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Stories—The Fraction Assassin:
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.
Law and Order, Special Science Edition: Truthicide
Department
..

.

“In the scientific integrity system known as peer
review, the people are represented by two highly
overlapping yet equally important groups: the
independent scientists who review papers and the
scientists who punish those who publish garbage. This
is one of their stories.”

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Animal power

.
Fundamental biological and ecological constraint:
..

.

� = � Ԃ ᆐ� = basal metabolic rateԂ = organismal body mass

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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� = � Ԃ �
.

.

Prefactor � depends on body plan and body
temperature:

Birds 39–41 ∘Ӹ
Eutherian Mammals 36–38 ∘Ӹ

Marsupials 34–36 ∘Ӹ
Monotremes 30–31 ∘Ӹ

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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What one might expect:
.ᅦ = 2/3 because …
..

.

 Dimensional analysis suggests
an energy balance surface law:� ∝ Ԉ ∝ � 2/3 ∝ Ԃ 2/3

 Assumes isometric scaling (not quite the spherical
cow).

 Lognormal fluctuations:
Gaussian fluctuations in log� around log �Ԃᆐ.

 Stefan-Boltzmann law for radiated energy:

dӺ
d� = ��Ԉԉ 4 ∝ Ԉ

http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://en.wikipedia.org/wiki/Stefan-Boltzmann_law
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The prevailing belief of the Church of
Quarterology:

.

.

ᅦ = 3/4
� ∝ Ԃ 3/4

Huh?

http://www.uvm.edu
http://www.uvm.edu/~pdodds


COcoNuTS

Metabolism and
Truthicide

Death by
fractions

Measuring
allometric
exponents

River networks

Earlier theories

Geometric
argument
Real networks

Conclusion

References

.....
.
....
.
....
.
10 of 108

The prevailing belief of the Church of
Quarterology:

.
Most obvious concern:..

.

3/4 − 2/3 = 1/12
 An exponent higher than 2/3 points suggests a

fundamental inefficiency in biology.
 Organisms must somehow be running ‘hotter’

than they need to balance heat loss.

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Related putative scalings:

.
Wait! There’s more!:..

.

 number of capillaries ∝ Ԃ 3/4
 time to reproductive maturity ∝ Ԃ 1/4
 heart rate ∝ Ԃ −1/4
 cross-sectional area of aorta ∝ Ԃ 3/4
 population density ∝ Ԃ −3/4

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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The great ‘law’ of heartbeats:
.
Assuming:
..

.

 Average lifespan ∝ Ԃᆑ
 Average heart rate ∝ Ԃ−ᆑ
 Irrelevant but perhaps ᅧ = 1/4.
.
Then:..

.

 Average number of heart beats in a lifespan≃ (Average lifespan) × (Average heart rate)∝ Ԃᆑ−ᆑ∝ Ԃ0
 Number of heartbeats per life time is independent

of organism size!
 ≈ 1.5 billion....

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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A theory is born:

1840’s: Sarrus and Rameaux [37] first suggestedᅦ = 2/3.

http://www.uvm.edu
http://www.uvm.edu/~pdodds


COcoNuTS

Metabolism and
Truthicide

Death by
fractions

Measuring
allometric
exponents

River networks

Earlier theories

Geometric
argument
Real networks

Conclusion

References

.....
.
....
.
....
.
15 of 108

A theory grows:

1883: Rubner [35] found ᅦ ≃ 2/3.

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Theory meets a different ‘truth’:

1930’s: Brody, Benedict study mammals. [6]
Found ᅦ ≃ 0.73 (standard).

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Our hero faces a shadowy cabal:

 1932: Kleiber analyzed 13 mammals. [22]

 Found ᅦ = 0.76 and suggested ᅦ = 3/4.
 Scaling law of Metabolism became known as

Kleiber’s Law (2011 Wikipedia entry is
embarrassing).

 1961 book: “The Fire of Life. An Introduction to
Animal Energetics”. [23]

http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://en.wikipedia.org/wiki/Kleiber's_law
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When a cult becomes a religion:

1950/1960: Hemmingsen [19, 20]

Extension to unicellular organisms.ᅦ = 3/4 assumed true.

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Quarterology spreads throughout the land:
.
The Cabal assassinates 2/3-scaling:
..

.

 1964: Troon, Scotland.

 3rd Symposium on Energy Metabolism.

 � = 3/4 made official … …29 to zip.

 But the Cabal slipped up by publishing the conference
proceedings …

 “Energy Metabolism; Proceedings of the 3rd
symposium held at Troon, Scotland, May 1964,” Ed. Sir
Kenneth Blaxter [4]

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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An unsolved truthicide:

.
So many questions ...
..

.

 Did the truth kill a theory? Or did a theory kill the
truth?

 Or was the truth killed by just a lone, lowly
hypothesis?

 Does this go all the way to the top?
To the National Academies of Science?

 Is 2/3-scaling really dead?
 Could 2/3-scaling have faked its own death?
 What kind of people would vote on scientific facts?

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Modern Quarterology, Post Truthicide
.

.

 3/4 is held by many to be the one true exponent.

In the Beat of a Heart: Life, Energy, and
the Unity of Nature—by John Whitfield

 But: much controversy ...
 See ‘Re-examination of the “3/4-law” of

metabolism’
by the Heretical Unbelievers Dodds, Rothman, and
Weitz [13], and ensuing madness...

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Some data on metabolic rates

.

.
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[10−Dec−2001 peter dodds]

 Heusner’s
data
(1991) [21]

 391
Mammals

 blue line: 2/3
 red line: 3/4.
 (ӷ = � )

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Some data on metabolic rates
.

.
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 Bennett and
Harvey’s data
(1987) [3]

 398 birds
 blue line: 2/3
 red line: 3/4.
 (ӷ = � )

 Passerine vs. non-passerine issue...

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Linear regression

.
Important:
..

.

 Ordinary Least Squares (OLS) Linear regression is
only appropriate for analyzing a dataset {���, ��)}
when we know the �� are measured without error.

 Here we assume that measurements of mass Ԃ
have less error than measurements of metabolic
rate ӷ.

 Linear regression assumes Gaussian errors.

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Measuring exponents

.
More on regression:
..

.

If (a) we don’t know what the errors of either variable
are,

or (b) no variable can be considered independent,

then we need to use
Standardized Major Axis Linear Regression. [36, 34]

(aka Reduced Major Axis = RMA.)

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Measuring exponents

.
For Standardized Major Axis Linear Regression:
..

.

slope
SMA

= standard deviation of � data
standard deviation of � data

 Very simple!
 Minimization of sum of areas of triangles induced

by vertical and horizontal residuals with best fit
line.

 The only linear regression that is Scale invariant.
 Attributed to Nobel Laureate economist Paul

Samuelson, [36] but discovered independently
by others.

 #somuchwin

http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://en.wikipedia.org/wiki/Total_least_squares#Scale_invariant_methods
http://en.wikipedia.org/wiki/Paul_Samuelson
http://en.wikipedia.org/wiki/Paul_Samuelson
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Measuring exponents

.
Relationship to ordinary least squares regression
is simple:
..

.

slope
SMA

= �−1 × slope
OLS � on �= � × slope

OLS � on �
where � = standard correlation coefficient:� = ∑��=1��� − ̄�)��� − ̄�)√∑��=1��� − ̄�)2√∑��=1��� − ̄�)2

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Heusner’s data, 1991 (391 Mammals)
.

.

range of Ԃ ԃ ̂ᅦ≤ 0.1 kg 167 0.678 ± 0.038≤ 1 kg 276 0.662 ± 0.032≤ 10 kg 357 0.668 ± 0.019≤ 25 kg 366 0.669 ± 0.018≤ 35 kg 371 0.675 ± 0.018≤ 350 kg 389 0.706 ± 0.016≤ 3670 kg 391 0.710 ± 0.021

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Bennett and Harvey, 1987 (398 birds)
.

.

Ԃmax ԃ ̂ᅦ≤ 0.032 162 0.636 ± 0.103≤ 0.1 236 0.602 ± 0.060≤ 0.32 290 0.607 ± 0.039≤ 1 334 0.652 ± 0.030≤ 3.2 371 0.655 ± 0.023≤ 10 391 0.664 ± 0.020≤ 32 396 0.665 ± 0.019≤ 100 398 0.664 ± 0.019

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Fluctuations—Things look normal...
.

.
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[07−Nov−1999 peter dodds]

 � �ӷ |Ԃ) = 1/Ԃ2/3��ӷ/Ԃ2/3)
 Use a Kolmogorov-Smirnov test.

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Hypothesis testing
.

.

Test to see if ᅦ′ is consistent with our data {�Ԃ�, ӷ�)}:�0 ∶ ᅦ = ᅦ′ and �1 ∶ ᅦ ≠ ᅦ′.
 Assume each �� (now a random variable) is

normally distributed about ᅦ′ log10 Ԃ� + log10 �.
 Follows that the measured ᅦ for one realization

obeys a � distribution with ԃ − 2 degrees of
freedom.

 Calculate a �-value: probability that the measuredᅦ is as least as different to our hypothesized ᅦ′ as
we observe.

 See, for example, DeGroot and Scherish,
“Probability and Statistics.” [10]

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Revisiting the past—mammals

.
Full mass range:
..

.

ԃ ̂ᅦ �2/3 �3/4
Kleiber 13 0.738 < 10−6 0.11

Brody 35 0.718 < 10−4 < 10−2
Heusner 391 0.710 < 10−6 < 10−5
Bennett 398 0.664 0.69 < 10−15

and Harvey

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Revisiting the past—mammals
.Ԃ ≤ 10 kg:
..

.

� �̂ �2/3 �3/4
Kleiber 5 0.667 0.99 0.088

Brody 26 0.709 < 10−3 < 10−3
Heusner 357 0.668 0.91 < 10−15

.Ԃ ≥ 10 kg:

..

.

� �̂ �2/3 �3/4
Kleiber 8 0.754 < 10−4 0.66

Brody 9 0.760 < 10−3 0.56

Heusner 34 0.877 < 10−12 < 10−7

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Analysis of residuals

.

.

1. Presume an exponent of your choice: 2/3 or 3/4.
2. Fit the prefactor (log10 �) and then examine the

residuals:�� = log10 ӷ� − �ᅦ′ log10 Ԃ� − log10 �).
3. �0: residuals are uncorrelated�1: residuals are correlated.
4. Measure the correlations in the residuals and

compute a �-value.

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Analysis of residuals
.

.
We use the spiffing Spearman Rank-Order Correlation
Coefficient

.
Basic idea:..

.

 Given {���, ��)}, rank the {��} and {��} separately
from smallest to largest. Call these ranks ԇ� andԈ�.

 Now calculate correlation coefficient for ranks, ��:
 �� = ∑��=1��� − �̄)��� − ̄�)√∑��=1��� − �̄)2√∑��=1��� − ̄�)2
 Perfect correlation: ��’s and ��’s both increase

monotonically.

http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://en.wikipedia.org/wiki/Spearman's_rank_correlation_coefficient
http://en.wikipedia.org/wiki/Spearman's_rank_correlation_coefficient
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Analysis of residuals

.
We assume all rank orderings are equally likely:
..

.

 �� is distributed according to a Student’s�-distribution with ԃ − 2 degrees of freedom.
 Excellent feature: Non-parametric—real

distribution of �’s and �’s doesn’t matter.
 Bonus: works for non-linear monotonic

relationships as well.
 See Numerical Recipes in C/Fortran which

contains many good things. [32]

http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://en.wikipedia.org/wiki/Student's_t-distribution
http://en.wikipedia.org/wiki/Student's_t-distribution
http://www.nr.com/


COcoNuTS

Metabolism and
Truthicide

Death by
fractions

Measuring
allometric
exponents

River networks

Earlier theories

Geometric
argument
Real networks

Conclusion

References

.....
.
....
.
....
.
38 of 108

Analysis of residuals—mammals

.

.
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(a) Ԃ < 3.2 kg,
(b) Ԃ < 10 kg,
(c) Ԃ < 32 kg,
(d) all

mammals.

http://www.uvm.edu
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Analysis of residuals—birds

.

.

0.6 2/30.7 3/4 0.8

−4

−3

−2

−1

0
(a)

0.6 2/30.7 3/4 0.8

−4

−3

−2

−1

0
(b)

0.6 2/30.7 3/4 0.8

−4

−3

−2

−1

0
(c)

0.6 2/30.7 3/4 0.8

−4

−3

−2

−1

0
(d)

α’

lo
g 10

 p (a) Ԃ < 0.1 kg,
(b) Ԃ < 1 kg,
(c) Ԃ < 10 kg,
(d) all birds.

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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.
Other approaches to measuring exponents:
..

.

 Clauset, Shalizi, Newman: “Power-law
distributions in empirical data” [9]
SIAM Review, 2009.

 See Clauset’s page on measuring power law
exponents (code, other goodies).

http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://tuvalu.santafe.edu/~aaronc/powerlaws/
http://tuvalu.santafe.edu/~aaronc/powerlaws/
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Impure scaling?:

.

.

 So: The exponent ᅦ = 2/3 works for all birds and
mammals up to 10–30 kg

 For mammals > 10–30 kg, maybe we have a new
scaling regime

 Possible connection?: Economos (1983)—limb
length break in scaling around 20 kg [14]

 But see later: non-isometric growth leads to lower
metabolic scaling. Oops.

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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The widening gyre:

.
Now we’re really confused (empirically):
..

.

 White and Seymour, 2005: unhappy with large
herbivore measurements [47]. Pro 2/3: Findᅦ ≃ 0.686 ± 0.014.

 Glazier, BioScience (2006) [17]: “The 3/4-Power Law
Is Not Universal: Evolution of Isometric,
Ontogenetic Metabolic Scaling in Pelagic Animals.”

 Glazier, Biol. Rev. (2005) [16]: “Beyond the
3/4-power law’: variation in the intra- and
interspecific scaling of metabolic rate in animals.”

 Savage et al., PLoS Biology (2008) [38] “Sizing up
allometric scaling theory” Pro 3/4: problems
claimed to be finite-size scaling.

http://www.uvm.edu
http://www.uvm.edu/~pdodds


COcoNuTS

Metabolism and
Truthicide

Death by
fractions

Measuring
allometric
exponents

River networks

Earlier theories

Geometric
argument
Real networks

Conclusion

References

.....
.
....
.
....
.
43 of 108

Somehow, optimal river networks are
connected:
.

.

a
L?0

L? Lk = L
a0 ll0Lk0  � = drainage

basin area
 ℓ = length of

longest (main)
stream

 ԁ = ԁ∥ =
longitudinal
length of basin

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Mysterious allometric scaling in river
networks

.

.

 1957: J. T. Hack [18]

“Studies of Longitudinal Stream Profiles in Virginia
and Maryland” ℓ ∼ � ℎℎ ∼ 0.6

 Anomalous scaling: we would expect ℎ = 1/2...
 Subsequent studies: 0.5 ≲ ℎ ≲ 0.6
 Another quest to find universality/god...
 A catch: studies done on small scales.

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Large-scale networks:
.
(1992) Montgomery and Dietrich [30]:
..

.

Fig. 1. Without a scale bar it
is almost impossible to de-
termine even the approxi-
mate scale of a topographic
map. The upper two maps
show adjacent drainage ba-
sins in the Oregon Coast
Range and illustrate the ef-
fect of depicting an area of
similar topography at diffier-
ent scales. The map on the
right covers an area four
times as large as, and has
twice the contour interval
of, the map on the left. The
lower two maps depict very
different landscapes, and de-
tailed mapping was done to
resolve the finest scale val- - --
leys, which determine the -
extent, or scale, of landscape
dissection. The map on the
left shows a portion of a/
small badlands area at Perth
Amboy, New Jersey (28)
(scale bar represents 2 m;
contour interval is 0.3 in).
The map on the right shows
a portion of the San Gabriel
Mountains of southern Cal-
ifornia (20) (scale bar repre-
sents 100 m; contour inter-
val is 15 in). Dashed fines on
both lower maps represent
the limit of original map-
ping. The drainage basin outlet on each map is oriented toward the bottom of the page. All four maps
suggest a limit to landscape dissection, defined by the size of the hilislopes, separating valleys. This
apparent limit, however, only corresponds to the extent of valley dissection definable in the field for the
case of the lower two maps.

We collected data from small drainage
basins in a variety of geologic settings that
represent a range in climate and vegetation
(4, 5). We measured the drainage area (A),
basin length (L), and local slope (S) for
locations in convergent topography along
low-order channel networks, at channel
heads, and along unchanneled valleys in
drainage basins where we had mapped the
channel networks in the field (4, 5). Drain-
age area was defined as the area upslope of
the measurement location, basin length was

defined as the length along the main valley
axis to the drainage divide, and local slope
was measured in the field. The structural
relation ofdrainage area to basin length (10)
for our composite data set is

L = 1.78A49 (1)

E

5

c
U

Drainage area (m2)

where L andA are expressed in meters. This
relation is well approximated by the simple,
isometric relation

L (3 A)05 (2)

Inclusion of reported drainage area and
mainstream length data from larger net-
works (11-15) provides a composite data
set that also is reasonably fit (5) by this
relation. The data span a range of more
than 11 orders of magnitude in basin area,
from unchanneled hillside depressions to
the world's largest rivers (Fig. 2). This
relation suggests that there is a basic geo-
metric similarity between drainage basins
and the smaller basins contained within
them that holds down to the finest scale to

which the landscape is dissected (Fig. 3).
In the field this scale is easily recognized as

Fig. 2. Basin length versus drainage
area for unchanneled valleys, source
areas, and low-order channels mapped
in this study (0) and mainstream
length versus drainage area data report-
ed for large channel networks (0).
Sources of mainstream length data are

given in (5).

Fig. 3. The coherence of the data in Fig. 2 across
11 orders of magnitude indicates a geometric
similarity between small drainage basins and the
larger drainage basins that contain them. Al-
though the variance about the trend in Fig. 2
indicates a range in individual basin shapes, this
general relation apparently characterizes the land-
scape down to the finest scale of convergent
topography.

that ofthe topographically divergent ridges
that separate these fine-scale valleys.
Equation 1 differs, however, from the

relation between the mainstream length
and drainage area first reported by Hack
(11), in which basin area increases as L`.
Many subsequent workers interpreted sim-
ilar relations as indicating that drainage
network planform geometry changes with
increasing scale. Relations between main-
stream length and drainage area also have
been used to infer the fractal dimension of
individual channels and channel networks
(1, 16). Mueller (15), however, reported
that the exponent in the relation of main-
stream length to drainage area is not con-
stant, but decreases from 0.6 to -0.5 with
increasing network size, and Hack (11)
noted that the exponent in this relation
varies for individual drainage networks.
We cannot compare our data more quanti-
tatively with those reported by others be-
cause the mainstream length will diverge
from the basin length in proportion to the
area upslope of the stream head. We sus-
pect that the difference in the relations
derived from our data and those reported
previously reflects variation in the head-
ward extent ofthe stream network depicted
on maps of varying scale (17) as well as
downstream variations in both channel sin-
uosity (14) and drainage density (18). The
general scale independence indicated in
Fig. 2 suggests that landscape dissection
results in an integrated network of valleys
that capture geometrically similar drainage
basins at scales ranging from the largest
rivers to the finest scale valleys. Within this
scale range there appears to be little inher-
ent to the channel network and to the
corresponding shape of the drainage area it
captures that provides reference to an ab-
solute scale.

Nonetheless, field studies in semiarid to

humid regions demonstrate that there is a

finite extent to the branching channel net-

work (4, 5, 19-22). Channels do not occupy
the entire landscape; rather, they typically
begin at the foot of an unchanneled valley,

REPORT 827
14 FEBRUARY 1992 Composite data set: includes everything from

unchanneled valleys up to world’s largest rivers.
 Estimated fit: ԁ ≃ 1.78� 0.49
 Mixture of basin and main stream lengths.

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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World’s largest rivers only:

.

.

10
4

10
5

10
6

10
7

10
2

10
3

10
4

area a (sq mi)

m
a
in

st
re

a
m

le
n
g
th

ℓ
(m

i) 37 of the world’s biggest basins

h ≃ 0.498

 Data from Leopold (1994) [26, 12]

 Estimate of Hack exponent: ℎ = 0.50 ± 0.06

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Earlier theories (1973–):

.
Building on the surface area idea:
..

.

 McMahon (70’s, 80’s): Elastic Similarity [27, 29]

 Idea is that organismal shapes scale allometrically
with 1/4 powers (like trees...)

 Disastrously, cites Hemmingsen [20] for surface
area data.

 Appears to be true for ungulate legs … [28]

 Metabolism and shape never properly connected.

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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.

.

the trunk. Then the limb should grow
no longer than icr, where

lcw=C
E |~ d% (3)

and C depends only on the droop angle
9D, which in turn depends only on the
angle at which the limb leaves the
trunk (15). The result may be made
general for a tapered or hollow limb
exactly as was done for the buckling
problem. Comparing Eqs. 1, 2, and 3,
it is apparent that elastic criteria set
length proportional to the % power

of diameter in both the trunk and the
branches.

It should be possible to check the
validity of these results by measuring
the proportions of trees of different
scale. Such a check would be arduous
if it were necessary to know E and p

for each species; fortunately, the ratio
E/p is quite accurately constant in
green woods (16, 17). In Fig. 2, the
trunk diameter 1.525 meters from the
ground is plotted against the total
height for 576 individual trees, repre-

senting nearly every species found in
the United States. The data, taken pri-

marily from the American Forestry
Association's "Social register of big
trees" (18), include specimens both
very slender and very stout, since trees
are eligible for this list according to
their bigness, an index depending on

the sum of their circumference and
height (19). A solid line representing
Eq. 2 is also shown in Fig. 2; it was

calculated for E = 1.05 X 105 kilo-
grams per square meter and p = 6.18 x
102 kilograms per cubic meter (16).

The broken line, which fits near the
center of the data points, has the same

slope as the solid line but represents a

sequence of trees whose height in each
case is only one-fourth of the critical
buckling height. The conclusion seems
to be that the proportions of trees are
limited by elastic criteria, since there
are no data points to the left of the
solid line.

Animal Proportions

Just as trees must assume thicker
proportions with increasing size, so
must animals adjust their shape with
scale. The argument has long been
offered that animals could not remain

geometrically similar from the small to
the large because their limbs, whose
cross-sectional area increases as the
square of characteristic body dimension
L, must then support a weight which
increases as L3 (7). The difficulty with
these arguments based on strength cri-
teria is the inevitable conclusion that
animals may grow no larger than a size
which makes the applied stress equal
to the yield stress of their materials.
Animals larger than this size would
have to increase supporting areas di-
rectly with weight, so that no increases
in height could be tolerated, only in-
creases in width. If yield stress were

the only criterion, an animal with
slender proportions like the bobcat
should be capable of attaining the same

absolute height as the lion. In fact,
it is widely found that some animals
grow larger than others, and animals of

small scale are relatively more slender
than those of large scale (see cover).
Perhaps this transformation occurs, as

in differently sized trees, for reasons

based on elastic rather than strength
criteria.

In the following, we consider com-

parisons between animals of the same

family, so that their shape is grossly
similar. The only change in shape per-
mitted is for lengths to bear a specified
relationship to diameters: all lengths
will be proportional to one another, as
will be all diameters. Each limb, bone,
or muscle will thus have a length I
and diameter d, where length will be
taken as a measurement parallel to the
direction of tension or compression and
diameter will be measured perpendicu-
lar to this direction. Thus, the length
of the trunk is the distance between
shoulder and hip whether the animal
is bipedal or quadrapedal (Fig. 3a,
bottom).
When a quadruped is standing at

rest, the four limbs will be exposed pri-
marily to buckling loads, but the verte-
bral column and its musculature must
withstand bending loads. When the
same animal runs, the situation is sub-
stantially reversed in those phases of
the motion where the limbs are provid-
ing their maximum propulsive effort.
At these moments, the limbs are sup-
porting bending loads, while the ver-
tebral column is receiving an end
thrust and thus a buckling load. The
fact that the loads are dynamic rather
than static is not a consideration: the
maximum deflection of a structure sud-
denly loaded under its own weight is

X lO2
to
I0

01.

10

lol 10'

Body weight (kg)

100

E
-f&

.wI

01 0.1 1.0

Diameter (m)

Fig. 1 (left). Metabolic heat production plotted against body weight on logarithmic scales. The solid line has slope 3/4. The broken
line, which does not fit the data, has slope 2A and represents the way surface area increases with weight for geometrically similar
shapes [adapted from (2)]. Fig. 2 (right). Tree height plotted against trunk base diameter on logarithmic scales for record trees
representing nearly every American species. The trunk proportions are limited by elastic buckling criteria, since no points lie to the
left of- the solid line. Data from (18, 19).
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“Size and shape in biology”
T. McMahon,
Science, 179, 1201–1204, 1973. [27]

just twice the static deflection when the
load is gradually applied (12). The
true instantaneous loading condition for
each of the quasi-cylindrical elements is
thus some complicated sum of buckling,
bending, and torsional loads, but for-
tunately the elastic criteria predict the
same result independently of the type
of gravitational self-loading, namely
that every I should be proportional to
the 2/3 power of the equivalent d.

Rashevsky (20) assumed that the
trunk of an animal was a uniformly
loaded beam, and used the linearized
theory of beam bending to calculate
the same result, that trunk length
should go as diameter to the 23.
Rashevsky's model additionally re-
quired the cross-sectional area of the
animal's limbs to be proportional to
the weight of the trunk, leading to a
different set of rules for determining
limb proportions from those for trunk
proportions. In the present model all
the proportions of an animal would
change with size in the same way. If
W is the total body weight, the weight
of any limb is a specified fraction of
W, and:

W oc Id' (4)

but if P is proportional to d2, then

l cc W¼4; d cc W (5)

Comparative zoologists have long
been aware that the gross dimensions
of many species bear a power law rela-
tion to body weight. Brody (4) nmea-
sured the chest girth G and the height

at withers H of more than 3000 Hol-
stein cattle. His data fit the present
model well: he empirically found G
proportional to WO.36 (WO.375 pre-
dicted), while H goes as WO.24 (W025
predicted).

In a study of primates whose weights
ranged from 0.28 to 22 kg, Stahl and
Gummerson (21) reported many of the
important somatic and skeletal dimen-
sions, x, as power functions of body
weight, x = aWb. Figure 3a, reproduced
from their paper, shows that chest cir-
cumference in primates is proportional
to WO.37 with a correlation of .995.
Agreement with the proposed model is
excellent for most of his measurements:
b is 0.28 for trunk height (0.25 pre-
dicted) and 0.38 for maximum thigh
girth (0.375 predicted).

Let us return to the question of ex-
ternal body surface area. If the surface
area of each of the quasi-cylindrical
elements that make up the whole ani-
mal in the proposed model is calculated,
we find

surface area c Id+ d3/2 (6)

where the second term is due to the
ends of each cylindrical element, so
that it is absent or halved in the case
of many of the elements. For most
limbs and many of the trunks under
consideration, lid is approximately 10,
so that the second term is only 5 per-
cent of the first and may be neglected.
In this case, total body surface area is
proportional to Id and thus to W%W%,
or W%. Hemmingsen (8) presented a

plot of body surface area against weight
for animals in a weight range of 1 to
106 grams, and he also included points
representing defoliated beech trees. In
his figure, only one solid line appears,
that appropriate to the surface area of
a sphere of density 1.0 g/cm3. His fig-
ure is reproduced in Fig. 3b, with an
additional line representing the pro-
posed model of a cylinder whose sur-
face area is three times the sphere area
when both sphere and model weigh
close to 8 g, but only twice the sphere
area when both weigh about 70 kg.
The slope of the line for this stretched
cylinder is 0.63, while the slope of the
line for the sphere, and thus all geo-
metrically similar structures, is 0.67.
Although Hemmingsen argues that the
data points are well fitted by an imag-
inary line running parallel to that of
the sphere, it is apparent that a good
fit is obtained by the present model. In
data spanning the range from rats to
humans, Stahl (22) found that surface
area increases as the 0.65 power of
body weight. Thus, the present model
agrees with experimental observations
of body surface area as well as body
proportions.

Metabolic Rate

Our ideas describing how size de-
termines shape are now complete, and
we may return to the original question
concerning metabolism and Kleiber's
law. Suppose a muscle, whose cross-

Body weight (kg) Body weight (g)

Fig. 3. (a) Chest circumference, d4, plotted against body weight, W, for five species of primates. The broken lines represent the stand-
ard error in this least-squares fit [adapted from (21)]. The model proposed here, whereby each length, 1, increases as the % power
of diameter, d, is illustrated for two weights differing by a factor of 16. (b) Body surface area plotted against weight for verte-
brates. The animal data are reasonably well fitted by the stretched cylinder model [adapted from (8)].

23 MARCH 1973 1203

http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.uvm.edu/~pdodds/research/papers/others/everything/mcmahon1973a.pdf
http://www.uvm.edu/~pdodds/research/papers/others/everything/mcmahon1973a.pdf
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 Hemmingsen’s “fit” is for a 2/3 power, notes
possible 10 kg transition. [?]

 p 46: “The energy metabolism thus definitely
varies interspecifically over similar wide weight
ranges with a higher power of the body weight
than the body surface.”

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Earlier theories (1977):

.
Building on the surface area idea...
..

.

 Blum (1977) [5] speculates on four-dimensional
biology: � ∝ Ԃ ��−1)/�

 � = 3 gives ᅦ = 2/3
 � = 4 gives ᅦ = 3/4
 So we need another dimension...
 Obviously, a bit silly… [39]

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Nutrient delivering networks:
.

.

 1960’s: Rashevsky considers blood networks and
finds a 2/3 scaling.

 1997: West et al. [46] use a network story to find3/4 scaling.

http://www.uvm.edu
http://www.uvm.edu/~pdodds


COcoNuTS

Metabolism and
Truthicide

Death by
fractions

Measuring
allometric
exponents

River networks

Earlier theories

Geometric
argument
Real networks

Conclusion

References

.....
.
....
.
....
.
52 of 108

Nutrient delivering networks:

.
West et al.’s assumptions:
..

.

1. hierarchical network
2. capillaries (delivery units) invariant
3. network impedance is minimized via evolution

.
Claims:..

.

 � ∝ Ԃ 3/4
 networks are fractal
 quarter powers everywhere

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Impedance measures:
.

.

 Poiseuille flow (outer branches):� = 8�� �∑�=0 ℓ��4�ԃ�
 Pulsatile flow (main branches):� ∝ �∑�=0 ℎ1/2��5/2� ԃ�
 Wheel out Lagrange multipliers …
 Poiseuille gives � ∝ Ԃ1 with a logarithmic

correction.
 Pulsatile calculation explodes into flames.

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Not so fast …

.
Actually, model shows:
..

.

 � ∝ Ԃ 3/4 does not follow for pulsatile flow
 networks are not necessarily fractal.

.
Do find:..

.

 Murray’s cube law (1927) for outer branches: [31]�30 = �31 + �32
 Impedance is distributed evenly.
 Can still assume networks are fractal.

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Connecting network structure to ᅦ
.

.

1. Ratios of network parameters:�� = ��+1�� , �ℓ = ℓ�+1ℓ� , �� = ��+1��
2. Number of capillaries ∝ � ∝ �ᆐ.⇒ � = − ln��

ln�2��ℓ
(also problematic due to prefactor issues)

.
Obliviously soldiering on, we could assert:
..

.

 area-preservingness:�� = �−1/2�
 space-fillingness: �ℓ = �−1/3� ⇒ � = 3/4

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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.
Data from real networks:..

.

Network �� �� �ℓ − ln��
ln�� − ln�ℓ

ln�� �
West et al. – – – 1/2 1/3 3/4

rat (PAT) 2.76 1.58 1.60 0.45 0.46 0.73

cat (PAT) 3.67 1.71 1.78 0.41 0.44 0.79
(Turcotte et al. [43])

dog (PAT) 3.69 1.67 1.52 0.39 0.32 0.90

pig (LCX) 3.57 1.89 2.20 0.50 0.62 0.62
pig (RCA) 3.50 1.81 2.12 0.47 0.60 0.65
pig (LAD) 3.51 1.84 2.02 0.49 0.56 0.65

human (PAT) 3.03 1.60 1.49 0.42 0.36 0.83
human (PAT) 3.36 1.56 1.49 0.37 0.33 0.94

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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.
Some people understand it’s truly a disaster:
..

.

“Power, Sex, Suicide: Mitochondria and the
Meaning of Life”
by Nick Lane (2005). [25]

“As so often happens in science, the apparently solid
foundations of a field turned to rubble on closer
inspection.”

http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.amazon.com/dp/0192804812/
http://www.amazon.com/dp/0192804812/
http://www.amazon.com/dp/0192804812/
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Let’s never talk about this again:
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The Fourth Dimension of Life:

Fractal Geometry and

Allometric Scaling of Organisms
Geoffrey B. West,1,2* James H. Brown,2,3 Brian J. Enquist2,3

Fractal-like networks effectively endow life with an additional fourth spatial
dimension. This is the origin of quarter-power scaling that is so pervasive in
biology. Organisms have evolved hierarchical branching networks that termi-
nate in size-invariant units, such as capillaries, leaves,mitochondria, and oxidase
molecules. Natural selection has tended to maximize both metabolic capacity,
by maximizing the scaling of exchange surface areas, and internal efficiency, by
minimizing the scaling of transport distances and times. These design principles
are independent of detailed dynamics and explicit models and should apply to
virtually all organisms.

Evolution by natural selection is one of the

few universal principles in biology. It has

shaped the structural and functional design of

organisms in two important ways. First, it has

tended to maximize metabolic capacity, be-

cause metabolism produces the energy and

materials required to sustain and reproduce

life; this has been achieved by increasing

surface areas where resources are exchanged

with the environment. Second, it has tended

to maximize internal efficiency by reducing

distances over which materials are transport-

ed and hence the time required for transport.

A further consequence of evolution is the in-

credible diversity of body sizes, which range

over 21 orders of magnitude, from 10213 g

(microbes) to 108 g (whales). A fundamental

problem, therefore, is how exchange surfaces

and transport distances change, or scale, with

body size. In particular, a longstanding question

has been why metabolic rate scales as the 3/4-

power of body mass, M (1).

Biological scaling can be described by the

allometric equation Y 5 Y0 M
b, where Y is a

variable such as metabolic rate or life span,

Y0 is a normalization constant, and b is a

scaling exponent (1). Whereas Y0 varies with

the trait and type of organism, b characteris-

tically takes on a limited number of values,

all of which are simple multiples of 1/4. For

example, diameters of tree trunks and aortas

scale as M
3/8 rates of cellular metabolism and

heartbeat as M
21/4, blood circulation time

and life span as M
1/4, and whole-organism

metabolic rate as M
3/4. The question has been

why these exponents are multiples of 1/4

rather than 1/3 as expected on the basis of

conventional Euclidean geometric scaling.

Recently, we presented a model which

suggested that the explanation could be found

in the fractal-like architecture of the hierar-

chical branching vascular networks that dis-

tribute resources within organisms (2). The

model accurately predicts scaling exponents

that have been measured for many structural

and functional features of mammalian and

plant vascular systems. It is not clear, how-

ever, how this model can account for the

ubiquitous 3/4-power scaling of metabolic

rate in diverse kinds of organisms with their

wide variety of network designs, and espe-

cially in unicellular algae and protists, which

have no obvious branched anatomy. Here we

present a more general model, based on the

geometry rather than hydrodynamics of hier-

archical networks, that does not require the

existence of such explicit structures and that

can account for the pervasive quarter-power

scaling in biology.

We conjecture that organisms have been

selected to maximize fitness by maximizing

metabolic capacity, namely, the rate at which

energy and material resources are taken up

from the environment and allocated to some

combination of survival and reproduction.

This is equivalent to maximizing the scaling

of whole-organism metabolic rate, B. It fol-

lows that B is limited by the geometry and

scaling behavior of the total effective surface

area, a, across which nutrients and energy are

exchanged with the external or internal envi-

ronment. Examples include the total leaf area

of plants, the area of absorptive gut or capil-

lary surface area of animals, and the total area

of mitochondrial inner membranes within

cells. In general, therefore, B } a. It is im-

portant to distinguish a from the relatively

smooth external surface, or “skin,” enclosing

many organisms. We further conjecture that

natural selection has acted to maximize a

subject to various constraints while maintain-

ing a compact shape. This is equivalent to

minimizing the time and resistance for deliv-

ery of resources by minimizing some charac-

teristic length or internal linear distance of

the hierarchical network.

Broadly speaking, two sets of variables

can be used to describe the size and shape of

an organism: a conventional Euclidean set

describing the external surface, A, enclosing

the total volume, V; and a “biological” set

describing the internal structure, which in-

cludes the effective exchange area, a, and the

1Theoretical Division, MS B285, Los Alamos National
Laboratory, Los Alamos, NM 87545, USA. 2The Santa
Fe Institute, 1399 Hyde Park Road, Santa Fe, NM
87501, USA. 3Department of Biology, University of
New Mexico, Albuquerque, NM 87131, USA.

*To whom correspondence should be addressed. E-
mail: gbw@lanl.gov

Table 1. Examples of the biological network variables l, a, and v in plant, mammalian, and unicellular
systems.

Variable Plant Mammal Unicellular

l Mean path length from root
to leaf, or between leaves

Mean circulation
distance from heart to
capillary, or between
capillaries

Mean distance from cell
surface to mitochondria
and between
mitochondria

a Total area of leaves; area of
absorptive root surface

Total area of capillaries;
gut surface area

Actual cell surface area;
total surface area of
mitochondrial inner
membranes

v Total wood volume; total
cell volume

Total blood volume;
total tissue, or cell,
volume

Volume of cytoplasm

R E P O R T S
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“The fourth dimension of life: Fractal
geometry and allometric scaling of
organisms”
West, Brown, and Emquist,
Science Magazine, , , 1999. [45]

 No networks: Scaling argument for energy
exchange area �.

 Distinguish between biological and physical length
scales (distance between mitochondria versus cell
radius).

 Buckingham � action. [8]

 Arrive at � ∝ Ԃ�/�+1 and ℓ ∝ Ԃ1/�.
 New disaster: after going on about fractality of �,

then state � ∝ �ℓ in general.

http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.uvm.edu/~pdodds/research/papers/others/everything/west1999a.pdf
http://www.uvm.edu/~pdodds/research/papers/others/everything/west1999a.pdf
http://www.uvm.edu/~pdodds/research/papers/others/everything/west1999a.pdf
http://www.uvm.edu/~pdodds/research/papers/others/everything/west1999a.pdf
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Really, quite confused:
.
Whole 2004 issue of Functional Ecology addresses
the problem:
..

.

 J. Kozlowski, M. Konrzewski. “Is West, Brown and
Enquist’s model of allometric scaling
mathematically correct and biologically relevant?”
Functional Ecology 18: 283–9, 2004. [24]

 J. H. Brown, G. B. West, and B. J. Enquist. “Yes,
West, Brown and Enquist’s model of allometric
scaling is both mathematically correct and
biologically relevant.” Functional Ecology 19:
735–738, 2005. [7]

 J. Kozlowski, M. Konarzewski. “West, Brown and
Enquist’s model of allometric scaling again: the
same questions remain.” Functional Ecology 19:
739–743, 2005.
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Simple supply networks:

.

.

a b

c d

4

4

4 3
3

3

3

3
3

2

2

2
2

2

2

2

2
2

1
1

1

1

1

0

4

4

4 3
3

3

3

3
3

2

2

2
2

2

2

2

2
2

1
1

1

1

1

0

4

4

4 3
3

3

3

3
3

2

2

2
2

2

2

2

2
2

1
1

1

1

1

0 0

 Banavar et al.,
Nature,
(1999) [1].

 Flow rate
argument.

 Ignore
impedance.

 Very general
attempt to
find most
efficient
transportation
networks.
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Simple supply networks

.

.

 Banavar et al. find ‘most efficient’ networks with� ∝ Ԃ �/��+1)
 ... but also find �network ∝ Ԃ ��+1)/�
 � = 3: �blood ∝ Ԃ 4/3
 Consider a 3 g shrew with �blood = 0.1�body

 ⇒ 3000 kg elephant with �blood = 10�body

http://www.uvm.edu
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Geometric argument
.

.

Optimal Form of Branching Supply and Collection Networks

Peter Sheridan Dodds*

Department of Mathematics and Statistics, Center for Complex Systems,

and the Vermont Advanced Computing Center, University of Vermont, Burlington, Vermont 05401, USA
(Received 9 February 2009; published 27 January 2010)

For the problem of efficiently supplying material to a spatial region from a single source, we present a

simple scaling argument based on branching network volume minimization that identifies limits to the

scaling of sink density. We discuss implications for two fundamental and unresolved problems in

organismal biology and geomorphology: how basal metabolism scales with body size for homeotherms

and the scaling of drainage basin shape on eroding landscapes.

DOI: 10.1103/PhysRevLett.104.048702 PACS numbers: 89.75.Hc, 87.19.U!, 92.40.Gc

In both natural and man-made systems, branching net-

works universally facilitate the essential task of supplying

material from a central source to a widely distributed sink

population. Branching networks also underlie the comple-

mentary process of collecting material from many sources

at a single sink. Such networks typically exhibit structural

self-similarity over many orders of magnitude: river net-

works drain continents [1–3], arterial and venal networks

move blood between the macroscopic heart and micro-

scopic capillaries [4], and trees and plants orient leaves

in space taking on the roles of both structure and

transportation.

We address the following questions regarding supply

networks. (1) What is the minimum network volume re-

quired to continually supply material from a source to a

population of sinks in some spatial region!? (2) How does

this optimal solution scale if ! is rescaled allometrically?

(For convenience, we use the language of distribution, i.e.,

a single source supplying many sinks.) Our approach is

inspired by that of Banavar et al. [5,6] who sought to derive

scaling properties of optimal transportation networks in

isometrically growing regions based on a flow rate argu-

ment; Banavar et al.’s approach followed the seminal work

of West et al. [7] who suggested supply networks were key

to understanding the metabolic limitations of organisms,

and focused on network impedance minimization (see

[8,9]). In contrast to this previous work, our treatment is

explicitly geometric. We also accommodate four other key

features: the ambient dimension, allometrically growing

regions, variable sink density, and varying speed of mate-

rial transportation.

We consider the problem of network supply for a general

class of d-dimensional spatial regions in a D " d dimen-

sional space. Each region ! has volume V and overall

dimensions L1 # L2 # $ $ $ # Ld [see Fig. 1(a)]. We allow

these length scales to scale as Li / V!i, creating families

of allometrically similar regions. For isometric growth, all

dimensions scale uniformly meaning !i ¼ 1=d, while for

allometric growth, we must have at least one of the f!ig
being different. For the general case of allometry, we

choose an ordering of f!ig such that the length scales are

arranged from most dominant to least dominant: !max ¼
!1 " $ $ $ " !d.

We assume that isolated sinks are located throughout a

contiguous spatial region ! (volume V) which contains a

single source located at ~x ¼ ~0. We allow sink density to

follow "& "0ðVÞð1þ ak ~xkÞ!# where a is fixed, # " 0,

and k ~xk is the distance from the source. When the exponent

# ¼ 0, " is constant throughout the region (as for capil-

laries in organisms), but remains a function of the region’s

b)

a)

c)

FIG. 1. (a) We consider families of d-dimensional spatial

regions that scale allometrically with Li / V!i, and exist in a

D-dimensional space where D " d. For the d ¼ D ¼ 2 example

shown, !max ¼ !1 > !2, and L1 grows faster than L2. We

require that each spatial region is star-convex, i.e., from at least

one point all other points are directly observable, and the single

source must be located at any one of these central points.

(b) Distribution (or collection) networks can be thought of as a

superposition of virtual vessels. In the example shown, the

source (circle) supplies material to the three sinks (squares).

(c) Allowing virtual vessels to expand as they move away from

the source captures a potential decrease in speed in material flow.

For scaling of branching network form to be affected, the radius

r of a virtual vessel must scale with vessel length s (measured

from the sink) as s!$.

PRL 104, 048702 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

29 JANUARY 2010

0031-9007=10=104(4)=048702(4) 048702-1 ! 2010 The American Physical Society

“Optimal Form of Branching Supply and
Collection Networks”
Peter Sheridan Dodds,
Phys. Rev. Lett., 104, 048702, 2010. [11]

 Consider one source supplying many sinks in a�-dim. volume in a ӹ-dim. ambient space.
 Assume sinks are invariant.
 Assume sink density � = ��� ).
 Assume some cap on flow speed of material.
 See network as a bundle of virtual vessels:

http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.uvm.edu/~pdodds/research/papers/others/everything/dodds2010a.pdf
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Geometric argument

.

.

 Q: how does the number of sustainable sinksԃsinks scale with volume � for the most efficient
network design?

 Or: what is the highest ᅦ for ԃsinks ∝ � ᆐ?

http://www.uvm.edu
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Geometric argument
.

.

 Allometrically growing regions:

Ω Ω L’2

L 1 L’

2L

1

(V)
(V’)

 Have � length scales which scale asԁ� ∝ � ᆒ� where ᅨ1 + ᅨ2 + … + ᅨ� = 1.
 For isometric growth, ᅨ� = 1/�.
 For allometric growth, we must have at least two

of the {ᅨ�} being different

http://www.uvm.edu
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.
Spherical cows and pancake cows:
..

.
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.
Spherical cows and pancake cows:
..

.

 Question: How does the surface area Ԉcow of our
two types of cows scale with cow volume �cow?
Insert question from assignment 3

 Question: For general families of regions, how
does surface area Ԉ scale with volume � ? Insert
question from assignment 3

http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.uvm.edu/~pdodds/teaching/courses/2016-01UVM-303/docs/{2016-01UVM-303}assignment3.pdf
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Geometric argument

.

.

 Best and worst configurations (Banavar et al.)

a b

 Rather obviously:
min�net ∝ ∑ distances from source to sinks.
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Minimal network volume:

.
Real supply networks are close to optimal:
..

.

(a) (b) (c) (d)

Figure 1. (a) Commuter rail network in the Boston area. The arrow marks
the assumed root of the network. (b) Star graph. (c) Minimum spanning tree.
(d) The model of equation (3) applied to the same set of stations.

Gastner and Newman (2006): “Shape and efficiency in
spatial distribution networks” [15]

http://www.uvm.edu
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Rules for Biologically Inspired
Adaptive Network Design
Atsushi Tero,1,2 Seiji Takagi,1 Tetsu Saigusa,3 Kentaro Ito,1 Dan P. Bebber,4 Mark D. Fricker,4

Kenji Yumiki,5 Ryo Kobayashi,5,6 Toshiyuki Nakagaki1,6*

Transport networks are ubiquitous in both social and biological systems. Robust network performance

involves a complex trade-off involving cost, transport efficiency, and fault tolerance. Biological

networks have been honed by many cycles of evolutionary selection pressure and are likely to yield

reasonable solutions to such combinatorial optimization problems. Furthermore, they develop without

centralized control and may represent a readily scalable solution for growing networks in general. We

show that the slime mold Physarum polycephalum forms networks with comparable efficiency, fault

tolerance, and cost to those of real-world infrastructure networks—in this case, the Tokyo rail system.

The core mechanisms needed for adaptive network formation can be captured in a biologically

inspired mathematical model that may be useful to guide network construction in other domains.

T
ransport networks are a critical part of the

infrastructure needed to operate a modern

industrial society and facilitate efficient

movement of people, resources, energy, and

information. Despite their importance, most net-

works have emerged without clear global design

principles and are constrained by the priorities

imposed at their initiation. Thus, the main motiva-

tion historically was to achieve high transport

efficiency at reasonable cost, but with correspond-

ingly less emphasis on making systems tolerant to

interruption or failure. Introducing robustness

inevitably requires additional redundant pathways

that are not cost-effective in the short term. In recent

years, the spectacular failure of key infrastructure

such as power grids (1, 2), financial systems (3, 4),

airline baggage-handling systems (5), and railway

networks(6),aswellasthepredictedvulnerabilityof

systems such as information networks (7) or supply

networks (8) to attack, have highlighted the need to

develop networks with greater intrinsic resilience.

Some organisms grow in the form of an inter-

connected network as part of their normal forag-

ing strategy to discover and exploit new resources

(9–12). Such systems continuously adapt to their

environment and must balance the cost of produc-

ing an efficient network with the consequences of

even limited failure in a competitive world. Unlike

anthropogenic infrastructure systems, these biolog-

ical networks have been subjected to successive

rounds of evolutionary selection and are likely to

have reached a point at which cost, efficiency, and

resilience are appropriately balanced. Drawing in-

spiration from biology has led to useful approaches

to problem-solving such as neural networks, ge-

netic algorithms, and efficient search routines de-

veloped from ant colony optimization algorithms

(13). We exploited the slime mold Physarum

polycephalum to develop a biologically inspired

model for adaptive network development.

Physarum is a large, single-celled amoeboid

organism that forages for patchily distributed

food sources. The individual plasmodium ini-

tially explores with a relatively contiguous for-

aging margin to maximize the area searched.

However, behind the margin, this is resolved into

a tubular network linking the discovered food

sources through direct connections, additional in-

termediate junctions (Steiner points) that reduce

the overall length of the connecting network,

and the formation of occasional cross-links that

improve overall transport efficiency and resil-

ience (11, 12). The growth of the plasmodium is

influenced by the characteristics of the sub-

strate (14) and can be constrained by physical

barriers (15) or influenced by the light regime

(16), facilitating experimental investigation of

the rules underlying network formation. Thus,

for example, Physarum can find the shortest

path through a maze (15–17) or connect dif-

ferent arrays of food sources in an efficient

manner with low total length (TL) yet short

averageminimum distance (MD) between pairs

of food sources (FSs), with a high degree of

fault tolerance (FT) to accidental disconnection

(11, 18, 19). Capturing the essence of this sys-

tem in simple rules might be useful in guiding

the development of decentralized networks in

other domains.

We observed Physarum connecting a template

of 36 FSs that represented geographical locations

of cities in the Tokyo area, and compared the result

with the actual rail network in Japan. The

Physarum plasmodium was allowed to grow from

Tokyo and initially filled much of the available

land space, but then concentrated on FSs by

thinning out the network to leave a subset of larger,

interconnecting tubes (Fig. 1). An alternative

protocol, in which the plasmodium was allowed

to extend fully in the available space and the FSs

were then presented simultaneously, yielded sim-

ilar results. To complete the network formation, we

allowed any excess volume of plasmodium to

1Research Institute for Electronic Science, Hokkaido University,
Sapporo 060-0812, Japan. 2PRESTO, JST, 4-1-8 Honcho,
Kawaguchi, Saitama, Japan. 3Graduate School of Engineering,
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Plant Sciences, University of Oxford, Oxford OX1 3RB, UK.
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“Rules for Biologically Inspired Adaptive
Network Design”
Tero et al.,
Science, 327, 439-442, 2010. [42]

Urban deslime in action:
https://www.youtube.com/watch?v=GwKuFREOgmo
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Minimal network volume:
.
We add one more element:..

.

2rsink2rsource

ℓ

 Vessel cross-sectional area may vary with distance
from the source.

 Flow rate increases as cross-sectional area
decreases.

 e.g., a collection network may have vessels
tapering as they approach the central sink.

 Find that vessel volume � must scale with vessel
length ℓ to affect overall system scalings.

http://www.uvm.edu
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Minimal network volume:

.
Effecting scaling:
..

.

2rsink2rsource

ℓ

 Consider vessel radius � ∝ �ℓ + 1)−�, tapering from� = �max where � ≥ 0.
 Gives � ∝ ℓ1−2� if � < 1/2
 Gives � ∝ 1 − ℓ−�2�−1) → 1 for large ℓ if � > 1/2
 Previously, we looked at � = 0 only.

http://www.uvm.edu
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.
Minimal network volume:..

.

For 0 ≤ � < 1/2, approximate network volume by
integral over region:

min�net ∝ ∫Ω�,��� ) � || ⃗�||1−2�d ⃗�
Insert question , assignment 3 <2->∝ �� 1+ᆒmax�1−2�) where ᅨmax = max� ᅨ�.
For � > 1/2, find simply that

min�net ∝ ��
 So if supply lines can taper fast enough and

without limit, minimum network volume can be
made negligible.

http://www.uvm.edu
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.
For 0 ≤ � < 1/2:
..

.

 min�net ∝ �� 1+ᆒmax�1−2�)
 If scaling is isometric, we have ᅨmax = 1/�:

min�net/iso ∝ �� 1+�1−2�)/�
 If scaling is allometric, we have ᅨmax = ᅨallo > 1/�:

and
min�net/allo ∝ �� 1+�1−2�)ᆒallo

 Isometrically growing volumes require less
network volume than allometrically growing
volumes:

min�net/iso
min�net/allo

→ 0 as � → ∞
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.
For � > 1/2:
..

.

 min�net ∝ ��
 Network volume scaling is now independent of

overall shape scaling.

.
Limits to scaling
..

.

 Can argue that � must effectively be 0 for real
networks over large enough scales.

 Limit to how fast material can move, and how
small material packages can be.

 e.g., blood velocity and blood cell size.
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Blood networks

.

.

 Velocity at capillaries and aorta approximately
constant across body size [44]: � = 0.

 Material costly ⇒ expect lower optimal bound of�net ∝ �� ��+1)/� to be followed closely.
 For cardiovascular networks, � = ӹ = 3.
 Blood volume scales linearly with body volume [40],�net ∝ � .
 Sink density must ∴ decrease as volume increases:� ∝ � −1/�.
 Density of suppliable sinks decreases with

organism size.
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Blood networks

.

.

 Then � , the rate of overall energy use in Ω, can at
most scale with volume as� ∝ �� ∝ � Ԃ ∝ Ԃ ��−1)/�

 For � = 3 dimensional organisms, we have� ∝ Ԃ 2/3
 Including other constraints may raise scaling

exponent to a higher, less efficient value.
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.

.

 Exciting bonus: Scaling obtained by the supply
network story and the surface-area law only
match for isometrically growing shapes.
Insert question from assignment 3
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Recall:

.

.

 The exponent ᅦ = 2/3 works for all birds and
mammals up to 10–30 kg

 For mammals > 10–30 kg, maybe we have a new
scaling regime

 Economos: limb length break in scaling around 20
kg

 White and Seymour, 2005: unhappy with large
herbivore measurements. Find ᅦ ≃ 0.686 ± 0.014
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Prefactor:
.
Stefan-Boltzmann law:
..

.


dӺ
d� = �Ԉԉ 4

where Ԉ is surface and ԉ is temperature.
 Very rough estimate of prefactor based on scaling

of normal mammalian body temperature and
surface area Ԉ:ӷ ≃ 105Ԃ2/3erg/sec.

 Measured for Ԃ ≤ 10 kg:ӷ = 2.57 × 105Ԃ2/3erg/sec.
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.
River networks..

.

 View river networks as collection networks.
 Many sources and one sink.
 �?
 Assume � is constant over time and � = 0:�net ∝ �� ��+1)/� = constant × � 3/2
 Network volume grows faster than basin ‘volume’

(really area).
 It’s all okay:

Landscapes are �=2 surfaces living in ӹ=3
dimensions.

 Streams can grow not just in width but in depth...
 If � > 0, �net will grow more slowly but 3/2 appears

to be confirmed from real data.
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.
Hack’s law..

.

 Volume of water in river network can be
calculated by adding up basin areas

 Flows sum in such a way that�net = ∑
all pixels

�pixel �
 Hack’s law again: ℓ ∼ � ℎ
 Can argue �net ∝ � 1+ℎ

basin = �1+ℎ
basin

where ℎ is Hack’s exponent.
 ∴ minimal volume calculations givesℎ = 1/2

http://www.uvm.edu
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Real data:

.

.

 Banavar et al.’s
approach [1] is
okay because �
really is constant.

 The irony: shows
optimal basins
are isometric

 Optimal Hack’s
law: ℓ ∼ �ℎ withℎ = 1/2

 (Zzzzz)
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Even better—prefactors match up:
.

.

6 7 8 9 10 11 12 13
8

9

10

11

12

13

14

15

16

17

18

19

20

log
10

 area a [m2]

lo
g 10

 w
at

er
 v

ol
um

e V
 [m

3 ]

 

 

Amazon
Mississippi
Congo
Nile

http://www.uvm.edu
http://www.uvm.edu/~pdodds


COcoNuTS

Metabolism and
Truthicide

Death by
fractions

Measuring
allometric
exponents

River networks

Earlier theories

Geometric
argument
Real networks

Conclusion

References

.....
.
....
.
....
.
89 of 108

The Cabal strikes back:

.

.

 Banavar et al., 2010, PNAS:
“A general basis for quarter-power scaling in
animals.” [2]

 “It has been known for decades that the metabolic
rate of animals scales with body mass with an
exponent that is almost always < 1, > 2/3, and
often very close to 3/4.”

 Cough, cough, cough, hack, wheeze, cough.
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Stories—Darth Quarter:
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.
Some people understand it’s truly a disaster:
..

.
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The unnecessary bafflement continues:

.
“Testing the metabolic theory of ecology” [33]
..

.

C. Price, J. S. Weitz, V. Savage, J. Stegen, A. Clarke, D.
Coomes, P. S. Dodds, R. Etienne, A. Kerkhoff, K.
McCulloh, K. Niklas, H. Olff, and N. Swenson
Ecology Letters, 15, 1465–1474, 2012.
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Artisanal, handcrafted silliness:
.
“Critical truths about power laws” [41]
Stumpf and Porter, Science, 2012
..

.
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How good is your power law? The chart refl ects 
the level of statistical support—as measured in ( 16, 
 21)—and our opinion about the mechanistic sophis-
tication underlying hypothetical generative models 
for various reported power laws. Some relation-
ships are identifi ed by name; the others refl ect the 
general characteristics of a wide range of reported 
power laws. Allometric scaling stands out from the 
other power laws reported for complex systems.

 Call generalization of Central Limit Theorem,
stable distributions. Also: PLIPLO action.

 Summary: Wow.
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Conclusion
.

.

 Supply network story consistent with dimensional
analysis.

 Isometrically growing regions can be more efficiently
supplied than allometrically growing ones.

 Ambient and region dimensions matter
(� = � versus � > �).

 Deviations from optimal scaling suggest inefficiency
(e.g., gravity for organisms, geological boundaries).

 Actual details of branching networks not that
important.

 Exact nature of self-similarity varies.

 2/3-scaling lives on, largely in hiding.

 3/4-scaling? Jury ruled a mistrial.

 The truth will out. Maybe.
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