4

−4 11 0



 .

Write down each row operation, the multipliers l21, l31, and l32, and the

corresponding elimination matrices E21, E31, and E32.

Solution:

A =





2 −1 2

4 1 4

−4 11 0





❀

R2’

= R2 -

2 R1





2 −1 2

0 3 0

−4 11 0





❀

R3’

= R3 -

(-2) R1





2 −1 2

0 3 0

0 9 4





❀

R3’

= R3 -

3 R1





2 −1 2

0 3 0

0 0 4





So we have: l21 = 2, l31 = −2, and l32 = 3;

E21 =





1 0 0

−2 1 0

0 0 1



 , E31 =





1 0 0

0 1 0

2 0 1



 , and E32 =





1 0 0

0 1 0

0 −3 1



 ;

and

U =





2 −1 2

0 3 0

0 0 4



 .

□

5. This question carries on with the the preceding question’s A.

(a) What are the pivots of A?

Solution: From U: d1 = 2, d2 = 3, and d3 = 4. □

(b) Write down a general formula for |A| in terms of its pivots (remembering that

in general, row swaps may be needed to reduce A to U), and compute the

determinant of the A we have here.

Solution:

|A| = ±
n
∏

i=1

di
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where ± depends on the number of row swaps (+ if even, - if odd).

|A| = (2) · (3) · (4) = 24. □

(c) Write down the inverses of the elimination matrices and compute

L = E−1

21 E
−1

31 E
−1

32 .

Solution: We flip the sign of the −lij’s to find the inverses of the E’s:

E−1

21 =





1 0 0

2 1 0

0 0 1



 , E−1

31 =





1 0 0

0 1 0

−2 0 1



 , and E−1

32 =





1 0 0

0 1 0

0 3 1



 .

The matrix L is lower triangular and built out of the multipliers we found in the

previous question. We know that the inverses of the E’s combine in a simple way:

L =





1 0 0

l21 1 0

l31 l32 1



 =





1 0 0

2 1 0

−2 3 1





□

6. Least squares approximation:

(a) Given

A =





1 1

1 −1

1 1



 and b⃗ =





7

−1

3



 ,

solve the normal equation ATAx⃗∗ = ATb⃗.

Solution: First build the normal equation:

ATA =

[

1 1 1

1 −1 1

]





1 1

1 −1

1 1



 =

[

3 1

1 3

]

.

Convert the right hand side:

ATb⃗ =

[

1 1 1

1 −1 1

]





7

−1

3



 =

[

9

11

]

.

Since ATA is invertible, we can compute the solution as

x⃗∗ = (ATA)−1ATb⃗ =
1

8

[

3 −1

−1 3

] [

9

11

]

=
1

8

[

16

24

]

=

[

2

3

]

.
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□

(b) Find p⃗ and e⃗, the components of b⃗ that live in column space and left nullspace

respectively.

Solution: The simplest way to find p⃗ is to use the fact that Ax⃗∗ = p⃗. So

p⃗ = Ax⃗∗ =





1 1

1 −1

1 1





[

2

3

]

=





5

−1

5



 .

The error vector e⃗ is given by b⃗− p⃗:

e⃗ =





7

−1

3



−





5

−1

5



 =





2

0

−2



 .

A quick check shows that e⃗ is orthogonal to the columns of A and to p⃗ (gasp).

□

7. The Gram-Schmidt process:

Consider the subspace S of R3 that is spanned by the following two linearly

independent vectors:

a⃗1 =





2

1

2



 , and a⃗2 =





1

−1

1



 .

Find an orthonormal basis vectors (q̂1 and q̂2) for S using the (exciting)

Gram-Schmidt process.

Solution:

q⃗1 = a⃗1 =





2

1

2



 .

q⃗2 = a⃗2 −
q⃗T1 a⃗2
q⃗T1 q⃗1

q⃗1 =





1

−1

1



− 3

9





2

1

2



 =
1

3





1

−4

1



 .

We normalize to find

q̂1 =
1

3





2

1

2



 and q̂2 =
1√
18





1

−4

1
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□

(b) Consequently, for the matrix A =





2 1

1 −1

2 1



 find the factorization A = QR

(i.e., find Q and R).

Solution:

Q =







2

3

1√
18

1

3

−4√
18

2

3

1√
18







and

R = QTA =

[

3 1

0
√
2

]

□

8. (a) Find the eigenvalues and eigenvectors of the following matrix:

A =

[

3 0

3 1

]

Solution: For the eigenvalues, we solve |A− λI| = 0 for λ:

|A− λI| = (3− λ)(1− λ).

Let’s assign these eigenvalues as λ1 = 3 and λ2 = 1. Eigenvectors:

v⃗1 =

[

2

3

]

and v⃗2 =

[

0

1

]

.

□

(b) Write down A’s diagonalized counterpart Λ and the transformation matrices

S and S−1.

Solution:

Λ =

[

3 0

0 1

]

, S =

[

2 0

3 1

]

, and S−1 =
1

2

[

1 0

−3 2

]

.

□
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(c) Hence determine An where n is arbitrary.

Solution:

An = SΛnS−1 =

[

2 0

3 1

] [

3n 0

0 1

]

1

2

[

1 0

−3 2

]

=
1

2

[

2 · 3n 0

3(3n − 1) 2

]

.

□

9. Computing determinants: Given

A =





4 2 0

4 4 2

2 2 3



 ,

(a) Write down the minor matrices M12, M22, and M32, compute the cofactors

C12, C22, and C32, and hence find det(A).

Solution:

M12 =

[

4 2

2 3

]

, M22 =

[

4 0

2 3

]

,M32 =

[

4 0

4 2

]

.

Using Cij = (−1)i+j|Mij|, we have C12 = −8, C22 = 12, and C32 = −8.

|A| = ∑

3

i=1
ai2Ci2 = (2) · (−8) + (4) · (12) + (2)(−8) = 16.

□

(b) Also find |A| by reducing A to an upper triangular matrix with 1’s on the

leading diagonal.

Solution:

|A| =

∣

∣

∣

∣

∣

∣

4 2 0

4 4 2

2 2 3

∣

∣

∣

∣

∣

∣

=






R2’ =

R2 - 1 R1







∣

∣

∣

∣

∣

∣

4 2 0

0 2 2

2 2 3

∣

∣

∣

∣

∣

∣

=






R3’ =

R3 - 1

2
R1







∣

∣

∣

∣

∣

∣

4 2 0

0 2 2

0 1 3

∣

∣

∣

∣

∣

∣

=






R3’ =

R3 - 1

2
R1







∣

∣

∣

∣

∣

∣

4 2 0

0 2 2

0 0 2

∣

∣

∣

∣

∣

∣

= (4)(2)(2)

∣

∣

∣

∣

∣

∣

1 1

2
0

0 1 1

0 0 1

∣

∣

∣

∣

∣

∣

= 16.

□
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10. Positive Definite Matrices

Let f(x, x2, x3) = 2x2 + x2
2 + 6x2

3 + 2x1x2 − 4x1x3 + 4x2x3.

(a) Rewrite f(x1, x2, x3) as
[

x1 x2 x3

]

A





x1

x2

x3



 where A is a symmetric

matrix.

Solution:

f(x1, x2, x3) =
[

x1 x2 x3

]





2 1 −2

1 1 2

−2 2 6









x1

x2

x3



 .

□

(b) Determine the signs of eigenvalues by finding the pivots.

Solution:

A =





2 1 −2

1 1 2

−2 2 6



 reduces to U =





2 1 −2

0 1

2
3

0 0 −14



 .

The pivots are thus 2, 1
2
,−14 and we must have two positive eigenvalues and one

negative eigenvalue. □

(c) Write down the definition of positive definiteness. Is this matrix positive

definite?

Solution: A positive definite matrix is one that has all eigenvalues > 0.

Therefore, our A is not positive definite. □

11. Singular Value Decomposition

(a) Consider the matrix:

A =
1

5

[

9 12

8 −6

]

.

Determine the singular value decomposition of A, i.e., find the three

matrices U, Σ, and VT such that A = UΣVT.

(Reminder: Av̂i = σiûi and A⊤Av̂i = σ2
i v̂i.)

Solution:

ATA =
1

5

[

145 60

60 180

]

=
1

5

[

29 12

12 36

]

.

9



Sneaky trick #37: Find eigenvalues for the matrix 5ATA =

[

29 12

12 36

]

and

then divide them by 5 to find the eigenvalues of ATA.

0 = |5ATA− λI| = (29− λ)(36− λ)− 122 = λ2 − 65λ+ 1044− 144 =

λ2 − 65λ+ 900 = (λ− 45)(λ− 20). One can see the factorization just by

making some reasonable guess, or by using the quadratic formula. The

eigenvalues for 5ATA are therefore 45 and 20 and for ATA we then have

λ1 = 45/5 = 9 and λ2 = 20/5 = 4.

Therefore, σ1 =
√
9 = 3 and σ2 =

√
4 = 2.

Next task: we find the eigenvectors of ATA to obtain the v vectors. (We

must be careful with the factor of 5.)

λ1 = 9: we have the nullspace problem

0⃗ = (ATA− 9I)v⃗1 =

(

1

5

[

29 12

12 36

]

−
[

9 0

0 9

])

v⃗1

=
1

5

[

−16 12

12 −9

]

v⃗1.

We can see that v̂1 =
1

5

[

3

4

]

where we have correctly normalized the vector.

And since v̂1 ⊥ v̂2, we can also simply see that v̂2 =
1

5

[

4

−3

]

.

The above then gives us

Σ =

[

3 0

0 2

]

and V = VT =
1

5

[

3 4

4 −3

]

.

Last, the connection Av̂i = σiûi gives

U =

[

1 0

0 1

]

.

Multiplying everything together indeed gives A = UΣVT.

□

(b) The Big Picture: Illustrate how A maps between the happy basis vectors

that are the v̂i’s and ûi’s. (Please draw the particular Big Picture not the

abstract Big picture.)

Complete your picture by adding a unit circle in row space and the ellipse

that A creates in column space by transforming this circle.
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Solution:

□

12. (a) True or False (2 pts):

i. The nullspace of a nontrivial 1× 3 matrix A is a 2-D plane in R
3:

Solution: True. The equation of the plane is given by Ax⃗ = 0⃗. □

ii. The product ATA is symmetric for any n× n matrix A:

Solution: True. (ATA)⊤ = AT(A⊤)⊤ = ATA □

iii. An n× n matrix cannot be diagonalized if one or more eigenvalues of A

are 0:

Solution: False. Such a matrix has no inverse. Whether or not it is

diagnolizable depends on its eigenvectors being a basis for Rn or not.

□

iv. The matrix M = [v⃗1|v⃗2] transforms a vector’s representation from the

basis {v⃗1, v⃗2} to the natural basis:

Solution: True. □

v. The determinant of a matrix A is equal to the sum of A’s eigenvalues:

Solution: False. The determinant is equal to the product of the

eigenvalues. □

vi. The matrices A and AT have different eigenvalues:

Solution: False. |A− λI| = |(A− λI)T| = |AT − λIT| = |AT − λI|.
□
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(b) Find the determinant of the following matrix (1 pt):

An =











cos(1) cos(2) · · · cos(n)

cos(n+ 1) cos(n+ 2) · · · cos(2n)
...

...
. . .

...

cos(n(n− 1) + 1) cos(n(n− 1) + 2) · · · cos(n2)











Solution: We use multilinearity of determinants, the sum rule for cosines

(i.e., cos(x+ y) = cos(x) cos(y)− sin(x) sin(y)), and the fact that if two

rows of a matrix are equal, then its determinant is 0.

We find that det(An) = 0 for n ≥ 3. It’s enough to see the general proof

working with A3.

det(A3) =

∣

∣

∣

∣

∣

∣

cos 1 cos 2 cos 3

cos 4 cos 5 cos 6

cos 7 cos 8 cos 9

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

cos 1 cos 2 cos 3

cos 3 cos 1 cos 3 cos 2 cos 3 cos 3

cos 7 cos 8 cos 9

∣

∣

∣

∣

∣

∣

−

∣

∣

∣

∣

∣

∣

cos 1 cos 2 cos 3

sin 3 sin 1 sin 3 sin 2 sin 3 sin 3

cos 7 cos 8 cos 9

∣

∣

∣

∣

∣

∣

= cos 3

✟
✟
✟
✟

✟
✟
✟
✟

✟
✟
✟✟

∣

∣

∣

∣

∣

∣

cos 1 cos 2 cos 3

cos 1 cos 2 cos 3

cos 7 cos 8 cos 9

∣

∣

∣

∣

∣

∣

− sin 3

∣

∣

∣

∣

∣

∣

cos 1 cos 2 cos 3

sin 1 sin 2 sin 3

cos 7 cos 8 cos 9

∣

∣

∣

∣

∣

∣

(now work on the third row with the sum rule:)

= − sin 3 cos 6

✟
✟

✟
✟
✟

✟
✟
✟
✟

✟
✟✟

∣

∣

∣

∣

∣

∣

cos 1 cos 2 cos 3

sin 1 sin 2 sin 3

cos 1 cos 2 cos 3

∣

∣

∣

∣

∣

∣

+ sin 3 sin 6

✟
✟

✟
✟
✟
✟

✟
✟
✟

✟
✟
✟

∣

∣

∣

∣

∣

∣

cos 1 cos 2 cos 3

sin 1 sin 2 sin 3

sin 1 sin 2 sin 3

∣

∣

∣

∣

∣

∣

.

We can see that the above treatment works for all n ≥ 3. Only the first

three rows need to be manipulated to obtain the same result.

Also, we see that |A1| = cos 1 ̸= 0.

Therefore, |An| = 0 for n ≥ 3.

□
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