

MATH 122: Matrixology (Linear Algebra) Solutions to Level Tetris (1984) 2, 10 of 10 University of Vermont, Fall 2016

1. (Q 4, 6.5) Show that the function $f(x_1, x_2) = x_1^2 + 4x_1x_2 + 3x_2^2$ does not have a minimum at (0, 0) even though it has positive coefficients.

Do this by rewriting $f(x_1, x_2)$ as $\begin{bmatrix} x_1 & x_2 \end{bmatrix} \mathbf{A} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ and finding the pivots of \mathbf{A} and noting their signs (and explaining why the signs of the pivots matter). Write f as a difference of squares and find a point (x_1, x_2) where f is negative. Note of caution: All of this signs matching for pivots and eigenvalues falls apart if we have to do row swaps in our reduction.

Solution:

First, we can rewrite our function as

$$\begin{bmatrix} x_1 & x_2 \end{bmatrix} f(x_1, x_2) = \begin{bmatrix} x_1 & x_2 \end{bmatrix} \mathbf{A} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}.$$

We need to do one step of row reduction to reveal the pivots:

$$\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix} \xrightarrow{\mathbf{R2'} = \mathbf{R2} - 2 \mathbf{R1}} \begin{bmatrix} 1 & 2 \\ 0 & -1 \end{bmatrix}.$$

The pivots are 1 and -1 so we must have one positive and one negative eigenvalue: f is therefore not positive definite.

Completing the square:

$$f(x_1, x_2) = x_1^2 + 4x_1x_2 + 3x_2^2 = (x_1 + 2x_2)^2 - 4x_2^2 + 3x_2^2 = 1 \cdot (x_1 + 2x_2)^2 - 1 \cdot (x_2)^2.$$

Note the appearance of the pivots 1 and -1 in front of the squares. As we saw in class, the LU factorization of symmetric matrices, $\mathbf{A} = LDL^{\mathrm{T}}$, is behind all of this.

2. (Q 9, 6.5) Find the 3 by 3 matrix A and its pivots, rank, eigenvalues, and determinant:

$$\begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix} \begin{bmatrix} \mathbf{A} \\ \mathbf{A} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = 4(x_1 - x_2 + 2x_3)^2$$

Is this matrix positive definite, semi-positive definite, or neither?

Solution:

Expanding $4(x_1 - x_2 + 2x_3)^2$ we have

$$4x_1^2 + 4x_2^2 + 16x_3^2 - 8x_1x_2 - 16x_2x_3 + 16x_3x_1$$

and this can be written as

$$\begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix} \begin{bmatrix} 4 & -4 & 8 \\ -4 & 4 & -8 \\ 8 & -8 & 16 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}.$$

We can now find the pivots of A (much easier than finding the eigenvalues):

$$\begin{bmatrix} 4 & -4 & 8 \\ -4 & 4 & -8 \\ 8 & -8 & 16 \end{bmatrix} \xrightarrow[-1]{R1} \begin{bmatrix} 4 & -4 & 8 \\ 0 & 0 & 0 \\ 8 & -8 & 16 \end{bmatrix} \xrightarrow[-R2]{R3} \begin{bmatrix} 4 & -4 & 8 \\ 0 & 0 & 0 \\ -R3 & -8 & 16 \end{bmatrix} \xrightarrow[-R3]{R3'} \begin{bmatrix} 4 & -4 & 8 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

The pivots are 4, 0, 0 and our matrix is therefore semi-positive definite.

Some bonus sneaky grooviness: we can see straight away that ${\bf A}$ is a rank one matrix:

$$\mathbf{A} = \begin{bmatrix} 2\\ -2\\ 4 \end{bmatrix} \begin{bmatrix} 2 & -2 & 4 \end{bmatrix} = 24 \begin{bmatrix} 1/\sqrt{6}\\ -1/\sqrt{6}\\ 2/\sqrt{6} \end{bmatrix} \begin{bmatrix} 1/\sqrt{6} & -1/\sqrt{6} & 2/\sqrt{6} \end{bmatrix}.$$

We now have A in its spectral decomposition form:

$$\mathbf{A} = \sum_{i=1}^{n} \lambda_n \hat{v}_i \hat{v}_i^{\mathrm{T}}$$

So the eigenvalues are 24, 0, and 0, which means that \mathbf{A} is semi-positive definite. Another way to see this: we know from the pivots that two of the eigenvalues are 0. Since the trace of \mathbf{A} is the sum of the eigenvalues, we have that the trace of \mathbf{A} must be $\lambda_1 + 0 + 0 = \lambda_1$. Checking \mathbf{A} , we have $\lambda_1 = 24$.

The determinant of A is zilch since we have 0 eigenvalues.

3. (following set of questions based on Q 7, Section 6.7)

Singular Value Decomposition = Happiness.

Consider

$$\mathbf{A} = \left[\begin{array}{rrr} 1 & 1 & 0 \\ 0 & 1 & 1 \end{array} \right].$$

- (a) What are *m*, *n*, and *r* for this matrix?
- (b) What are the dimensions of U, Σ , and V?
- (c) Calculate $\mathbf{A}^{\mathrm{T}}\mathbf{A}$ and $\mathbf{A}\mathbf{A}^{\mathrm{T}}$.

Solution:

- (a) m = 2, n = 3, and r = 2.
- (b) U is 2x2, Σ is 2x3, and V is 3x3.
- (c)

$$\mathbf{A}^{\mathrm{T}}\mathbf{A} = \begin{bmatrix} 1 & 0\\ 1 & 1\\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0\\ 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0\\ 1 & 2 & 1\\ 0 & 1 & 1 \end{bmatrix}$$

and

$$\mathbf{A}\mathbf{A}^{\mathrm{T}} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}.$$

4. For the matrix A given above, find the eigenvalues and eigenvectors of $A^{T}A$, and thereby construct V and Σ .

See this tweet for some post-it based help: https://twitter.com/matrixologyvox/status/593540446845947904

Solution:

Okay, we have to solve $|\mathbf{A} - \lambda I| = 0$. Using the 'big formula' and going across the top row (to take advantage of the 0 in the (1,3) entry), we have:

$$0 = \begin{vmatrix} 1-\lambda & 1 & 0\\ 1 & 2-\lambda & 1\\ 0 & 1 & 1-\lambda \end{vmatrix} = (1-\lambda) \begin{vmatrix} 2-\lambda & 1\\ 1 & 1-\lambda \end{vmatrix} - 1 \begin{vmatrix} 1 & 1\\ 0 & 1-\lambda \end{vmatrix}$$
$$= (1-\lambda)[(2-\lambda)(1-\lambda) - (1)(1)] - (1)(1-\lambda) - (0)(1)$$
$$= -\lambda^3 4\lambda^2 - 3\lambda$$
$$= -\lambda(\lambda - 3)(\lambda - 1).$$

Our eigenvalues are $\lambda_1 = 3$, $\lambda_2 = 1$, and $\lambda_1 = 0$. Ordering for largest to smallest is important here.

We notice a couple of things: (1) The eigenvalues are all ≥ 0 . This is good as these are the squares of our singular values, the σ_i . (2) One eigenvalue is 0. This

makes sense as the rank r = 2 which means that we have two non-zero singular values.

Our singular values are the square roots of the eigenvalues:

$$\sigma_1=\sqrt{3}$$
 and $\sigma_2=1.$

Note that there are only two singular values as A is 2x3.

Next task: find the eigenvectors.

(a) For $\lambda_1 = 3$, we solve $(\mathbf{A}^T \mathbf{A} - 3I)\vec{v}_1 = \vec{0}$. $\begin{bmatrix} -2 & 1 & 0\\ 1 & -1 & 1\\ 0 & 1 & -2 \end{bmatrix} \vec{v}_1 = \vec{0}.$

You can do this be inspection, or by systematically finding the nullspace vector, or however you please. By inspection: $\vec{v}_1 = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$. Normalizing, we

have
$$\hat{v}_1 = \frac{1}{\sqrt{6}} \begin{bmatrix} 1\\ 2\\ 1 \end{bmatrix}$$

(b) For $\lambda_2 = 1$, we solve $(\mathbf{A}^{\mathrm{T}}\mathbf{A} - I)\vec{v}_2 = \vec{0}$:

$$\left[\begin{array}{rrr} 0 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 0 \end{array}\right] \vec{v}_2 = \vec{0}.$$

By inspection: $\vec{v}_2 = \begin{bmatrix} 1\\0\\-1 \end{bmatrix}$ and the normalized eigenvector is $\hat{v}_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\0\\-1 \end{bmatrix}$.

(c) For $\lambda_3 = 0$, solve $(\mathbf{A}^{\mathrm{T}}\mathbf{A} - 0I)\vec{v}_3 = \vec{0}$:

$$\begin{bmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 1 \end{bmatrix} \vec{v}_3 = \vec{0}.$$

By inspection: $\vec{v}_3 = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$ and the normalized eigenvector is $\hat{v}_3 = \frac{1}{\sqrt{3}} \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$.

We can now write down $\mathbf{V} = [\hat{v}_1 | \hat{v}_2 | \hat{v}_3]$:

$$\mathbf{V} = \begin{bmatrix} \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} \\ \frac{2}{\sqrt{6}} & 0 & \frac{-1}{\sqrt{3}} \\ \frac{1}{\sqrt{6}} & \frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{3}} \end{bmatrix}.$$

 $\left[\begin{array}{rrr} \sqrt{3} & 0 & 0 \\ 0 & 1 & 0 \end{array}\right].$

And the Σ matrix is

5. For the same A, now find the basis $\{\hat{u}_i\}$ using the essential connection $\mathbf{A}\hat{v}_i = \sigma_i\hat{u}_i$.

Construct ${\bf U}$ from the basis you find.

Again see this tweet for some post-it based help: https://twitter.com/matrixologyvox/status/593540446845947904

Solution:

We multiply the \hat{v}_i for which $\sigma_i > 0$ by A to find the \hat{u}_i . We'll need to pull the σ_i out to find the \hat{u}_i . Recall that $\sigma_1 = \sqrt{3}$ and $\sigma_2 = 1$. First off:

$$\mathbf{A}\hat{v}_{1} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \frac{1}{\sqrt{6}} \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$$
$$= \frac{1}{\sqrt{6}} \begin{bmatrix} 3 \\ 3 \end{bmatrix}$$
$$= \sqrt{3}\frac{1}{\sqrt{3}}\frac{1}{\sqrt{6}} \begin{bmatrix} 3 \\ 3 \end{bmatrix}$$
$$= \sqrt{3}\frac{1}{\sqrt{2}} \begin{bmatrix} 3 \\ 3 \end{bmatrix}$$
$$= \sqrt{3}\frac{1}{\sqrt{2}} \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$
$$= \sigma_{1}\hat{u}_{1}.$$

Notice how when we pull out σ_1 , we (almost magically) end up with a happy little unit vector.

Second vector:

$$\mathbf{A}\hat{v}_2 = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$$
$$= \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$
$$= 1 \cdot \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$
$$= \sigma_2 \hat{u}_2.$$

Smashing. Note that $\hat{u}_1^{\rm T}\hat{u}_2 = 0$ and we have an orthonormal basis for R^2 . Finally,

$$\mathbf{U} = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \end{bmatrix}$$

•

6. Next find the $\{\hat{u}_i\}$ in a different way by finding the eigenvalues and eigenvectors of AA^T .

Solution:

Eigenvalues:

$$0 = |\mathbf{A}\mathbf{A}^{\mathrm{T}} - \lambda I| = \begin{bmatrix} 2-\lambda & 1\\ 1 & 2-\lambda \end{bmatrix}$$
$$= (2-\lambda)^2 - 1$$
$$= (2-\lambda-1)(2-\lambda+1)$$
$$= (1-\lambda)(3-\lambda),$$

where we have used the difference of perfect squares. So $\lambda_1 = 3$ and $\lambda_2 = 1$ which again gives $\sigma_1 = \sqrt{3}$ and $\sigma_2 = 1$. Eigenvector time (la-la-la) for $\lambda_1 = 3$:

$$\vec{0} = (\mathbf{A}\mathbf{A}^{\mathrm{T}} - \lambda_{1}I)\vec{u}_{1}$$
$$= \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} - 3I$$
$$= \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix}.$$

By inspection, we have $\hat{u}_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\1 \end{bmatrix}$.

Next,

$$\vec{0} = (\mathbf{A}\mathbf{A}^{\mathrm{T}} - \lambda_2 I)\vec{u}_2$$
$$= \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} - 1I$$
$$= \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}.$$

This gives $\hat{u}_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$. Note that we could have chosen $\hat{u}_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} -1 \\ 1 \end{bmatrix}$, the negative of the one we have above.

In fact, we always need to compute $\mathbf{A}\hat{v}_i$ to find out which direction \hat{u}_i should take. Beyond this, we don't need to compute the \hat{u}_i directly ever as once we have \vec{v}_i we need only multiply by \mathbf{A} (as per the previous question). We found the u's directly here to (1) see that both ways give the same thing and (2) punish ourselves just a little more.

- 7. (a) Put everything together and show that $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathrm{T}}.$
 - (b) Draw the 'big picture' for this A showing which \hat{v}_i 's are mapped to which \hat{u}_i 's.
 - (c) Which basis vectors, if any, belong to the two nullspaces?

Solution:

(a)

$$\begin{split} \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathrm{T}} &= \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} \sqrt{3} & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{6}} & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{2}} & 0 & \frac{-1}{\sqrt{2}} \\ \frac{1}{\sqrt{3}} & \frac{-1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \end{bmatrix} \\ &= \begin{bmatrix} \frac{\sqrt{3}}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ \frac{\sqrt{3}}{\sqrt{2}} & \frac{-1}{\sqrt{2}} & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{6}} & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{2}} & 0 & \frac{-1}{\sqrt{2}} \\ \frac{1}{\sqrt{3}} & \frac{-1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \end{bmatrix} \\ &= \begin{bmatrix} 1/2 + 1/2 & 1 + 0 & 1/2 - 1/2 \\ 1/2 - 1/2 & 1 + 0 & 1/2 + 1/2 \end{bmatrix} \\ &= \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}. \end{split}$$

(c) Left nullspace is just $\{\vec{0}\}$.

A's nullspace has dimension 1 and has the basis vector $\hat{v}_3 = \frac{1}{\sqrt{3}} \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$.

8. Finally, for this same \mathbf{A} , perform the following calculation:

$$\sigma_1 \hat{u}_1 \hat{v}_1^{\mathrm{T}} + \sigma_2 \hat{u}_2 \hat{v}_2^{\mathrm{T}} + \ldots + \sigma_r \hat{u}_r \hat{v}_r^{\mathrm{T}}$$

where r is the rank of \mathbf{A} .

You should obtain A...

Solution:

$$\sigma_{1}\hat{u}_{1}\hat{v}_{1}^{\mathrm{T}} + \sigma_{2}\hat{u}_{2}\hat{v}_{2}^{\mathrm{T}} = \sqrt{3}\frac{1}{\sqrt{2}} \begin{bmatrix} 1\\1 \end{bmatrix} \frac{1}{\sqrt{6}} \begin{bmatrix} 1 & 2 & 1 \end{bmatrix} + 1\frac{1}{\sqrt{2}} \begin{bmatrix} 1\\-1 \end{bmatrix} \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 0 & -1 \end{bmatrix}$$
$$= \frac{1}{2} \begin{bmatrix} 1 & 2 & 1\\1 & 2 & 1 \end{bmatrix} + \frac{1}{2} \begin{bmatrix} 1 & 0 & -1\\-1 & 0 & 1 \end{bmatrix}$$
$$= \frac{1}{2} \begin{bmatrix} 2 & 2 & 0\\0 & 2 & 2 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 1 & 0\\0 & 1 & 1 \end{bmatrix} = \mathbf{A}.$$

9. Matlab question.

Verify the signs you found for the pivots of A in question 1 by using Matlab to find A's eigenvalues.

Solution:

Using Matlab, we find $\lambda_1 = -0.2361$ and $\lambda_1 = 4.2361$:

```
>> eig([ 1 2; 2 3])
ans =
    -0.2361
    4.2361
```

One positive and one negative, matching the signs of the pivots.

10. Matlab question.

Use Matlab to compute the SVD for the matrix ${\bf A}$ you explored in questions 3–8.

Solution:

```
>> [U,Sigma,V] = svd([ 1 1 0 ; 0 1 1])
U =
-0.7071 -0.7071
-0.7071 0.7071
Sigma =
```

1.7321	0	0
0	1.0000	0
V =		
-0.4082	-0.7071	0.5774
-0.8165	0.0000	-0.5774
-0.4082	0.7071	0.5774

11. (The bonus one pointer)

Where does the fearsome kiwi rank among among rattites and what's unusual about the kiwi egg?

Solution:

The kiwi is the smallest of all struthious birds.

A kiwi egg can weight up to 1/4 of the mother's own weight, which is believed to be the highest ratio of all birds.