MATH 122: Matrixology (Linear Algebra)
 Solutions to Level Tetris (1984) [J, 10 of 10
 University of Vermont, Fall 2016

1. (Q 4, 6.5) Show that the function $f\left(x_{1}, x_{2}\right)=x_{1}^{2}+4 x_{1} x_{2}+3 x_{2}^{2}$ does not have a minimum at $(0,0)$ even though it has positive coefficients.
Do this by rewriting $f\left(x_{1}, x_{2}\right)$ as $\left[\begin{array}{ll}x_{1} & x_{2}\end{array}\right] \mathbf{A}\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$ and finding the pivots of \mathbf{A} and noting their signs (and explaining why the signs of the pivots matter).

Write f as a difference of squares and find a point $\left(x_{1}, x_{2}\right)$ where f is negative.
Note of caution: All of this signs matching for pivots and eigenvalues falls apart if we have to do row swaps in our reduction.

Solution:

First, we can rewrite our function as

$$
\left[\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right] f\left(x_{1}, x_{2}\right)=\left[\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right] \mathbf{A}\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{ll}
1 & 2 \\
2 & 3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

We need to do one step of row reduction to reveal the pivots:

$$
\mathbf{A}=\left[\begin{array}{ll}
1 & 2 \\
2 & 3
\end{array}\right] \underset{R 2^{\prime}=R 2-2 R 1}{\underset{\sim}{2}}\left[\begin{array}{cc}
1 & 2 \\
0 & -1
\end{array}\right] .
$$

The pivots are 1 and -1 so we must have one positive and one negative eigenvalue: f is therefore not positive definite.

Completing the square:
$f\left(x_{1}, x_{2}\right)=x_{1}^{2}+4 x_{1} x_{2}+3 x_{2}^{2}=\left(x_{1}+2 x_{2}\right)^{2}-4 x_{2}^{2}+3 x_{2}^{2}=1 \cdot\left(x_{1}+2 x_{2}\right)^{2}-1 \cdot\left(x_{2}\right)^{2}$.
Note the appearance of the pivots 1 and -1 in front of the squares. As we saw in class, the $\mathbf{L U}$ factorization of symmetric matrices, $\mathbf{A}=L D L^{\mathrm{T}}$, is behind all of this.
2. ($\mathrm{Q} 9,6.5$) Find the 3 by 3 matrix \mathbf{A} and its pivots, rank, eigenvalues, and determinant:

$$
\left[\begin{array}{lll}
x_{1} & x_{2} & x_{3}
\end{array}\right][\mathbf{A}]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=4\left(x_{1}-x_{2}+2 x_{3}\right)^{2}
$$

Is this matrix positive definite, semi-positive definite, or neither?

Solution:

Expanding $4\left(x_{1}-x_{2}+2 x_{3}\right)^{2}$ we have

$$
4 x_{1}^{2}+4 x_{2}^{2}+16 x_{3}^{2}-8 x_{1} x_{2}-16 x_{2} x_{3}+16 x_{3} x_{1}
$$

and this can be written as

$$
\left[\begin{array}{lll}
x_{1} & x_{2} & x_{3}
\end{array}\right]\left[\begin{array}{ccc}
4 & -4 & 8 \\
-4 & 4 & -8 \\
8 & -8 & 16
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]
$$

We can now find the pivots of \mathbf{A} (much easier than finding the eigenvalues):

The pivots are 4, 0,0 and our matrix is therefore semi-positive definite.
Some bonus sneaky grooviness: we can see straight away that \mathbf{A} is a rank one matrix:

$$
\mathbf{A}=\left[\begin{array}{c}
2 \\
-2 \\
4
\end{array}\right]\left[\begin{array}{lll}
2 & -2 & 4
\end{array}\right]=24\left[\begin{array}{c}
1 / \sqrt{6} \\
-1 / \sqrt{6} \\
2 / \sqrt{6}
\end{array}\right]\left[\begin{array}{lll}
1 / \sqrt{6} & -1 / \sqrt{6} & 2 / \sqrt{6}
\end{array}\right]
$$

We now have \mathbf{A} in its spectral decomposition form:

$$
\mathbf{A}=\sum_{i=1}^{n} \lambda_{n} \hat{v}_{i} \hat{v}_{i}^{\mathrm{T}} .
$$

So the eigenvalues are 24,0 , and 0 , which means that \mathbf{A} is semi-positive definite.
Another way to see this: we know from the pivots that two of the eigenvalues are 0 . Since the trace of \mathbf{A} is the sum of the eigenvalues, we have that the trace of \mathbf{A} must be $\lambda_{1}+0+0=\lambda_{1}$. Checking \mathbf{A}, we have $\lambda_{1}=24$.

The determinant of \mathbf{A} is zilch since we have 0 eigenvalues.
3. (following set of questions based on Q 7, Section 6.7)

Singular Value Decomposition $=$ Happiness.
Consider

$$
\mathbf{A}=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right]
$$

(a) What are m, n, and r for this matrix?
(b) What are the dimensions of $\mathbf{U}, \boldsymbol{\Sigma}$, and \mathbf{V} ?
(c) Calculate $\mathbf{A}^{T} \mathbf{A}$ and $\mathbf{A A}^{T}$.

Solution:

(a) $m=2, n=3$, and $r=2$.
(b) \mathbf{U} is $2 \times 2, \Sigma$ is 2×3, and \mathbf{V} is 3×3.
(c)

$$
\mathbf{A}^{\mathrm{T}} \mathbf{A}=\left[\begin{array}{ll}
1 & 0 \\
1 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right]=\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 2 & 1 \\
0 & 1 & 1
\end{array}\right]
$$

and

$$
\mathbf{A A}^{\mathrm{T}}=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
1 & 1 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right]
$$

4. For the matrix \mathbf{A} given above, find the eigenvalues and eigenvectors of $\mathbf{A}^{T} \mathbf{A}$, and thereby construct V and Σ.

See this tweet for some post-it based help:
https://twitter.com/matrixologyvox/status/593540446845947904

Solution:

Okay, we have to solve $|\mathbf{A}-\lambda I|=0$. Using the 'big formula' and going across the top row (to take advantage of the 0 in the $(1,3)$ entry), we have:

$$
\begin{aligned}
& 0=\left|\begin{array}{ccc}
1-\lambda & 1 & 0 \\
1 & 2-\lambda & 1 \\
0 & 1 & 1-\lambda
\end{array}\right|=(1-\lambda)\left|\begin{array}{cc}
2-\lambda & 1 \\
1 & 1-\lambda
\end{array}\right|-1\left|\begin{array}{cc}
1 & 1 \\
0 & 1-\lambda
\end{array}\right| \\
&=(1-\lambda)[(2-\lambda)(1-\lambda)-(1)(1)]-(1)(1-\lambda)-(0)(1) \\
&=-\lambda^{3} 4 \lambda^{2}-3 \lambda \\
&=-\lambda(\lambda-3)(\lambda-1) .
\end{aligned}
$$

Our eigenvalues are $\lambda_{1}=3, \lambda_{2}=1$, and $\lambda_{1}=0$. Ordering for largest to smallest is important here.

We notice a couple of things: (1) The eigenvalues are all ≥ 0. This is good as these are the squares of our singular values, the σ_{i}. (2) One eigenvalue is 0 . This
makes sense as the rank $r=2$ which means that we have two non-zero singular values.

Our singular values are the square roots of the eigenvalues:

$$
\sigma_{1}=\sqrt{3} \text { and } \sigma_{2}=1
$$

Note that there are only two singular values as \mathbf{A} is 2×3.
Next task: find the eigenvectors.
(a) For $\lambda_{1}=3$, we solve $\left(\mathbf{A}^{\mathrm{T}} \mathbf{A}-3 I\right) \vec{v}_{1}=\overrightarrow{0}$.

$$
\left[\begin{array}{ccc}
-2 & 1 & 0 \\
1 & -1 & 1 \\
0 & 1 & -2
\end{array}\right] \vec{v}_{1}=\overrightarrow{0} .
$$

You can do this be inspection, or by systematically finding the nullspace vector, or however you please. By inspection: $\vec{v}_{1}=\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]$. Normalizing, we have $\hat{v}_{1}=\frac{1}{\sqrt{6}}\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]$.
(b) For $\lambda_{2}=1$, we solve $\left(\mathbf{A}^{\mathrm{T}} \mathbf{A}-I\right) \vec{v}_{2}=\overrightarrow{0}$:

$$
\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 1 & 1 \\
0 & 1 & 0
\end{array}\right] \vec{v}_{2}=\overrightarrow{0}
$$

By inspection: $\vec{v}_{2}=\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right]$ and the normalized eigenvector is $\hat{v}_{2}=\frac{1}{\sqrt{2}}\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right]$.
(c) For $\lambda_{3}=0$, solve $\left(\mathbf{A}^{\mathrm{T}} \mathbf{A}-0 I\right) \vec{v}_{3}=\overrightarrow{0}$:

$$
\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 2 & 1 \\
0 & 1 & 1
\end{array}\right] \vec{v}_{3}=\overrightarrow{0}
$$

By inspection: $\vec{v}_{3}=\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right]$ and the normalized eigenvector is
$\hat{v}_{3}=\frac{1}{\sqrt{3}}\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right]$.
We can now write down $\mathbf{V}=\left[\hat{v}_{1}\left|\hat{v}_{2}\right| \hat{v}_{3}\right]$:

$$
\mathbf{V}=\left[\begin{array}{ccc}
\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} \\
\frac{2}{\sqrt{6}} & 0 & \frac{-1}{\sqrt{3}} \\
\frac{1}{\sqrt{6}} & \frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{3}}
\end{array}\right]
$$

And the $\boldsymbol{\Sigma}$ matrix is

$$
\left[\begin{array}{ccc}
\sqrt{3} & 0 & 0 \\
0 & 1 & 0
\end{array}\right] .
$$

5. For the same \mathbf{A}, now find the basis $\left\{\hat{u}_{i}\right\}$ using the essential connection $\mathbf{A} \hat{v}_{i}=\sigma_{i} \hat{u}_{i}$.
Construct U from the basis you find.
Again see this tweet for some post-it based help:
https://twitter.com/matrixologyvox/status/593540446845947904

Solution:

We multiply the \hat{v}_{i} for which $\sigma_{i}>0$ by \mathbf{A} to find the \hat{u}_{i}. We'll need to pull the σ_{i} out to find the \hat{u}_{i}. Recall that $\sigma_{1}=\sqrt{3}$ and $\sigma_{2}=1$. First off:

$$
\begin{gathered}
\mathbf{A} \hat{v}_{1}=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right] \frac{1}{\sqrt{6}}\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right] \\
=\frac{1}{\sqrt{6}}\left[\begin{array}{l}
3 \\
3
\end{array}\right] \\
=\sqrt{3} \frac{1}{\sqrt{3}} \frac{1}{\sqrt{6}}\left[\begin{array}{l}
3 \\
3
\end{array}\right] \\
=\sqrt{3} \frac{1}{3 \sqrt{2}}\left[\begin{array}{l}
3 \\
3
\end{array}\right] \\
=\sqrt{3} \frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
=\sigma_{1} \hat{u}_{1} .
\end{gathered}
$$

Notice how when we pull out σ_{1}, we (almost magically) end up with a happy little unit vector.

Second vector:

$$
\begin{gathered}
\mathbf{A} \hat{v}_{2}=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right] \frac{1}{\sqrt{2}}\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right] \\
=\frac{1}{\sqrt{2}}\left[\begin{array}{c}
1 \\
-1
\end{array}\right] \\
=1 \cdot \frac{1}{\sqrt{2}}\left[\begin{array}{c}
1 \\
-1
\end{array}\right] \\
=\sigma_{2} \hat{u}_{2} .
\end{gathered}
$$

Smashing. Note that $\hat{u}_{1}^{\mathrm{T}} \hat{u}_{2}=0$ and we have an orthonormal basis for R^{2}.
Finally,

$$
\mathbf{U}=\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}}
\end{array}\right] .
$$

6. Next find the $\left\{\hat{u}_{i}\right\}$ in a different way by finding the eigenvalues and eigenvectors of AA^{T}.

Solution:

Eigenvalues:

$$
\begin{gathered}
0=\left|\mathbf{A A}^{\mathrm{T}}-\lambda I\right|=\left[\begin{array}{cc}
2-\lambda & 1 \\
1 & 2-\lambda
\end{array}\right] \\
=(2-\lambda)^{2}-1 \\
=(2-\lambda-1)(2-\lambda+1) \\
=(1-\lambda)(3-\lambda),
\end{gathered}
$$

where we have used the difference of perfect squares.
So $\lambda_{1}=3$ and $\lambda_{2}=1$ which again gives $\sigma_{1}=\sqrt{3}$ and $\sigma_{2}=1$.
Eigenvector time (la-la-la-la) for $\lambda_{1}=3$:

$$
\begin{aligned}
\overrightarrow{0} & =\left(\mathbf{A A}^{\mathrm{T}}-\lambda_{1} I\right) \vec{u}_{1} \\
& =\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right]-3 I \\
& =\left[\begin{array}{cc}
-1 & 1 \\
1 & -1
\end{array}\right] .
\end{aligned}
$$

By inspection, we have $\hat{u}_{1}=\frac{1}{\sqrt{2}}\left[\begin{array}{l}1 \\ 1\end{array}\right]$.
Next,

$$
\begin{aligned}
\overrightarrow{0} & =\left(\mathbf{A A}^{\mathrm{T}}-\lambda_{2} I\right) \vec{u}_{2} \\
= & {\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right]-1 I } \\
& =\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right] .
\end{aligned}
$$

This gives $\hat{u}_{2}=\frac{1}{\sqrt{2}}\left[\begin{array}{c}1 \\ -1\end{array}\right]$. Note that we could have chosen $\hat{u}_{2}=\frac{1}{\sqrt{2}}\left[\begin{array}{c}-1 \\ 1\end{array}\right]$, the negative of the one we have above.

In fact, we always need to compute $\mathbf{A} \hat{v}_{i}$ to find out which direction \hat{u}_{i} should take. Beyond this, we don't need to compute the \hat{u}_{i} directly ever as once we have \vec{v}_{i} we need only multiply by \mathbf{A} (as per the previous question). We found the u 's directly here to (1) see that both ways give the same thing and (2) punish ourselves just a little more.
7. (a) Put everything together and show that $\mathbf{A}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\mathrm{T}}$.
(b) Draw the 'big picture' for this \mathbf{A} showing which \hat{v}_{i} 's are mapped to which \hat{u}_{i} 's.
(c) Which basis vectors, if any, belong to the two nullspaces?

Solution:

(a)

$$
\begin{gathered}
\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\mathrm{T}}=\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}}
\end{array}\right]\left[\begin{array}{ccc}
\sqrt{3} & 0 & 0 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{ccc}
\frac{1}{\sqrt{6}} & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{6}} \\
\frac{1}{\sqrt{2}} & 0 & \frac{-1}{\sqrt{2}} \\
\frac{1}{\sqrt{3}} & \frac{-1}{\sqrt{3}} & \frac{1}{\sqrt{3}}
\end{array}\right] \\
=\left[\begin{array}{ccc}
\frac{\sqrt{3}}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\
\frac{\sqrt{3}}{\sqrt{2}} & \frac{-1}{\sqrt{2}} & 0
\end{array}\right]\left[\begin{array}{ccc}
\frac{1}{\sqrt{6}} & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{6}} \\
\frac{1}{\sqrt{2}} & 0 & \frac{-1}{\sqrt{2}} \\
\frac{1}{\sqrt{3}} & \frac{-1}{\sqrt{3}} & \frac{1}{\sqrt{3}}
\end{array}\right] \\
=\left[\begin{array}{ccc}
1 / 2+1 / 2 & 1+0 & 1 / 2-1 / 2 \\
1 / 2-1 / 2 & 1+0 & 1 / 2+1 / 2
\end{array}\right] \\
=\left[\begin{array}{ccc}
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right] .
\end{gathered}
$$

(b)

(c) Left nullspace is just $\{\overrightarrow{0}\}$.

A's nullspace has dimension 1 and has the basis vector $\hat{v}_{3}=\frac{1}{\sqrt{3}}\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right]$.
8. Finally, for this same A, perform the following calculation:

$$
\sigma_{1} \hat{u}_{1} \hat{v}_{1}^{\mathrm{T}}+\sigma_{2} \hat{u}_{2} \hat{v}_{2}^{\mathrm{T}}+\ldots+\sigma_{r} \hat{u}_{r} \hat{v}_{r}^{\mathrm{T}}
$$

where r is the rank of \mathbf{A}.

You should obtain A...

Solution:

$$
\begin{gathered}
\sigma_{1} \hat{u}_{1} \hat{v}_{1}^{\mathrm{T}}+\sigma_{2} \hat{u}_{2} \hat{v}_{2}^{\mathrm{T}}=\sqrt{3} \frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1
\end{array}\right] \frac{1}{\sqrt{6}}\left[\begin{array}{lll}
1 & 2 & 1
\end{array}\right]+1 \frac{1}{\sqrt{2}}\left[\begin{array}{c}
1 \\
-1
\end{array}\right] \frac{1}{\sqrt{2}}\left[\begin{array}{lll}
1 & 0 & -1
\end{array}\right] \\
=\frac{1}{2}\left[\begin{array}{lll}
1 & 2 & 1 \\
1 & 2 & 1
\end{array}\right]+\frac{1}{2}\left[\begin{array}{ccc}
1 & 0 & -1 \\
-1 & 0 & 1
\end{array}\right] \\
=\frac{1}{2}\left[\begin{array}{lll}
2 & 2 & 0 \\
0 & 2 & 2
\end{array}\right] \\
=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right]=\mathbf{A} .
\end{gathered}
$$

9. Matlab question.

Verify the signs you found for the pivots of \mathbf{A} in question 1 by using Matlab to find A's eigenvalues.

Solution:

Using Matlab, we find $\lambda_{1}=-0.2361$ and $\lambda_{1}=4.2361$:

```
>> eig([ 1 2; 2 3])
ans =
    -0.2361
    4.2361
```

One positive and one negative, matching the signs of the pivots.
10. Matlab question.

Use Matlab to compute the SVD for the matrix A you explored in questions 3-8.

Solution:

>> [U,Sigma,V] = svd([110 ; 0 1 1])
U =
$-0.7071 \quad-0.7071$
-0.7071 0.7071
Sigma =

1.7321	0	0
0	1.0000	0
$\mathrm{~V}=$		
-0.4082	-0.7071	0.5774
-0.8165	0.0000	-0.5774
-0.4082	0.7071	0.5774

11. (The bonus one pointer)

Where does the fearsome kiwi rank among among rattites and what's unusual about the kiwi egg?

Solution:

The kiwi is the smallest of all struthious birds.
A kiwi egg can weight up to $1 / 4$ of the mother's own weight, which is believed to be the highest ratio of all birds.

