

Solutions to 122 Matrixology (Linear Algebra)—Practice exam #4 University of Vermont, Fall Semester

- 1. Draw the 'big picture' of how $\mathbf{A}\vec{x} = \vec{b}$ works when \mathbf{A} is an $m \times n$ matrix. Indicate on your diagram the following:
 - (a) Which space is R^m and which is R^n .
 - (b) Row space, column space, nullspace, and left nullspace.
 - (c) The dimensions of the above subspaces in terms of r, m, and n.
 - (d) How A maps vectors.
 - (e) Where the vectors $\vec{x} = \vec{x}_r + \vec{x}_n$ and $\vec{b} = \vec{p} + \vec{e}$ live.
 - (f) The appropriate orthogonality of subspaces.

- 2. For the four general cases of $\mathbf{A}\vec{x} = \vec{b}$ below:
 - (a) give an example reduced row echelon form matrix R_A ;

- (b) sketch the appropriate cartoon abstract 'big pictures';
- (c) indicate the number of possible solutions (0, 1, or ∞);
- (d) and note whether or not nullspace and left nullspace are equal to $\{\vec{0}\}$ (Y/N).

oonationii					
case	example $\mathbf{R}_{\mathbf{A}}$	big picture	# solutions	$N(\mathbf{A}) = \{\vec{0}\}?$	$N(\mathbf{A}^{\mathrm{T}}) = \{\vec{0}\}?$
$\begin{array}{c} m = r \\ n = r \end{array}$	$ \left[\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		1 always	Y	Y
m = r, $n > r$	$\left[\begin{array}{rrrrr} 1 & 0 & 0 & \mathfrak{S}_1 \\ 0 & 1 & 0 & \mathfrak{S}_2 \\ 0 & 0 & 1 & 1 \end{array}\right]$		∞ always	N	Y
m > r, $n = r$	$ \left[\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		0 or 1	Y	N
m > r, n > r	$\left[\begin{array}{rrrrr} 1 & 0 & \textcircled{2} & \approx \\ 0 & 1 & \cancel{2} & \bigstar \\ 0 & 0 & 0 & 0 \end{array}\right]$		0 or ∞	N	N

Solution:

3. Given a matrix A and its transpose A^{T} have the following reduced row echelon forms, respectively,

$$\mathbf{R}_{\mathbf{A}} = \begin{bmatrix} 1 & 2 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 & 3 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix} \text{ and } \mathbf{R}_{\mathbf{A}^{\mathrm{T}}} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix},$$

answer the following questions.

(a) Solution: m = 3, n = 5, r = 3, dim $C(\mathbf{A}^{\mathrm{T}}) = 3$, dim $C(\mathbf{A}) = 3$,

dim
$$N(\mathbf{A}) = 2$$
, dim $N(\mathbf{A}^{\mathrm{T}}) = 0$.

(b) Find bases for A's row space and column space.

Solution: We read these off the non-zero rows of $\mathbf{R}_{\mathbf{A}}$ and $\mathbf{R}_{\mathbf{A}^T}$: A basis for row space is

$$\left\{ \begin{bmatrix} 1\\ 2\\ 0\\ 0\\ -1 \end{bmatrix}, \begin{bmatrix} 0\\ 0\\ 1\\ 0\\ 3 \end{bmatrix}, \begin{bmatrix} 0\\ 0\\ 0\\ 1\\ 0 \end{bmatrix} \right\}$$

and for column space:

$$\left\{ \left[\begin{array}{c} 1\\0\\0 \end{array} \right], \left[\begin{array}{c} 0\\1\\0 \end{array} \right], \left[\begin{array}{c} 0\\0\\1 \end{array} \right] \right\}.$$

(c) Find a basis for \mathbf{A} 's nullspace

Solution: The free variables are x_2 and x_5 and the pivot variables are x_1, x_3 and x_4 . We express the pivot variables in terms of the free variables: $x_1 = -2x_2 + x_5$, $x_3 = -3x_5$, $x_4 = 0$. We therefore have

$$\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} -2x_2 + x_5 \\ x_2 \\ -3x_5 \\ 0 \\ x_5 \end{bmatrix} = x_2 \begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + x_5 \begin{bmatrix} 1 \\ 0 \\ -3 \\ 0 \\ 1 \end{bmatrix}$$

where x_2 and $x_5 \in R$. One possible basis for nullspace is therefore

$$\left\{ \begin{bmatrix} -2\\1\\0\\0\end{bmatrix}, \begin{bmatrix} 1\\0\\-3\\0\\1\end{bmatrix} \right\}$$

4. LU decomposition:

Find \mathbf{U} for the following matrix

$$\mathbf{A} = \begin{bmatrix} 2 & -1 & 2 \\ 4 & 1 & 4 \\ -4 & 11 & 0 \end{bmatrix}.$$

Write down each row operation, the multipliers l_{21} , l_{31} , and l_{32} , and the corresponding elimination matrices E_{21} , E_{31} , and E_{32} .

Solution:

$$\mathbf{A} = \begin{bmatrix} 2 & -1 & 2 \\ 4 & 1 & 4 \\ -4 & 11 & 0 \end{bmatrix} \xrightarrow[\mathbf{R}2^{\prime}]{\mathbf{R}2^{\prime}} \begin{bmatrix} 2 & -1 & 2 \\ 0 & 3 & 0 \\ -4 & 11 & 0 \end{bmatrix} \xrightarrow[\mathbf{R}3^{\prime}]{\mathbf{R}3^{\prime}} \begin{bmatrix} 2 & -1 & 2 \\ 0 & 3 & 0 \\ -4 & 11 & 0 \end{bmatrix} \xrightarrow[\mathbf{R}3^{\prime}]{\mathbf{R}3^{\prime}} \begin{bmatrix} 2 & -1 & 2 \\ 0 & 3 & 0 \\ 0 & 9 & 4 \end{bmatrix}$$
$$\xrightarrow[\mathbf{R}3^{\prime}]{\mathbf{R}3^{\prime}} \begin{bmatrix} 2 & -1 & 2 \\ 0 & 3 & 0 \\ 0 & 0 & 4 \end{bmatrix}$$

So we have: $l_{21} = 2$, $l_{31} = -2$, and $l_{32} = 3$;

$$\mathbf{E}_{21} = \left[\begin{array}{ccc} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right], \quad \mathbf{E}_{31} = \left[\begin{array}{cccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 0 & 1 \end{array} \right], \text{ and } \mathbf{E}_{32} = \left[\begin{array}{cccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -3 & 1 \end{array} \right];$$

and

$$\mathbf{U} = \left[\begin{array}{rrr} 2 & -1 & 2 \\ 0 & 3 & 0 \\ 0 & 0 & 4 \end{array} \right].$$

5. This question carries on with the the preceding question's A.

(a) What are the pivots of A?

Solution: From U: $d_1 = 2$, $d_2 = 3$, and $d_3 = 4$.

(b) Write down a general formula for $|\mathbf{A}|$ in terms of its pivots (remembering that in general, row swaps may be needed to reduce \mathbf{A} to \mathbf{U}), and compute the determinant of the \mathbf{A} we have here.

Solution:

$$|\mathbf{A}| = \pm \prod_{i=1}^{n} d_i$$

where \pm depends on the number of row swaps (+ if even, - if odd).

$$|\mathbf{A}| = (2) \cdot (3) \cdot (4) = 24.$$

(c) Write down the inverses of the elimination matrices and compute $L = E_{21}^{-1}E_{31}^{-1}E_{32}^{-1}$.

Solution: We flip the sign of the $-l_{ij}$'s to find the inverses of the E's:

$$\mathbf{E}_{21}^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad \mathbf{E}_{31}^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix}, \text{ and } \mathbf{E}_{32}^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 3 & 1 \end{bmatrix}.$$

The matrix \mathbf{L} is lower triangular and built out of the multipliers we found in the previous question. We know that the inverses of the \mathbf{E} 's combine in a simple way:

$$\mathbf{L} = \begin{bmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -2 & 3 & 1 \end{bmatrix}$$

6. Least squares approximation:

(a) Given

$$\mathbf{A} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \\ 1 & 1 \end{bmatrix} \quad \text{and} \quad \vec{b} = \begin{bmatrix} 7 \\ -1 \\ 3 \end{bmatrix},$$

solve the normal equation $\mathbf{A}^{\mathrm{T}}\mathbf{A}\vec{x}^{*} = \mathbf{A}^{\mathrm{T}}\vec{b}$.

Solution: First build the normal equation:

$$\mathbf{A}^{\mathrm{T}}\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & -1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}.$$

Convert the right hand side:

$$\mathbf{A}^{\mathrm{T}}\vec{b} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \end{bmatrix} \begin{bmatrix} 7 \\ -1 \\ 3 \end{bmatrix} = \begin{bmatrix} 9 \\ 11 \end{bmatrix}.$$

Since $\mathbf{A}^{\mathrm{T}}\mathbf{A}$ is invertible, we can compute the solution as

$$\vec{x}^* = (\mathbf{A}^{\mathrm{T}}\mathbf{A})^{-1}\mathbf{A}^{\mathrm{T}}\vec{b} = \frac{1}{8} \begin{bmatrix} 3 & -1 \\ -1 & 3 \end{bmatrix} \begin{bmatrix} 9 \\ 11 \end{bmatrix} = \frac{1}{8} \begin{bmatrix} 16 \\ 24 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$

(b) Find \vec{p} and \vec{e} , the components of \vec{b} that live in column space and left nullspace respectively.

Solution: The simplest way to find \vec{p} is to use the fact that $\mathbf{A}\vec{x}^* = \vec{p}$. So

$$\vec{p} = \mathbf{A}\vec{x}^* = \begin{bmatrix} 1 & 1\\ 1 & -1\\ 1 & 1 \end{bmatrix} \begin{bmatrix} 2\\ 3 \end{bmatrix} = \begin{bmatrix} 5\\ -1\\ 5 \end{bmatrix}.$$

The error vector \vec{e} is given by $\vec{b} - \vec{p}$:

$$\vec{e} = \begin{bmatrix} 7\\-1\\3 \end{bmatrix} - \begin{bmatrix} 5\\-1\\5 \end{bmatrix} = \begin{bmatrix} 2\\0\\-2 \end{bmatrix}.$$

A quick check shows that \vec{e} is orthogonal to the columns of A and to \vec{p} (gasp).

7. The Gram-Schmidt process:

Consider the subspace ${\bf S}$ of R^3 that is spanned by the following two linearly independent vectors:

$$\vec{a}_1 = \begin{bmatrix} 2\\1\\2 \end{bmatrix}$$
, and $\vec{a}_2 = \begin{bmatrix} 1\\-1\\1 \end{bmatrix}$.

Find an orthonormal basis vectors $(\hat{q}_1 \text{ and } \hat{q}_2)$ for S using the (exciting) Gram-Schmidt process.

Solution:

$$\vec{q}_1 = \vec{a}_1 = \begin{bmatrix} 2\\1\\2 \end{bmatrix}.$$
$$\vec{q}_2 = \vec{a}_2 - \frac{\vec{q}_1^{\mathrm{T}} \vec{a}_2}{\vec{q}_1^{\mathrm{T}} \vec{q}_1} \vec{q}_1 = \begin{bmatrix} 1\\-1\\1 \end{bmatrix} - \frac{3}{9} \begin{bmatrix} 2\\1\\2 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1\\-4\\1 \end{bmatrix}.$$

We normalize to find

$$\hat{q}_1 = \frac{1}{3} \begin{bmatrix} 2\\1\\2 \end{bmatrix}$$
 and $\hat{q}_2 = \frac{1}{\sqrt{18}} \begin{bmatrix} 1\\-4\\1 \end{bmatrix}$

(b) Consequently, for the matrix $\mathbf{A} = \begin{bmatrix} 2 & 1 \\ 1 & -1 \\ 2 & 1 \end{bmatrix}$ find the factorization $\mathbf{A} = \mathbf{QR}$ (i.e., find \mathbf{Q} and \mathbf{R}). Solution: $\mathbf{Q} = \begin{bmatrix} \frac{2}{3} & \frac{1}{\sqrt{18}} \\ 1 & -4 \end{bmatrix}$

$$\mathbf{Q} = \begin{bmatrix} \frac{3}{3} & \sqrt{18} \\ \frac{2}{3} & \frac{1}{\sqrt{18}} \end{bmatrix}$$
$$\mathbf{R} = \mathbf{Q}^T \mathbf{A} = \begin{bmatrix} 3 & 1 \\ 0 & \sqrt{2} \end{bmatrix}$$

8. (a) Find the eigenvalues and eigenvectors of the following matrix:

$$\mathbf{A} = \left[\begin{array}{cc} 3 & 0 \\ 3 & 1 \end{array} \right]$$

Solution: For the eigenvalues, we solve $|\mathbf{A} - \lambda \mathbf{I}| = 0$ for λ :

 $|\mathbf{A} - \lambda \mathbf{I}| = (3 - \lambda)(1 - \lambda).$

Let's assign these eigenvalues as $\lambda_1 = 3$ and $\lambda_2 = 1$. Eigenvectors:

$$\vec{v}_1 = \begin{bmatrix} 2\\ 3 \end{bmatrix}$$
 and $\vec{v}_2 = \begin{bmatrix} 0\\ 1 \end{bmatrix}$.

(b) Write down A's diagonalized counterpart Λ and the transformation matrices ${\bf S}$ and ${\bf S}^{-1}.$

Solution:

$$\mathbf{\Lambda} = \begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix}, \ \mathbf{S} = \begin{bmatrix} 2 & 0 \\ 3 & 1 \end{bmatrix}, \text{ and } \mathbf{S}^{-1} = \frac{1}{2} \begin{bmatrix} 1 & 0 \\ -3 & 2 \end{bmatrix}.$$

(c) Hence determine \mathbf{A}^n where *n* is arbitrary.

Solution:

$$\mathbf{A}^{n} = \mathbf{S}\mathbf{\Lambda}^{n}\mathbf{S}^{-1} = \begin{bmatrix} 2 & 0\\ 3 & 1 \end{bmatrix} \begin{bmatrix} 3^{n} & 0\\ 0 & 1 \end{bmatrix} \frac{1}{2} \begin{bmatrix} 1 & 0\\ -3 & 2 \end{bmatrix}$$
$$= \frac{1}{2} \begin{bmatrix} 2 \cdot 3^{n} & 0\\ 3(3^{n} - 1) & 2 \end{bmatrix}.$$

9. Computing determinants: Given

$$\mathbf{A} = \begin{bmatrix} 4 & 2 & 0 \\ 4 & 4 & 2 \\ 2 & 2 & 3 \end{bmatrix},$$

(a) Write down the minor matrices M_{12} , M_{22} , and M_{32} , compute the cofactors C_{12} , C_{22} , and C_{32} , and hence find det(A).

Solution:

$$\mathbf{M}_{12} = \begin{bmatrix} 4 & 2 \\ 2 & 3 \end{bmatrix}, \ \mathbf{M}_{22} = \begin{bmatrix} 4 & 0 \\ 2 & 3 \end{bmatrix}, \ \mathbf{M}_{32} = \begin{bmatrix} 4 & 0 \\ 4 & 2 \end{bmatrix}.$$

Using $C_{ij} = (-1)^{i+j} |\mathbf{M}_{ij}|$, we have $C_{12} = -8$, $C_{22} = 12$, and $C_{32} = -8$. $|\mathbf{A}| = \sum_{i=1}^{3} a_{i2} C_{i2} = (2) \cdot (-8) + (4) \cdot (12) + (2)(-8) = 16.$

(b) Also find $|\mathbf{A}|$ by reducing \mathbf{A} to an upper triangular matrix with 1's on the leading diagonal.

Solution:

$$|\mathbf{A}| = \begin{vmatrix} 4 & 2 & 0 \\ 4 & 4 & 2 \\ 2 & 2 & 3 \end{vmatrix} \begin{pmatrix} = \\ R^{2'} = \\ R^{2-1 R^{1}} \end{pmatrix} \begin{vmatrix} 4 & 2 & 0 \\ 0 & 2 & 2 \\ 2 & 2 & 3 \end{vmatrix} \begin{pmatrix} = \\ R^{3'} = \\ R^{3} - \frac{1}{2} R^{1} \end{pmatrix} \begin{vmatrix} 4 & 2 & 0 \\ 0 & 2 & 2 \\ 0 & 1 & 3 \end{vmatrix}$$
$$= (4)(2)(2) \begin{vmatrix} 1 & \frac{1}{2} & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{vmatrix} = 16.$$

10. Positive Definite Matrices

Let
$$f(x, x_2, x_3) = 2x^2 + x_2^2 + 6x_3^2 + 2x_1x_2 - 4x_1x_3 + 4x_2x_3$$
.
(a) Rewrite $f(x_1, x_2, x_3)$ as $\begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix} \mathbf{A} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ where \mathbf{A} is a symmetric matrix

matrıx.

Solution:

$$f(x_1, x_2, x_3) = \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix} \begin{bmatrix} 2 & 1 & -2 \\ 1 & 1 & 2 \\ -2 & 2 & 6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}.$$

(b) Determine the signs of eigenvalues by finding the pivots.

Solution:

$$\mathbf{A} = \begin{bmatrix} 2 & 1 & -2 \\ 1 & 1 & 2 \\ -2 & 2 & 6 \end{bmatrix} \text{ reduces to } \mathbf{U} = \begin{bmatrix} 2 & 1 & -2 \\ 0 & \frac{1}{2} & 3 \\ 0 & 0 & -14 \end{bmatrix}.$$

The pivots are thus $2, \frac{1}{2}, -14$ and we must have two positive eigenvalues and one negative eigenvalue.

(c) Write down the definition of positive definiteness. Is this matrix positive definite?

Solution: A positive definite matrix is one that has all eigenvalues > 0.

Therefore, our A is not positive definite.

- 11. Singular Value Decomposition
 - (a) Consider the matrix:

$$\mathbf{A} = \frac{1}{5} \left[\begin{array}{cc} 9 & 12\\ 8 & -6 \end{array} \right].$$

Determine the singular value decomposition of A, i.e., find the three matrices U, Σ , and V^{T} such that $A = U\Sigma V^{T}$.

(Reminder: $\mathbf{A}\hat{v}_i = \sigma_i\hat{u}_i$ and $\mathbf{A}^{\top}\mathbf{A}\hat{v}_i = \sigma_i^2\hat{v}_i$.)

Solution:

$$\mathbf{A}^{\mathrm{T}}\mathbf{A} = \frac{1}{5} \begin{bmatrix} 145 & 60\\ 60 & 180 \end{bmatrix} = \frac{1}{5} \begin{bmatrix} 29 & 12\\ 12 & 36 \end{bmatrix}.$$

Sneaky trick #37: Find eigenvalues for the matrix $5\mathbf{A}^{\mathrm{T}}\mathbf{A} = \begin{bmatrix} 29 & 12\\ 12 & 36 \end{bmatrix}$ and then divide them by 5 to find the eigenvalues of $\mathbf{A}^{\mathrm{T}}\mathbf{A}$.

 $0 = |5\mathbf{A}^{\mathrm{T}}\mathbf{A} - \lambda\mathbf{I}| = (29 - \lambda)(36 - \lambda) - 12^{2} = \lambda^{2} - 65\lambda + 1044 - 144 = \lambda^{2} - 65\lambda + 900 = (\lambda - 45)(\lambda - 20).$ One can see the factorization just by making some reasonable guess, or by using the quadratic formula. The eigenvalues for $5\mathbf{A}^{\mathrm{T}}\mathbf{A}$ are therefore 45 and 20 and for $\mathbf{A}^{\mathrm{T}}\mathbf{A}$ we then have $\lambda_{1} = 45/5 = 9$ and $\lambda_{2} = 20/5 = 4$. Therefore, $\sigma_{1} = \sqrt{9} = 3$ and $\sigma_{2} = \sqrt{4} = 2$.

Next task: we find the eigenvectors of $A^T A$ to obtain the v vectors. (We must be careful with the factor of 5.)

 $\lambda_1 = 9$: we have the nullspace problem

$$\vec{0} = (\mathbf{A}^{\mathrm{T}}\mathbf{A} - 9\mathbf{I})\vec{v}_{1} = \left(\frac{1}{5}\begin{bmatrix}29 & 12\\12 & 36\end{bmatrix} - \begin{bmatrix}9 & 0\\0 & 9\end{bmatrix}\right)\vec{v}_{1}$$
$$= \frac{1}{5}\begin{bmatrix}-16 & 12\\12 & -9\end{bmatrix}\vec{v}_{1}.$$

We can see that $\hat{v}_1 = \frac{1}{5} \begin{bmatrix} 3\\ 4 \end{bmatrix}$ where we have correctly normalized the vector.

And since $\hat{v}_1 \perp \hat{v}_2$, we can also simply see that $\hat{v}_2 = \frac{1}{5} \begin{bmatrix} 4 \\ -3 \end{bmatrix}$. The above then gives us

The above then gives us

$$\boldsymbol{\Sigma} = \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix} \text{ and } \mathbf{V} = \mathbf{V}^{\mathrm{T}} = \frac{1}{5} \begin{bmatrix} 3 & 4 \\ 4 & -3 \end{bmatrix}.$$

Last, the connection $\mathbf{A}\hat{v}_i = \sigma_i\hat{u}_i$ gives

$$\mathbf{U} = \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right].$$

Multiplying everything together indeed gives $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathrm{T}}$.

(b) The Big Picture: Illustrate how A maps between the happy basis vectors that are the \hat{v}_i 's and \hat{u}_i 's. (Please draw the particular Big Picture not the abstract Big picture.)

Complete your picture by adding a unit circle in row space and the ellipse that A creates in column space by transforming this circle.

Solution:

12. (a) True or False (2 pts):

- i. The nullspace of a nontrivial 1×3 matrix **A** is a 2-D plane in \mathbb{R}^3 : **Solution:** True. The equation of the plane is given by $\mathbf{A}\vec{x} = \vec{0}$.
- ii. The product $\mathbf{A}^{\mathrm{T}}\mathbf{A}$ is symmetric for any $n \times n$ matrix \mathbf{A} : Solution: True. $(\mathbf{A}^{\mathrm{T}}\mathbf{A})^{\mathrm{T}} = \mathbf{A}^{\mathrm{T}}(\mathbf{A}^{\mathrm{T}})^{\mathrm{T}} = \mathbf{A}^{\mathrm{T}}\mathbf{A}$
- iii. An $n \times n$ matrix cannot be diagonalized if one or more eigenvalues of A are 0:

Solution: False. Such a matrix has no inverse. Whether or not it is diagnolizable depends on its eigenvectors being a basis for \mathbb{R}^n or not.

- iv. The matrix $\mathbf{M} = [\vec{v}_1 | \vec{v}_2]$ transforms a vector's representation from the basis $\{\vec{v}_1, \vec{v}_2\}$ to the natural basis: Solution: True.
- v. The determinant of a matrix A is equal to the sum of A's eigenvalues:
 Solution: False. The determinant is equal to the product of the eigenvalues.
- vi. The matrices A and A^T have different eigenvalues: Solution: False. $|\mathbf{A} - \lambda \mathbf{I}| = |(\mathbf{A} - \lambda \mathbf{I})^{T}| = |\mathbf{A}^{T} - \lambda \mathbf{I}^{T}| = |\mathbf{A}^{T} - \lambda \mathbf{I}|.$

(b) Find the determinant of the following matrix (1 pt):

$$\mathbf{A}_{n} = \begin{bmatrix} \cos(1) & \cos(2) & \cdots & \cos(n) \\ \cos(n+1) & \cos(n+2) & \cdots & \cos(2n) \\ \vdots & \vdots & \ddots & \vdots \\ \cos(n(n-1)+1) & \cos(n(n-1)+2) & \cdots & \cos(n^{2}) \end{bmatrix}$$

Solution: We use multilinearity of determinants, the sum rule for cosines (i.e., $\cos(x + y) = \cos(x)\cos(y) - \sin(x)\sin(y)$), and the fact that if two rows of a matrix are equal, then its determinant is 0.

We find that $det(\mathbf{A}_n) = 0$ for $n \ge 3$. It's enough to see the general proof working with \mathbf{A}_3 .

$$det(\mathbf{A}_3) = \begin{vmatrix} \cos 1 & \cos 2 & \cos 3 \\ \cos 4 & \cos 5 & \cos 6 \\ \cos 7 & \cos 8 & \cos 9 \end{vmatrix}$$

 $= \begin{vmatrix} \cos 1 & \cos 2 & \cos 3 \\ \cos 3 \cos 1 & \cos 3 \cos 2 & \cos 3 \cos 3 \\ \cos 7 & \cos 8 & \cos 9 \end{vmatrix} - \begin{vmatrix} \cos 1 & \cos 2 & \cos 3 \\ \sin 3 \sin 1 & \sin 3 \sin 2 & \sin 3 \sin 3 \\ \cos 7 & \cos 8 & \cos 9 \end{vmatrix}$ $= \cos 3 \begin{vmatrix} \cos 1 & \cos 2 & \cos 3 \\ \cos 1 & \cos 2 & \cos 3 \\ \cos 7 & \cos 8 & \cos 9 \end{vmatrix} - \sin 3 \begin{vmatrix} \cos 1 & \cos 2 & \cos 3 \\ \sin 1 & \sin 2 & \sin 3 \\ \sin 1 & \sin 2 & \sin 3 \\ \cos 7 & \cos 8 & \cos 9 \end{vmatrix}$

(now work on the third row with the sum rule:)

$$= -\sin 3\cos 6 \begin{vmatrix} \cos 1 & \cos 2 & \cos 3 \\ \sin 1 & \sin 2 & \sin 3 \\ \cos 1 & \cos 2 & \cos 3 \end{vmatrix} + \sin 3\sin 6 \begin{vmatrix} \cos 1 & \cos 2 & \cos 3 \\ \sin 1 & \sin 2 & \sin 3 \\ \sin 1 & \sin 2 & \sin 3 \end{vmatrix}.$$

We can see that the above treatment works for all $n \ge 3$. Only the first three rows need to be manipulated to obtain the same result.

Also, we see that $|\mathbf{A}_1| = \cos 1 \neq 0$. Therefore, $|\mathbf{A}_n| = 0$ for $n \geq 3$.