COcoNuTs
Optimal Supply Networks II：Blood
Water，and Truthicide
Complex Networks｜＠networksvox
CSYS／MATH 303，Spring， 2016

＠ロ®®

These slides are brought to you by：

Outline

Metabolism and Truthicide	Metabolism and Truthicide
Death by fractions	Death by Tractions
Measuring allometric exponents	
	River networks
River networks	Earlier theories
Earlier theories	
	Concusion
Geometric argument	References
Real networks	W1010
Conclusion	

References
A
のac 1 of 108

COcoNuTS

Truthicide
Death by
fractions
$\underset{\substack{\text { Measuring } \\ \text { allometric }}}{ }$
exponents
River networks
Earlier theories
Geometric
argument
Real networks
Conclusion
References

のดく 2 of 108

Stories—The Fraction Assassin：

Law and Order，Special Science Edition：Truthicide Department
＂In the scientific integrity system known as peer review，the people are represented by two highly overlapping yet equally important groups：the independent scientists who review papers and the scientists who punish those who publish garbage．This is one of their stories．＂

Animal power

COcoNuTs

Metabolism and
Trüuthiciidē
Death by
fractions
Measuring
allometric
exponents
River networks
Earlier theories
Geometric
argument
Conclusion
References

1． のロく 7 of 108

COcoNuTs

Metabolism and
Trūūthīiide
Death by
fractions
Measuring
allometric
exponents
River networks
Earlier theories
Geometric
argument
Conclusion
References

A

のQく 8 of 108

COcoNuTs

The prevailing belief of the Church of Quarterology：

Most obvious concern：

$$
3 / 4-2 / 3=1 / 12
$$

An exponent higher than 2／3 points suggests a fundamental inefficiency in biology．
Organisms must somehow be running＇hotter＇ than they need to balance heat loss．

Related putative scalings：

Wait！There＇s more！：
number of capillaries $\propto M^{3 / 4}$
㩆 time to reproductive maturity $\propto M^{1 / 4}$
heart rate $\propto M^{-1 / 4}$
cross－sectional area of aorta $\propto M^{3 / 4}$
玲 population density $\propto M^{-3 / 4}$

The great＇law＇of heartbeats：
Assuming：
Average lifespan $\propto M^{\beta}$
Average heart rate $\propto M^{-\beta}$
（s．Irrelevant but perhaps $\beta=1 / 4$ ．

Then：
Average number of heart beats in a lifespan
\simeq（Average lifespan）\times（Average heart rate）

$$
\propto M^{\beta-\beta}
$$

$$
\propto M^{0}
$$

Number of heartbeats per life time is independent of organism size！
绝 ≈ 1.5 billion．．．．

COcoNuTs

Metabolism and
Trüuthicide
Death by
fractions
Measuring
allometric
exponents
River networks
Earlier theories
Geometric
argument
Conclusion
References

A
๑ดく 10 of 108

COcoNuTS

Metabolism and
Trüūthīíide－
Death by
fractions
Measuring
Measuring
allometric
exponents
River networks
Earlier theories
Geometric
argument
Conclusion
References

のac 11 of 108

COcoNuTs

Metabolism and
Trüuthicioidé
Death by
fractions
Measuring
allometric
exponents
River networks
Earlier theories
Geometric
Geometric
$\underset{ }{\text { Real }} \underset{\text { Real networks }}{\text { argument }}$
Conclusion
References

A
のดく 12 of 108

A theory is born：

A theory grows：

1883：Rubner ${ }^{[35]}$ found $\alpha \simeq 2 / 3$ ．

Theory meets a different＇truth＇：

Our hero faces a shadowy cabal：

1932：Kleiber analyzed 13 mammals．${ }^{[22]}$
Found $\alpha=0.76$ and suggested $\alpha=3 / 4$ ．
Scaling law of Metabolism became known as Kleiber＇s Law［＇］（2011 Wikipedia entry is embarrassing）．
\＆ 1961 book：＂The Fire of Life．An Introduction to Animal Energetics＂．${ }^{[23]}$

When a cult becomes a religion：

1950／1960：Hemmingsen ${ }^{[19, ~ 20]}$
Extension to unicellular organisms．
$\alpha=3 / 4$ assumed true．

のดく 15 of 108

Quarterology spreads throughout the land：
The Cabal assassinates 2／3－scaling：
R 1964：Troon，Scotland．
3rd Symposium on Energy Metabolism．
－$\alpha=3 / 4$ made official ．．．

．But the Cabal slipped up by publishing the conference proceedings ．．．
．${ }^{8}$＂Energy Metabolism；Proceedings of the 3rd symposium held at Troon，Scotland，May 1964，＂Ed．Sir Kenneth Blaxter ${ }^{[4]}$

An unsolved truthicide：

So many questions ．．．
．Did the truth kill a theory？Or did a theory kill the truth？
Or was the truth killed by just a lone，lowly hypothesis？
Does this go all the way to the top？ To the National Academies of Science？
．Is $2 / 3$－scaling really dead？
．Could $2 / 3$－scaling have faked its own death？
What kind of people would vote on scientific facts？

COcoNuTs

Metabolism and
Truthicide Death by
fractiō Measuring Measuring
allometric
exponents
exponents
River networks
Earlier theories
Geometric
$\underset{\text { Real networks }}{\text { argument }}$
Conclusion
References

つac 19 of 108

COcoNuTS

COcoNuTs

つのく 21 of 108

Modern Quarterology，Post Truthicide

3
$3 / 4$ is held by many to be the one true exponent．

In the Beat of a Heart：Life，Energy，and the Unity of Nature－by John Whitfield

8．But：much controversy ．．．
See＇Re－examination of the＂3／4－law＂of metabolism＇ by the Heretical Unbelievers Dodds，Rothman，and Weitz ${ }^{[13]}$ ，and ensuing madness．．．

Some data on metabolic rates

\＆Heusner＇s data （1991）${ }^{[21]}$
噱 391
Mammals
． blue line： $2 / 3$
\＆red line： $3 / 4$ ．
㽞 $(B=P)$

Some data on metabolic rates

Metabolism and
 Truthicide
 Death by
 fracciṑs
 Measuring allometric
 exponents
 River networks
 Earlier theories
 Geometric
 argument
 Conclusion
 References

 （ixiverviry
 ๑ดल 22 of 108

COcoNuTs

Metabolism and
Truthicide
Death by
fractiō \bar{n} s
Measuring
allometric
exponents
River networks
Earlier theories
Geometric
argument
Real networks
Conclusion
References

A
っのく 23 of 108

COcoNuTS

Metabolism and
Truthicide
Death by
Measuring
allometric
River network
Earlier theories
Geometric
$\underset{\text { Real networks }}{\text { argument }}$
Conclusion
References

Passerine vs．non－passerine issue．．．

Important：
Ordinary Least Squares（OLS）Linear regression is only appropriate for analyzing a dataset $\left\{\left(x_{i}, y_{i}\right)\right\}$ when we know the x_{i} are measured without error．
\＆Here we assume that measurements of mass M have less error than measurements of metabolic rate B ．
的 Linear regression assumes Gaussian errors．

Measuring exponents

	Metabolism and Truthicide
	Death by fractions
More on regression： If（a）we don＇t know what the errors of either variable	Measuring allometric èxpōōēn̄ts
are，	River networks Earlier theories
or（b）no variable can be considered independent，	Geometric argument Real network
then we need to use	Conclusion
（aka Reduced Major Axis＝RMA．）	References
	1． のac 26 of 108
Measuring exponents	coconuts

For Standardized Major Axis Linear Regression：

$$
\text { slope }_{\text {SMA }}=\frac{\text { standard deviation of } y \text { data }}{\text { standard deviation of } x \text { data }}
$$

Very simple！
\＆Minimization of sum of areas of triangles induced by vertical and horizontal residuals with best fit line．
（ The only linear regression that is Scale invariant C^{\top} ．
Attributed to Nobel Laureate economist Paul Samuelson［ ${ }^{2},{ }^{[36]}$ but discovered independently by others．
＊\＃somuchwin

Metabolism and
Truthicide
Death by
fractions
Measuring
alometric
River networks
Earlier theories
Geometric
argument
Conclusion
References

1
๑ดく 25 of 108

COcoNuTs

Metabolism and Truthicide
Death by fractions
Measuring allōmetric ēx pōn̄̄̄̄̄̄̄s
River networks
Earlier theories
Geometric argument Real networks
Conclusion
References
$\begin{aligned} & \text { Mil\|lilililit11111} \\ & 0 \end{aligned}$

[^0]つのく 27 of 108
－

COcoNuTs

Measuring exponents
COcoNuTS

Relationship to ordinary least squares regression is simple：

$$
\begin{aligned}
\text { slope }_{\text {SMA }} & =r^{-1} \times \text { slope }_{\text {OLS } y \text { on } x} \\
& =r \times \text { slope }_{\text {OLS } x \text { on } y}
\end{aligned}
$$

where $r=$ standard correlation coefficient：

$$
r=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sqrt{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} \sqrt{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}}}
$$

Heusner＇s data， 1991 （391 Mammals）

range of M	N	$\hat{\alpha}$
$\leq 0.1 \mathrm{~kg}$	167	0.678 ± 0.038
$\leq 1 \mathrm{~kg}$	276	0.662 ± 0.032
$\leq 10 \mathrm{~kg}$	357	0.668 ± 0.019
$\leq 25 \mathrm{~kg}$	366	0.669 ± 0.018
$\leq 35 \mathrm{~kg}$	371	0.675 ± 0.018
$\leq 350 \mathrm{~kg}$	389	0.706 ± 0.016
$\leq 3670 \mathrm{~kg}$	391	0.710 ± 0.021

Bennett and Harvey， 1987 （398 birds）

$M_{\max }$	N	$\hat{\alpha}$
≤ 0.032	162	0.636 ± 0.103
≤ 0.1	236	0.602 ± 0.060
≤ 0.32	290	0.607 ± 0.039
≤ 1	334	0.652 ± 0.030
≤ 3.2	371	0.655 ± 0.023
≤ 10	391	0.664 ± 0.020
≤ 32	396	0.665 ± 0.019
≤ 100	398	0.664 ± 0.019

ruthicide
Death by
fractions
Measuring
ärowetric

River networks
Earlier theories
Geometric
argument
argument
Real networks
Conclusion
References

Fluctuations－Things look normal．．．

．$P(B \mid M)=1 / M^{2 / 3} f\left(B / M^{2 / 3}\right)$
\＆Use a Kolmogorov－Smirnov test．

Hypothesis testing

Test to see if α^{\prime} is consistent with our data $\left\{\left(M_{i}, B_{i}\right)\right\}$ ：

$$
H_{0}: \alpha=\alpha^{\prime} \text { and } H_{1}: \alpha \neq \alpha^{\prime}
$$

\＆Assume each \mathbf{B}_{i}（now a random variable）is normally distributed about $\alpha^{\prime} \log _{10} M_{i}+\log _{10} c$ ．
\＆Follows that the measured α for one realization obeys a t distribution with $N-2$ degrees of freedom．
．Calculate a p－value：probability that the measured α is as least as different to our hypothesized α^{\prime} as we observe．
\＆See，for example，DeGroot and Scherish， ＂Probability and Statistics．＂［10］

Revisiting the past—mammals

Full mass range：

	N	$\hat{\alpha}$	$p_{2 / 3}$	$p_{3 / 4}$
Kleiber	13	0.738	$<10^{-6}$	0.11
Brody	35	0.718	$<10^{-4}$	$<10^{-2}$
Heusner	391	0.710	$<10^{-6}$	$<10^{-5}$
Bennett	398	0.664	0.69	$<10^{-15}$
and Harvey				

COcoNuTS

COcoNuTs

Metabolism and
Truthicide
Death by
fractions
Measuring
àloómetric
exxpō̄̄̄̄̄̄ts
River networks
Earlier theories
Geometric
argument
Conclusion
References

つのく 32 of 108

COcoNuTs

Metabolism and Truthicide
Death by fractions
Measuring ällōmetric exponents
River networks
Earlier theories
Geometric argument Real networks
Conclusion
References
のac 33 of 108

Revisiting the past—mammals

$$
M \leq 10 \mathrm{~kg}
$$

	N	$\hat{\alpha}$	$p_{2 / 3}$	$p_{3 / 4}$
Kleiber	5	0.667	0.99	0.088
Brody	26	0.709	$<10^{-3}$	$<10^{-3}$
Heusner	357	0.668	0.91	$<10^{-15}$

$M \geq 10 \mathrm{~kg}:$

	N	$\hat{\alpha}$	$p_{2 / 3}$	$p_{3 / 4}$
Kleiber	8	0.754	$<10^{-4}$	0.66
Brody	9	0.760	$<10^{-3}$	0.56
Heusner	34	0.877	$<10^{-12}$	$<10^{-7}$

Analysis of residuals

1．Presume an exponent of your choice： $2 / 3$ or $3 / 4$ ．
2．Fit the prefactor $\left(\log _{10} c\right)$ and then examine the residuals：

$$
r_{i}=\log _{10} B_{i}-\left(\alpha^{\prime} \log _{10} M_{i}-\log _{10} c\right) .
$$

3．H_{0} ：residuals are uncorrelated H_{1} ：residuals are correlated．
4．Measure the correlations in the residuals and compute a p－value．

Analysis of residuals
We use the spiffing Spearman Rank－Order Correlation Coefficient［

Basic idea：
R Given $\left\{\left(x_{i}, y_{i}\right)\right\}$ ，rank the $\left\{x_{i}\right\}$ and $\left\{y_{i}\right\}$ separately from smallest to largest．Call these ranks R_{i} and S_{i} ．
Now calculate correlation coefficient for ranks，r_{s} ： 8

$$
r_{s}=\frac{\sum_{i=1}^{n}\left(R_{i}-\bar{R}\right)\left(S_{i}-\bar{S}\right)}{\sqrt{\sum_{i=1}^{n}\left(R_{i}-\bar{R}\right)^{2}} \sqrt{\sum_{i=1}^{n}\left(S_{i}-\bar{S}\right)^{2}}}
$$

Perfect correlation：x_{i}＇s and y_{i}＇s both increase monotonically．

COcoNuTS

Metabolism and
Truthicide
Death by
fractions
Measuring
àlō̄étric
ēx $\overline{\text { pon }} \bar{n}$ ēn̄ts
River networks
Earlier theories
Geometric
argument
Conclusion
References

っのc 34 of 108

COcoNuTS

Metabolism and
Truthicide
Death by
fractions
Measuring
ēxpōōē̃̄
River networks
Earlier theories
Geometric
argument
Conclusion
References

A
っのく 35 of 108

COcoNuTs

Metabolism and
Metabolism and
Truthicide
Truthicide
Death by
fractions
fractions
Measuring

River networks
Earlier theories
Geometric
$\underset{\substack{\text { argument } \\ \text { Real networks }}}{\text { and }}$
Conclusion
References

A
のQく 36 of 108

COcoNuTS

Metabolism and
Truthicide
Death by
fractions
Measuring
èxpōn̄ēn̄ts
River networks
Earlier theories
Geometric
argument
Conclusion
References

つのल 37 of 108

COcoNuTS
Analysis of residuals－mammals

（a）$M<3.2 \mathrm{~kg}$ ，
（b）$M<10 \mathrm{~kg}$ ，
（c）$M<32 \mathrm{~kg}$ ，
（d）all
mammals．

Analysis of residuals—birds

	Metabolism and Truthicide
	Death by
	River networks
（a）$M<0.1 \mathrm{~kg}$ ，	Earlier theories
（b）$M<1 \mathrm{~kg}$ ，	Geometric argument
（c）$M<10 \mathrm{~kg}$ ，	Conclusion
（d）all birds．	References

つのく 39 of 108

	Metabolism and Truthicide
	Death by fractions
Other approaches to measuring exponents： R 8 Clauset，Shalizi，Newman：＂Power－law	Measuring àlōōetric exxpōn̄eñ
distributions in empirical data＂${ }^{[9]}$	River networks
SIAM Review， 2009.	Earlier theories
\＆See Clauset＇s page on measuring power law exponents \lceil（code，other goodies）．	Geometric argument Real networks
	Conclusion
	References
	๑Qく 40 of 108

COcoNuTS

Metabolism and
Truthicide
Death by
fractions
Measuring

River networks
Earlier theories
Geometric
argument
Real networks
Conclusion
References

A Muxay
๑のく 41 of 108

COcoNuTS

Metabolism and
Truthicide
Death by
fractions
Measuring
ex $\overline{\text { expō }} \overline{\text { ē }}$
River networks
Earlier theories
$\underset{\text { argument }}{\text { Geomeric }}$
$\underset{ }{\text { Real }} \underset{\text { Real networks }}{\text { argument }}$
Conclusion
References
 claimed to be finite－size scaling．

Somehow，optimal river networks are connected：

Mysterious allometric scaling in river networks
（8．1957：J．T．Hack ${ }^{[18]}$
＂Studies of Longitudinal Stream Profiles in Virginia and Maryland＂

$$
\begin{aligned}
& \ell \sim a^{h} \\
& h \sim 0.6
\end{aligned}
$$

．Anomalous scaling：we would expect $h=1 / 2$ ．．．
－Subsequent studies： $0.5 \lesssim h \lesssim 0.6$
\＆Another quest to find universality／god．．．
\＆A catch：studies done on small scales．

Large－scale networks：
（1992）Montgomery and Dietrich ${ }^{[30]}$ ：

组 Composite data set：includes everything from unchanneled valleys up to world＇s largest rivers．
噱 Estimated fit：

$$
L \simeq 1.78 a^{0.49}
$$

Mixture of basin and main stream lengths．

COcoNuTS

COcoNuTs

2．UNVYRgITY \mid Oit
๑ดc 44 of 108

COcoNuTS Truthicide
Death by
fractions
Measuring
allometric
exponents
River networks
Earlier theories
Geometric
argument
$\underset{\substack{\text { Real networks } \\ \text { argument }}}{\text { R }}$
Conclusion
References

๑のく 45 of 108

World＇s largest rivers only：

豦 Data from Leopold（1994）${ }^{[26,12]}$
Estimate of Hack exponent：$h=0.50 \pm 0.06$

Earlier theories（1973－）：

Building on the surface area idea：
McMahon（70＇s，80＇s）：Elastic Similarity ${ }^{[27, ~ 29]}$
噱 Idea is that organismal shapes scale allometrically with $1 / 4$ powers（like trees．．．）
Disastrously，cites Hemmingsen ${ }^{[20]}$ for surface area data．
．Appears to be true for ungulate legs ．．．${ }^{[28]}$
Metabolism and shape never properly connected．

＂Size and shape in biology＂${ }^{\text {T}}$
T．McMāhō，
Science，179，1201－1204，1973．${ }^{[27]}$

COcoNuTS

Metabolism and
Truthicide
Death by
fractions
Measuring
allometric
exponents
River networks
Earlier theories
Geometric
argument
Conclusion
References

๑のく 46 of 108

COcoNuTs

Metabolism and
Truthicide
Death by
fractions
$\underset{\substack{\text { Measuring } \\ \text { allometric }}}{\text { and }}$
exponents
River networks
Earlier theories
Geometric
$\underset{\text { Real networks }}{\text { argument }}$
Conclusion
References

๑ดく 47 of 108

COcoNuTs

Metabolism and
Truthicide
Death by
fractions
Measuring
allometric
exponents
River networks
Earlier theories
Geometric
Geometric
argument
$\underset{\text { Real networks }}{\text { argument }}$
Conclusion
References

A

\＆Hemmingsen＇s＂fit＂is for a 2／3 power，notes possible 10 kg transition．${ }^{[?]}$
－ p 46：＂The energy metabolism thus definitely varies interspecifically over similar wide weight ranges with a higher power of the body weight than the body surface．＂

Earlier theories（1977）：
Building on the surface area idea．．．
的 Blum（1977）${ }^{[5]}$ speculates on four－dimensional biology：

$$
P \propto M^{(d-1) / d}
$$

\＆$d=3$ gives $\alpha=2 / 3$
的 $d=4$ gives $\alpha=3 / 4$
So we need another dimension．．．
Q Obviously，a bit silly．．．${ }^{[39]}$

Nutrient delivering networks：

1960＇s：Rashevsky considers blood networks and finds a $2 / 3$ scaling．
1997：West et al．${ }^{[46]}$ use a network story to find $3 / 4$ scaling．

Truthicide
Death by
fractions
$\underset{\substack{\text { Measuring } \\ \text { allometric }}}{ }$
allometric
exponents
River networks
Earlier theories
Geometric
argument
Real networks
Conclusion
References

つのく 49 of 108

COcoNuTs

Metabolism and
Truthicide
Death by
fractions
Measuring
Measuring
allometric
exponents
allometric
exponents
River networks
Earlier theories
Geometric
$\underset{\text { Real networks }}{\text { argument }}$
Conclusion
References

つのく 50 of 108

COcoNuTs

Metabolism and
Metabolism
Truthicide
Death by
fractions
Measuring
allometric
exponents
River networks
Earlier theories
Geometric
argument
$\underset{\substack{\text { Real networks } \\ \text { argument }}}{ }$
Conclusion
References

Nutrient delivering networks：

West et al．＇s assumptions：
1．hierarchical network
2．capillaries（delivery units）invariant
3．network impedance is minimized via evolution

Claims：

的 $P \propto M^{3 / 4}$
networks are fractal
quarter powers everywhere

Impedance measures：

Poiseuille flow（outer branches）：

$$
Z=\frac{8 \mu}{\pi} \sum_{k=0}^{N} \frac{\ell_{k}}{r_{k}^{4} N_{k}}
$$

Pulsatile flow（main branches）：

$$
Z \propto \sum_{k=0}^{N} \frac{h_{k}^{1 / 2}}{r_{k}^{5 / 2} N_{k}}
$$

．Wheel out Lagrange multipliers ．．．
㽞 Poiseuille gives $P \propto M^{1}$ with a logarithmic correction．
Pulsatile calculation explodes into flames．

Not so fast ．．．

Actually，model shows：
\＆$P \propto M^{3 / 4}$ does not follow for pulsatile flow networks are not necessarily fractal．

Do find：
放 Murray＇s cube law（1927）for outer branches：${ }^{[31]}$

$$
r_{0}^{3}=r_{1}^{3}+r_{2}^{3}
$$

\＆Impedance is distributed evenly．
．Can still assume networks are fractal．

COcoNuTs

Metabolism and
Truthicide
Death by
fractions
Measuring
exponents
River networks
Earlier theories
Geometric
argument
Real networks
References

A
っのc 52 of 108

COcoNuTs

Metabolism and
Truthicide
Death by
fractions
Measuring
Measuring
allometric
exponents
River networks
Earlier theories
Geometric
$\underset{\text { Real networks }}{\text { argument }}$
Real networks
References

のQく 53 of 108

COcoNuTs

Metabolism and
Truthicide
Death by
fractions
Measuring
allometric
exponents
River networks
Earlier theories
Geometric
Geometric
argument
$\underset{\text { Real networks }}{\text { argument }}$
Conclusion
References

同

Connecting network structure to α

1．Ratios of network parameters：

$$
R_{n}=\frac{n_{k+1}}{n_{k}}, R_{\ell}=\frac{\ell_{k+1}}{\ell_{k}}, R_{r}=\frac{r_{k+1}}{r_{k}}
$$

2．Number of capillaries $\propto P \propto M^{\alpha}$ ．

$$
\Rightarrow \alpha=-\frac{\ln R_{n}}{\ln R_{r}^{2} R_{\ell}}
$$

（also problematic due to prefactor issues）

Obliviously soldiering on，we could assert：
\＆area－preservingness：
$R_{r}=R_{n}^{-1 / 2}$

$$
\Rightarrow \alpha=3 / 4
$$

space－fillingness：$R_{\ell}=R_{n}^{-1 / 3}$

Data from real networks：

Network	R_{n}	R_{r}	R_{ℓ}	$-\frac{\ln R_{r}}{\ln R_{n}}$	$-\frac{\ln R_{\ell}}{\ln R_{n}}$	α
West et al．	-	-	-	$1 / 2$	$1 / 3$	$3 / 4$
rat（PAT）	2.76	1.58	1.60	0.45	0.46	0.73
cat（PAT）	3.67	1.71	1.78	0.41	0.44	0.79
（Turcotte et al．［43］）						
dog（PAT）	3.69	1.67	1.52	0.39	0.32	0.90
pig（LCX）	3.57	1.89	2.20	0.50	0.62	0.62
pig（RCA）	3.50	1.81	2.12	0.47	0.60	0.65
pig（LAD）	3.51	1.84	2.02	0.49	0.56	0.65
human（PAT）	3.03	1.60	1.49	0.42	0.36	0.83
human（PAT）	3.36	1.56	1.49	0.37	0.33	0.94

COcoNuTS

Let＇s never talk about this again：

＂The fourth dimension of life：Fractal geometry and allometric scaling of organisms＂
West，Brown，and Emquist， Science Magazine，，，1999．${ }^{[45]}$

绍 No networks：Scaling argument for energy exchange area a ．
\＆Distinguish between biological and physical length scales（distance between mitochondria versus cell radius）．
\＆Buckingham π action．${ }^{\text {［8］}}$
\＆Arrive at $a \propto M^{D / D+1}$ and $\ell \propto M^{1 / D}$ ．
\＆New disaster：after going on about fractality of a ， then state $v \propto a \ell$ in general．

Really，quite confused：
Whole 2004 issue of Functional Ecology addresses the problem：
J．Kozlowski，M．Konrzewski．＂Is West，Brown and Enquist＇s model of allometric scaling mathematically correct and biologically relevant？＂ Functional Ecology 18：283－9，2004．${ }^{[24]}$
\＆J．H．Brown，G．B．West，and B．J．Enquist．＂Yes， West，Brown and Enquist＇s model of allometric scaling is both mathematically correct and biologically relevant．＂Functional Ecology 19： 735－738，2005．${ }^{[7]}$
．J．Kozlowski，M．Konarzewski．＂West，Brown and Enquist＇s model of allometric scaling again：the same questions remain．＂Functional Ecology 19： 739－743， 2005.

Simple supply networks：

Banavar et al．， Nature， （1999）${ }^{[1]}$ ．
\＆Flow rate argument．
s Ignore impedance．
\＆ 8 Very general attempt to find most efficient transportation networks．

COcoNuTs

Metabolism and
Truthicide
Death by
fractions
Measuring
allometric
exponents
River networks
Earlier theories
Geometric
argument
Real networks
Conclusion
References

っのc 58 of 108

COcoNuTs

Metabolism and
Truthicide
Death by
fractions
Measuring
Mellometric
exponents
River networks
Earlier theories
Geometric
argument
Conclusion
References

๑Qc 59 of 108

COcoNuTS

Metabolism and
Metabolism
Truthicide
Death by
fractions
Measuring
allometric
exponents
River networks
Earlier theories
Geometric
Geometric
argument
$\underset{\substack{\text { Real networks }}}{\text { argument }}$
Conclusion
References

直

Simple supply networks

．Banavar et al．find＇most efficient＇networks with

$$
P \propto M^{d /(d+1)}
$$

．．．．but also find

$$
V_{\text {network }} \propto M^{(d+1) / d}
$$

的 $d=3$ ：

$$
V_{\text {blood }} \propto M^{4 / 3}
$$

Consider a 3 g shrew with $V_{\text {blood }}=0.1 V_{\text {body }}$ \＆$\Rightarrow 3000 \mathrm{~kg}$ elephant with $V_{\text {blood }}=10 V_{\text {body }}$

Geometric argument

＂Optimal Form of Branching Supply and Collection Networks＂元
Peter Sheridan Dodds，
Phys．Rev．Lett．，104，048702，2010．${ }^{\text {［11］}}$
\＆Consider one source supplying many sinks in a d－dim．volume in a D－dim．ambient space．
R Assume sinks are invariant．
，Assume sink density $\rho=\rho(V)$ ．
\＆Assume some cap on flow speed of material．
See network as a bundle of virtual vessels：

COcoNuTs

Metabolism and Truthicide
Death by fractions
Measuring allometric exponents
River networks
Earlier theories
Geometric argument Real networks
Conclusion
References
$6{ }_{6}^{6} 1.51 .51 .41 .3$
っのく 61 of 108

COcoNuTs

COcoNuTs

Geometric argument

Q $x_{\text {B }}$ ：how does the number of sustainable sinks $N_{\text {sinks }}$ scale with volume V for the most efficient network design？
Or：what is the highest α for $N_{\text {sinks }} \propto V^{\alpha}$ ？

Geometric argument

A Allometrically growing regions：

Have d length scales which scale as

$$
L_{i} \propto V^{\gamma_{i}} \text { where } \gamma_{1}+\gamma_{2}+\ldots+\gamma_{d}=1
$$

For isometric growth，$\gamma_{i}=1 / d$ ．
Ror allometric growth，we must have at least two of the $\left\{\gamma_{i}\right\}$ being different

Spherical cows and pancake cows：

$$
\begin{gathered}
\text { Assume an isometrically scaling } \\
\text { family of cows: }
\end{gathered}
$$

Extremes of allometry:

The pancake cows－

COcoNuTs

Metabolism and
Truthicide
Death by
fractions
Measuring
allometric
exponents
River networks
Earlier theories
Geometric
àrgüment
Conclusion
References

っのc 64 of 108

COcoNuTS

Metabolism and
Truthicide
Death by
fractions
Measuring
Measuring
allometric
exponents
River networks
Earlier theories
Geometric
arogument
Conclusion
References

つのल 65 of 108

COcoNuTS

Metabolism and
Truthicide
Death by
fractions
Measuring
allometric
exponents
River networks
Earlier theories
Geometric
argūment
and
argument
Real networks
Conclusion
References

COcoNuTS

Metabolism and Truthicide
Death by fractions
Measuring allometric exponents
River networks
Earlier theories
Geometric àrgūment Real networks
Conclusion
References

Geometric argument

Best and worst configurations（Banavar et al．）

Rather obviously： $\min V_{\text {net }} \propto \sum$ distances from source to sinks．

Minimal network volume：

Real supply networks are close to optimal：

Figure 1．（a）Commuter rail network in the Boston area．The arrow marks the assumed root of the network．（b）Star graph．（c）Minimum spanning tree． （d）The model of equation（3）applied to the same set of stations．

Gastner and Newman（2006）：＂Shape and efficiency in spatial distribution networks＂［15］

＂Rules for Biologically Inspired Adaptive Network Dēēign＂$\overline{\text { B }}$
Tero et al．，
Science，327，439－442，2010．${ }^{[42]}$

Urban deslime in action：
https：／／www．youtube．com／watch？v＝GwKuFREOgmo \quad ？

COcoNuTS

Metabolism and Truthicide

Death by
fractions
Measuring
exponents
River networks
Earlier theories
Geometric
àrgūment
Conclusion
References

A maw ig
๑ดल 70 of 108

COcoNuTs

Metabolism and Truthicide

Death by
fractions
Measuring
allometric
exponents
River networks
Earlier theories
Geometric
ärgüment
Conclusion
References

っのく 71 of 108

COcoNuTS

Metabolism and
Truthicide
Death by
fractions
Measuring
exponents
River networks
Earlier theories
Geometric
argument
Real network
Conclusion
References

月
のดく 72 of 108

Minimal network volume：

We add one more element：

（s．Vessel cross－sectional area may vary with distance from the source．
\＆Flow rate increases as cross－sectional area decreases．
e．g．，a collection network may have vessels tapering as they approach the central sink．
－Find that vessel volume v must scale with vessel length ℓ to affect overall system scalings．

Minimal network volume：

－Consider vessel radius $r \propto(\ell+1)^{-\epsilon}$ ，tapering from $r=r_{\text {max }}$ where $\epsilon \geq 0$ ．
的 Gives $v \propto \ell^{1-2 \epsilon}$ if $\epsilon<1 / 2$
Gives $v \propto 1-\ell^{-(2 \epsilon-1)} \rightarrow 1$ for large ℓ if $\epsilon>1 / 2$
－Previously，we looked at $\epsilon=0$ only．

Minimal network volume：
For $0 \leq \epsilon<1 / 2$ ，approximate network volume by integral over region：

$$
\min V_{\text {net }} \propto \int_{\Omega_{d, D}(V)} \rho\|\vec{x}\|^{1-2 \epsilon} \mathrm{~d} \vec{x}
$$

Insert question，assignment 3 ［ $\quad<2$－＞

$$
\propto \rho V^{1+\gamma_{\max }(1-2 \epsilon)} \text { where } \gamma_{\max }=\max _{i} \gamma_{i} .
$$

For $\epsilon>1 / 2$ ，find simply that

$$
\min V_{\text {net }} \propto \rho V
$$

So if supply lines can taper fast enough and without limit，minimum network volume can be made negligible．

COcoNuTS

COcoNuTs

つのく 74 of 108

COcoNuTs

Metabolism and
Truthicide
Death by
fractions
Measuring
allometric
exponents
River networks
Earlier theories
Geometric
Geometric
argument
Conclusion
References

のดく 75 of 108

For $0 \leq \epsilon<1 / 2$ ：
． $\min V_{\text {net }} \propto \rho V^{1+\gamma_{\max }(1-2 \epsilon)}$
If scaling is isometric，we have $\gamma_{\text {max }}=1 / d$ ：

$$
\min V_{\text {net } / \text { iso }} \propto \rho V^{1+(1-2 \epsilon) / d}
$$

If scaling is allometric，we have $\gamma_{\max }=\gamma_{\text {allo }}>1 / d$ ： and

$$
\min V_{\text {net/allo }} \propto \rho V^{1+(1-2 \epsilon) \gamma_{\text {allo }}}
$$

\＆Isometrically growing volumes require less network volume than allometrically growing volumes：

$$
\frac{\min V_{\text {net } / i s o}}{\min V_{\text {net/allo }}} \rightarrow 0 \text { as } V \rightarrow \infty
$$

For $\epsilon>1 / 2$ ：
\＆min $V_{\text {net }} \propto \rho V$
Network volume scaling is now independent of overall shape scaling．

Limits to scaling
\＆Can argue that ϵ must effectively be 0 for real networks over large enough scales．
Limit to how fast material can move，and how small material packages can be．
e．g．，blood velocity and blood cell size．

Blood networks

，Velocity at capillaries and aorta approximately constant across body size ${ }^{[44]}: \epsilon=0$ ．
，Material costly \Rightarrow expect lower optimal bound of $V_{\text {net }} \propto \rho V^{(d+1) / d}$ to be followed closely．
\＆For cardiovascular networks，$d=D=3$ ．
Blood volume scales linearly with body volume ${ }^{[40]}$ ， $V_{\text {net }} \propto V$ ．
Sink density must ：－decrease as volume increases：

$$
\rho \propto V^{-1 / d} .
$$

Density of suppliable sinks decreases with organism size．

COcoNuTs

Metabolism and
Truthicide
Death by
fractions
Measuring
exponents
River networks
Earlier theories
Geometric
argoument ${ }^{-1}$
Conclusion
References

つのल 76 of 108

COcoNuTS

Metabolism and
Truthicide
Death by
fractions
Measuring
Measuring
allometric
exponents
River networks
Earlier theories
Geometric
argument
Conclusion
References

（男
っのく 77 of 108

COcoNuTs

Metabolism and
Truthicide
Death by
fractions
Measuring
allometric
exponents
River networks
Earlier theories
Geometric
Geometric
argument
$\underset{ }{\text { Real networks }}$
Conclusion
References

（5）
のดく 79 of 108

COCONUTS

R Then P ，the rate of overall energy use in Ω ，can at most scale with volume as

$$
P \propto \rho V \propto \rho M \propto M^{(d-1) / d}
$$

－For $d=3$ dimensional organisms，we have

$$
P \propto M^{2 / 3}
$$

\＆Including other constraints may raise scaling exponent to a higher，less efficient value．

Exisiting bonus：Scaling obtained by the supply network story and the surface－area law only match for isometrically growing shapes． Insert question from assignment 3 ［

The surface area－supply network mismatch for allometrically growing shapes：

COcoNuTS

Recall：

The exponent $\alpha=2 / 3$ works for all birds and mammals up to $10-30 \mathrm{~kg}$
\＆For mammals＞10－30 kg，maybe we have a new scaling regime
Economos：limb length break in scaling around 20 kg
White and Seymour，2005：unhappy with large herbivore measurements．Find $\alpha \simeq 0.686 \pm 0.014$

Prefactor：

Stefan－Boltzmann law：
8

$$
\frac{\mathrm{d} E}{\mathrm{~d} t}=\sigma S T^{4}
$$

where S is surface and T is temperature．
的 Very rough estimate of prefactor based on scaling of normal mammalian body temperature and surface area S ：

$$
B \simeq 10^{5} \mathrm{M}^{2 / 3} \mathrm{erg} / \mathrm{sec}
$$

\＆Measured for $M \leq 10 \mathrm{~kg}$ ：

$$
B=2.57 \times 10^{5} M^{2 / 3} \mathrm{erg} / \mathrm{sec} .
$$

COcoNuTs

Streams can grow not just in width but in depth．．．
If $\epsilon>0, V_{\text {net }}$ will grow more slowly but $3 / 2$ appears to be confirmed from real data．
．Volume of water in river network can be calculated by adding up basin areas
frews sum in such a way that

$$
V_{\text {net }}=\sum_{\text {all pixels }} a_{\text {pixel } i}
$$

．Hack＇s law again：

$$
\ell \sim a^{h}
$$

－Can argue

$$
V_{\text {net }} \propto V_{\mathrm{basin}}^{1+h}=a_{\mathrm{basin}}^{1+h}
$$

where h is Hack＇s exponent．
．\therefore minimal volume calculations gives

$$
h=1 / 2
$$

Real data：

From Banavar et al．（1999）${ }^{[1]}$

Even better—prefactors match up：

COCoNuTS
Metabolism and
Truthicide
Death by
fractions
Measuring
allometric
exponents
River networks
Earlier theories
Geometric
argument
Realnetworks
Conclusion
References

1 つのく 86 of 108

COcoNuTs

COcoNuTS

The Cabal strikes back：
Banavar et al．，2010，PNAS：
＂A general basis for quarter－power scaling in
animals．＂${ }^{[2]}$
＂It has been known for decades that the metabolic
rate of animals scales with body mass with an
exponent that is almost always $<1,>2 / 3$ ，and
often very close to $3 / 4$. ．＂
Cough，cough，cough，hack，wheeze，cough．

Metabolism and
Truthicide
Death by
fractions
Measuring
allometric
exponents
River networks
Earlier theories
Geometric
argument
Real networks
Conclusion
References

๑ดく 89 of 108

Stories—Darth Quarter：

Some people understand it＇s truly a disaster： $\boldsymbol{\square}$

COcoNuTs

Metabolism and
Truthicide
Death by
fractions
Measuring
Measuring
allometric
exponents
River networks
Earlier theories
Geometric
argument
Real networks
Conclusion
References

A
っのल 90 of 108

COcoNuTS

Metabolism and
Truthicide
Death by
fractions
Measuring
allometric
exponents
River networks
Earlier theories
Geometric
Real networks
Conclusion
References

（5）
のดल 91 of 108

The unnecessary bafflement continues：
＂Testing the metabolic theory of ecology＂［33］
C．Price，J．S．Weitz，V．Savage，J．Stegen，A．Clarke，D．
Coomes，P．S．Dodds，R．Etienne，A．Kerkhoff，K． McCulloh，K．Niklas，H．Olff，and N．Swenson Ecology Letters，15，1465－1474， 2012.

Artisanal，handcrafted silliness：

＂Critical truths about power laws＂［41］
Stumpf and Porter，Science， 2012

How good is your power law？The chart reflects the level of statistical support－as measured in（16， 21）－and our opinion about the mechanistic sophis－ tication underlying hypothetical generative models for various reported power laws．Some relation－ ships are identified by name；the others reflect the general characteristics of a wide range of reported power laws．Allometric scaling stands out from the other power laws reported for complex systems．

Call generalization of Central Limit Theorem， stable distributions．Also：PLIPLO action．
Summary：Wow．

Conclusion

Supply network story consistent with dimensional analysis．
．Isometrically growing regions can be more efficiently supplied than allometrically growing ones．
Ambient and region dimensions matter （ $D=d$ versus $D>d$ ）．

Deviations from optimal scaling suggest inefficiency （e．g．，gravity for organisms，geological boundaries）．
Actual details of branching networks not that important．
Exact nature of self－similarity varies．
2／3－scaling lives on，largely in hiding．
3／4－scaling？Jury ruled a mistrial．
，The truth will out．Maybe．

Metabolism and
Truthicide
Death by
fractions
Measuring
allometric
exponents
River networks
Earlier theories
Geometric
argument
Real networks
Conclusion
References

๑ดल 92 of 108

COcoNuTS

Metabolism and Truthicide

Death by
fractions
Measuring
allometric
exponents
River networks
Earlier theories
Geometric
argument
Real networks
Conclusion
References

っのく 93 of 108

COcoNuTS

References I

［1］J．R．Banavar，A．Maritan，and A．Rinaldo． Size and form in efficient transportation networks．
Nature，399：130－132，1999．pdf（T
［2］J．R．Banavar，M．E．Moses，J．H．Brown，J．Damuth， A．Rinaldo，R．M．Sibly，and A．Maritan． A general basis for quarter－power scaling in animals．
Proc．Natl．Acad．Sci．，107：15816－15820， 2010. pdfē
［3］P．Bennett and P．Harvey． Active and resting metabolism in birds－allometry，phylogeny and ecology． J．Zool．，213：327－363，1987．pdf［־

References II

［4］K．L．Blaxter，editor． Energy Metabolism；Proceedings of the 3rd symposium held at Troon，Scotland，May 1964. Academic Press，New York， 1965.
［5］J．J．Blum． On the geometry of four－dimensions and the relationship between metabolism and body mass．
J．Theor．Biol．，64：599－601，1977．pdf［＾］
［6］S．Brody． Bioenergetics and Growth．
Reinhold，New York， 1945.
reprint，．pdf［天

References III

［7］J．H．Brown，G．B．West，and B．J．Enquist． Yes，West，Brown and Enquist＇s model of allometric scaling mathematically correct and biologically relevant？ Functional Ecology，19：735－－738，2005．pdf［๘
［8］E．Buckingham．
On physically similar systems：Illustrations of the use of dimensional equations．
Phys．Rev．，4：345－376，1914．pdf［³
［9］A．Clauset，C．R．Shalizi，and M．E．J．Newman． Power－law distributions in empirical data． SIAM Review，51：661－703，2009．pdf［
［10］M．H．DeGroot． Probability and Statistics．
Addison－Wesley，Reading，Massachusetts， 1975.

COcoNuTS

Metabolism and
Truthicide
Death by
fractions
Measuring
exponents
River networks
Earlier theories
Geometric
argument
Real networks
References

A
つのल 95 of 108

COcoNuTS

Metabolism and
Truthicide
Death by
fractions
Measuring
allometric
exponents
River networks
Earlier theories
Geometric
argument
Conclusion
References

っのく 96 of 108

COcoNuTS

Metabolism and
Truthicide
Death by
fractions
Measuring
allometric
exponents
River networks
Earlier theories
Geometric
argument
$\underset{ }{\text { argument }}$
Conclusion
References

References IV

［11］P．S．Dodds． Optimal form of branching supply and collection networks．
Phys．Rev．Lett．，104（4）：048702，2010．pdf■
［12］P．S．Dodds and D．H．Rothman． Scaling，universality，and geomorphology． Annu．Rev．Earth Planet．Sci．，28：571－610， 2000. pdf［
［13］P．S．Dodds，D．H．Rothman，and J．S．Weitz． Re－examination of the＂3／4－law＂of metabolism． Journal of Theoretical Biology，209：9－27， 2001. pdfer

References V

［14］A．E．Economos．
Elastic and／or geometric similarity in mammalian design．
Journal of Theoretical Biology，103：167－172， 1983. pdfer
［15］M．T．Gastner and M．E．J．Newman． Shape and efficiency in spatial distribution networks．
J．Stat．Mech．：Theor．\＆Exp．，1：P01015， 2006. pdfce
［16］D．S．Glazier．
Beyond the＇3／4－power law＇：variation in the intra－ and interspecific scaling of metabolic rate in animals．
Biol．Rev．，80：611－662，2005．pdf（天）

References VI

［17］D．S．Glazier．
The 3／4－power law is not universal：Evolution of isometric，ontogenetic metabolic scaling in pelagic animals．
BioScience，56：325－332，2006．pdf■
［18］J．T．Hack．
Studies of longitudinal stream profiles in Virginia and Maryland．
United States Geological Survey Professional Paper，294－B：45－97，1957．pdf［̄
［19］A．Hemmingsen．
The relation of standard（basal）energy metabolism to total fresh weight of living organisms．
Rep．Steno Mem．Hosp．，4：1－58，1950．pdf［ ${ }^{\pi}$

COcoNuTs

Metabolism and
Truthicide
Death by
fractions
Measuring
allometric
exponents
River networks
Earlier theories
Geometric
argument
Conclusion
References

つのく 98 of 108

COcoNuTs

Metabolism and Truthicide

Death by
fractions
Measuring
allometric
exponents
River networks
Earlier theories
Geometric
argument
Conclusion
References

つのく 99 of 108

COcoNuTs

Metabolism and
Metabolism
Truthicide
Death by
fractions
Measuring
allometric
exponents
River networks
Earlier theories
Geometric
Geometric
argument
argument
Real networks
Conclusion
References

A
つac 100 of 108

References VII

［20］A．Hemmingsen．
Energy metabolism as related to body size and respiratory surfaces，and its evolution． Rep．Steno Mem．Hosp．，9：1－110，1960．pdf［®
［21］A．A．Heusner．
Size and power in mammals．
Journal of Experimental Biology，160：25－54， 1991. pdfes
［22］M．Kleiber．
Body size and metabolism．
Hilgardia，6：315－353，1932．pdf［־
［23］M．Kleiber．
The Fire of Life．An Introduction to Animal
Energetics．
Wiley，New York， 1961.

References VIII

［24］J．Kozłowski and M．Konarzewski． Is West，Brown and Enquist＇s model of allometric scaling mathematically correct and biologically relevant？
Functional Ecology，18：283－－289，2004．pdf［
［25］N．Lane．
Power，Sex，Suicide：Mitochondria and the
Meaning of Life．
Oxford University Press，Oxford，UK， 2005.
［26］L．B．Leopold．
A View of the River．
Harvard University Press，Cambridge，MA， 1994.
［27］T．McMahon．
Size and shape in biology．
Science，179：1201－1204，1973．pdf［

References IX
［28］T．A．McMahon．
Allometry and biomechanics：Limb bones in adult ungulates．
The American Naturalist，109：547－563， 1975. pdf［
［29］T．A．McMahon and J．T．Bonner． On Size and Life．
Scientific American Library，New York， 1983.
［30］D．R．Montgomery and W．E．Dietrich． Channel initiation and the problem of landscape scale．
Science，255：826－30，1992．pdf［

COcoNuTs

Metabolism and
Truthicide
Death by
fractions
Measuring
exponents
River networks
Earlier theories
Geometric
argument
Conclusion
References

A
๑ac 101 of 108

COcoNuTS

Metabolism and
Truthicide
Death by
fractions
Measuring
Measuring
allometric
exponents
River networks
Earlier theories
Geometric
argument
$\underset{\text { Real networks }}{\text { argument }}$
Conclusion
References

ゆac 102 of 108

COcoNuTS

Metabolism and
Metabolism
Death by
fractions
Measuring
allometric
exponents
River networks
Earlier theories
Geometric
$\underset{\substack{\text { Real } \\ \text { Reatwent } \\ \text { netr }}}{ }$
Conclusion
References

［）

References X

［31］C．D．Murray．
A relationship between circumference and weight in trees and its bearing on branching angles． J．Gen．Physiol．，10：725－729，1927．pdf■
［32］W．H．Press，S．A．Teukolsky，W．T．Vetterling，and B．P．Flannery．
Numerical Recipes in C．
Cambridge University Press，second edition， 1992.
［33］C．Price，J．S．Weitz，V．Savage，S．Stegen，A．Clarke，
D．Coomes，P．S．Dodds，R．Etienne，A．Kerkhoff， K．McCulloh，K．Niklas，H．Olff，and N．Swenson． Testing the metabolic theory of ecology． Ecology Letters，15：1465－1474，2012．pdf®

References XI

［34］J．M．V．Rayner．
Linear relations in biomechanics：the statistics of scaling functions．
J．Zool．Lond．（A），206：415－439，1985．pdf■
［35］M．Rubner．
Ueber den einfluss der körpergrösse auf stoffund kraftwechsel．
Z．Biol．，19：535－562，1883．pdf■
［36］P．A．Samuelson．
A note on alternative regressions．
Econometrica，10：80－83，1942．pdf■®
［37］Sarrus and Rameaux．
Rapport sur une mémoire adressé à l＇Académie de Médecine．
Bull．Acad．R．Méd．（Paris），3：1094－1100，1838－39．

References XII

［38］V．M．Savage，E．J．Deeds，and W．Fontana． Sizing up allometric scaling theory． PLoS Computational Biology，4：e1000171， 2008.
［39］J．Speakman． On Blum＇s four－dimensional geometric explanation for the 0.75 exponent in metabolic allometry．
J．Theor．Biol．，144（1）：139－141，1990．pdf■
［40］W．R．Stahl．
Scaling of respiratory variables in mammals． Journal of Applied Physiology，22：453－460， 1967.
［41］M．P．H．Stumpf and M．A．Porter．
Critical truths about power laws．
Science，335：665－666，2012．pdf■

COcoNuTs

Metabolism and
Truthicide
Death by
fractions
Measuring
allometric
exponents
River networks
Earlier theories
Geometric
argument
Conclusion
References

つac 104 of 108

COcoNuTs

Metabolism and
Truthicide
Death by
fractions
Measuring
allometric
exponents
River networks
Earlier theories
Geometric
argument
Conclusion
References

A 月umax 6
ののく 105 of 108

COcoNuTS

Metabolism and
Truthicide
Death by
fractions
Measuring
allometric
exponents
River networks
Earlier theories
Geometric
$\underset{\substack{\text { Real networks } \\ \text { argument }}}{ }$
Conclusion
References

つac 106 of 108

References XIII
［42］A．Tero，S．Takagi，T．Saigusa，K．Ito，D．P．Bebber， M．D．Fricker，K．Yumiki，R．Kobayashi，and T．Nakagaki．
Rules for biologically inspired adaptive network design．
Science，327（5964）：439－442，2010．pdf［ 3
［43］D．L．Turcotte，J．D．Pelletier，and W．I．Newman． Networks with side branching in biology． Journal of Theoretical Biology，193：577－592， 1998. pdf（ ${ }^{3}$
［44］P．D．Weinberg and C．R．Ethier．
Twenty－fold difference in hemodynamic wall shear stress between murine and human aortas． Journal of Biomechanics，40（7）：1594－1598， 2007. pdf（

References XIV
［45］G．B．West，J．H．Brown，and J．Emquist． The fourth dimension of life：Fractal geometry and allometric scaling of organisms． Science Magazine，1999．pdf■
［46］G．B．West，J．H．Brown，and B．J．Enquist． A general model for the origin of allometric scaling laws in biology．
Science，276：122－126，1997．pdf©
［47］C．R．White and R．S．Seymour．
Allometric scaling of mammalian metabolism． J．Exp．Biol．，208：1611－1619，2005．pdf［＾く

COcoNuTS

Metabolism and
Truthicide
Death by
fractions
Measuring
exponents
River networks
Earlier theories
Geometric
argument
Conclusion
References

A manw ig
のaく 107 of 108

COcoNuTs

Metabolism and
Truthicide
Death by
fractions
Measuring
allometric
exponents
River networks
Earlier theories
Geometric
argument
Real networks
Conclusion
References

๑ac 108 of 108

[^0]:

