

122 Matrixology (Linear Algebra)—Practice exam #4 University of Vermont, Fall Semester,

Name:

- ➤ Total points: 36 (3 points per question); Time allowed: 165 minutes. Smile.
- ► Current brains only: No pensieves, calculators, or similar gadgets allowed.
- ► For full points, *please show all working clearly*.
 - 1. Draw the 'big picture' of how $\mathbf{A}\vec{x} = \vec{b}$ works when \mathbf{A} is an $m \times n$ matrix. Indicate on your diagram the following:
 - (a) Which space is R^m and which is R^n .
 - (b) Row space, column space, nullspace, and left nullspace.
 - (c) The dimensions of the above subspaces in terms of r, m, and n.
 - (d) How A maps vectors.
 - (e) Where the vectors $\vec{x} = \vec{x}_r + \vec{x}_n$ and $\vec{b} = \vec{p} + \vec{e}$ live.
 - (f) The appropriate orthogonality of subspaces.

- 2. For the four general cases of $\mathbf{A}\vec{x} = \vec{b}$ below:
 - (a) give an example reduced row echelon form matrix $\mathbf{R}_{\mathbf{A}};$
 - (b) sketch the appropriate cartoon abstract 'big pictures';
 - (c) indicate the number of possible solutions (0, 1, or ∞);
 - (d) and note whether or not nullspace and left nullspace are equal to $\{\vec{0}\}$ (Y/N).

case	example $\mathbf{R}_{\mathbf{A}}$	big picture	# solutions	$N(\mathbf{A}) = \{\vec{0}\}?$	$N(\mathbf{A}^{\mathrm{T}}) = {\vec{0}}?$
m = r $n = r$					
m = r, n > r					
m > r, n = r					
m > r, n > r					

3. Given a matrix A and its transpose A^T have the following reduced row echelon forms, respectively,

$$\mathbf{R}_{\mathbf{A}} = \begin{bmatrix} 1 & 2 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 & 3 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix} \text{ and } \mathbf{R}_{\mathbf{A}^{\mathrm{T}}} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix},$$

answer the following questions.

- (a) $m = _$, $n = _$, $r = _$, dim $C(\mathbf{A}^{T}) = _$, dim $C(\mathbf{A}) = _$, dim $N(\mathbf{A}) = _$, dim $N(\mathbf{A}^{T}) = _$.
- (b) Find bases for A's row space and column space.

(c) Find a basis for A's nullspace

4. LU decomposition:

Find ${\bf U}$ for the following matrix

$$\mathbf{A} = \begin{bmatrix} 2 & -1 & 2 \\ 4 & 1 & 4 \\ -4 & 11 & 0 \end{bmatrix}.$$

Write down each row operation, the multipliers l_{21} , l_{31} , and l_{32} , and the corresponding elimination matrices \mathbf{E}_{21} , \mathbf{E}_{31} , and \mathbf{E}_{32} .

- 5. This question carries on with the the preceding question's A.
 - (a) What are the pivots of A?

(b) Write down a general formula for $|\mathbf{A}|$ in terms of its pivots (remembering that in general, row swaps may be needed to reduce \mathbf{A} to \mathbf{U}), and compute the determinant of the \mathbf{A} we have here.

(c) Write down the inverses of the elimination matrices and compute $\mathbf{L}=\mathbf{E}_{21}^{-1}\mathbf{E}_{31}^{-1}\mathbf{E}_{32}^{-1}.$

6. Least squares approximation:

(a) Given

$$\mathbf{A} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \\ 1 & 1 \end{bmatrix} \quad \text{and} \quad \vec{b} = \begin{bmatrix} 7 \\ -1 \\ 3 \end{bmatrix},$$

solve the normal equation $\mathbf{A}^{\mathrm{T}}\mathbf{A}\vec{x^{*}} = \mathbf{A}^{\mathrm{T}}\vec{b}.$

(b) Find \vec{p} and \vec{e} , the components of \vec{b} that live in column space and left nullspace respectively.

7. The Gram-Schmidt process:

Consider the subspace ${\bf S}$ of R^3 that is spanned by the following two linearly independent vectors:

$$\vec{a}_1 = \begin{bmatrix} 2\\1\\2 \end{bmatrix}$$
, and $\vec{a}_2 = \begin{bmatrix} 1\\-1\\1 \end{bmatrix}$.

Find an orthonormal basis vectors $(\hat{q}_1 \text{ and } \hat{q}_2)$ for S using the (exciting) Gram-Schmidt process.

(b) Consequently, for the matrix $\mathbf{A} = \begin{bmatrix} 2 & 1 \\ 1 & -1 \\ 2 & 1 \end{bmatrix}$ find the factorization $\mathbf{A} = \mathbf{QR}$ (i.e., find \mathbf{Q} and \mathbf{R}).

8. (a) Find the eigenvalues and eigenvectors of the following matrix:

$$\mathbf{A} = \left[\begin{array}{cc} 3 & 0 \\ 3 & 1 \end{array} \right]$$

(b) Write down A's diagonalized counterpart Λ and the transformation matrices ${\bf S}$ and ${\bf S}^{-1}.$

(c) Hence determine \mathbf{A}^n where n is arbitrary.

9. Computing determinants: Given

$$\mathbf{A} = \begin{bmatrix} 4 & 2 & 0 \\ 4 & 4 & 2 \\ 2 & 2 & 3 \end{bmatrix},$$

(a) Write down the minor matrices M_{12} , M_{22} , and M_{32} , compute the cofactors C_{12} , C_{22} , and C_{32} , and hence find det(A).

(b) Also find $|\mathbf{A}|$ by reducing \mathbf{A} to an upper triangular matrix with 1's on the leading diagonal.

10. Positive Definite Matrices

Let $f(x, x_2, x_3) = 2x^2 + x_2^2 + 6x_3^2 + 2x_1x_2 - 4x_1x_3 + 4x_2x_3$. (a) Rewrite $f(x_1, x_2, x_3)$ as $\begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix} \mathbf{A} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ where \mathbf{A} is a symmetric matrix.

(b) Determine the signs of eigenvalues by finding the pivots.

(c) Write down the definition of positive definiteness. Is this matrix positive definite?

- 11. Singular Value Decomposition
 - (a) Consider the matrix:

$$\mathbf{A} = \frac{1}{5} \left[\begin{array}{cc} 9 & 12\\ 8 & -6 \end{array} \right].$$

Determine the singular value decomposition of A, i.e., find the three matrices U, Σ , and V^T such that $A = U\Sigma V^{T}$.

(Reminder: $\mathbf{A}\hat{v}_i = \sigma_i\hat{u}_i$ and $\mathbf{A}^{\top}\mathbf{A}\hat{v}_i = \sigma_i^2\hat{v}_i$.)

(b) The Big Picture: Illustrate how A maps between the happy basis vectors that are the \hat{v}_i 's and \hat{u}_i 's. (Please draw the particular Big Picture not the abstract Big picture.)

Complete your picture by adding a unit circle in row space and the ellipse that \mathbf{A} creates in column space by transforming this circle.

12. (a) True or False (2 pts):

.

- i. The nullspace of a nontrivial 1×3 matrix ${\bf A}$ is a 2-D plane in $\mathbb{R}^3:$
- ii. The product $\mathbf{A}^{\mathrm{T}}\mathbf{A}$ is symmetric for any $n \times n$ matrix \mathbf{A} : _____.
- iii. An $n \times n$ matrix cannot be diagonalized if one or more eigenvalues of A are 0: _____.
- iv. The matrix $\mathbf{M} = [\vec{v}_1 | \vec{v}_2]$ transforms a vector's representation from the basis $\{\vec{v}_1, \vec{v}_2\}$ to the natural basis: _____.
- v. The determinant of a matrix \mathbf{A} is equal to the sum of \mathbf{A} 's eigenvalues:
- vi. The matrices \mathbf{A} and \mathbf{A}^{T} have different eigenvalues: _____.

(b) Find the determinant of the following matrix (1 pt):

$$\mathbf{A}_{n} = \begin{bmatrix} \cos(1) & \cos(2) & \cdots & \cos(n) \\ \cos(n+1) & \cos(n+2) & \cdots & \cos(2n) \\ \vdots & \vdots & \ddots & \vdots \\ \cos(n(n-1)+1) & \cos(n(n-1)+2) & \cdots & \cos(n^{2}) \end{bmatrix}$$

The Triumphant Bonus Page: