Generating Functions and Networks

Complex Networks | @networksvox CSYS/MATH 303, Spring, 2016

Prof. Peter Dodds | @peterdodds

Dept. of Mathematics & Statistics | Vermont Complex Systems Center Vermont Advanced Computing Core | University of Vermont

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

COcoNuTS

Generating Functions

Definitions

Giant Componi Condition

Component sizes

Size of the Gia

Average Component Size

These slides are brought to you by:

COCONUTS

Generating

Basic Properties Giant Component Component sizes

Useful results Size of the Giant Component Average Component Size

Outline

COcoNuTS

Generating Functions

Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant Component
Average Component Size

References

Generating Functions

Basic Properties
Giant Componer

Component sizes

Size of the Giant Component

Average Component Size

COcoNuTS

Generating **Functions**

Basic Properties Giant Component Condition Component sizes

Useful results Size of the Giant Component

Average Component Size

Outline

Generating Functions Definitions

COCONUTS

Generating

Definitions

Basic Properties Giant Component Component sizes

Useful results Component

Average Component Size

A Idea: Given a sequence a_0, a_1, a_2, \dots , associate each element with a distinct function or other mathematical object.

COCONUTS

Generating

Definitions

Basic Properties

Useful results Component

Average Component Size

Idea: Given a sequence $a_0, a_1, a_2, ...$, associate each element with a distinct function or other mathematical object.

Well-chosen functions allow us to manipulate sequences and retrieve sequence elements.

COcoNuTS

Generating Functions

Definitions

Giant Componer Condition

Useful results

Component
Average Component Size

- Idea: Given a sequence $a_0, a_1, a_2, ...$, associate each element with a distinct function or other mathematical object.
- Well-chosen functions allow us to manipulate sequences and retrieve sequence elements.

Definition:

The generating function (g.f.) for a sequence $\{a_n\}$ is

$$F(x) = \sum_{n=0}^{\infty} a_n x^n.$$

Roughly: transforms a vector in R^{∞} into a function defined on R^1 .

Related to Fourier, Laplace, Mellin,

Generating Functions Definitions

Definitions

Giant Compon Condition

Useful results

Component

Average Component Size

- Idea: Given a sequence $a_0, a_1, a_2, ...$, associate each element with a distinct function or other mathematical object.
- Well-chosen functions allow us to manipulate sequences and retrieve sequence elements.

Definition:

The generating function (g.f.) for a sequence $\{a_n\}$ is

$$F(x) = \sum_{n=0}^{\infty} a_n x^n.$$

Roughly: transforms a vector in R^{∞} into a function defined on R^1 .

Related to Fourier, Laplace, Mellin, ..

Definitions

Giant Compone Condition

Useful results

Component
Average Component Size

- Idea: Given a sequence $a_0, a_1, a_2, ...$, associate each element with a distinct function or other mathematical object.
- Well-chosen functions allow us to manipulate sequences and retrieve sequence elements.

Definition:

The generating function (g.f.) for a sequence $\{a_n\}$ is

$$F(x) = \sum_{n=0}^{\infty} a_n x^n.$$

- Roughly: transforms a vector in R^{∞} into a function defined on R^1 .
- 🙈 Related to Fourier, Laplace, Mellin, ...

Basic Propert Giant Compo

Component siz

Size of the Gia

References

Average Component Size

Rolling dice and flipping coins:

$$p_k^{(2)} = \mathbf{Pr}(\mathsf{throwing}\;\mathsf{a}\;k) = 1/6\;\mathsf{where}\;k = 1, 2, \dots, 6.$$

$$F^{(\bigodot)}(x) = \sum_{k=1}^6 p_k^{(\bigodot)} x^k = \frac{1}{6} (x + x^2 + x^3 + x^4 + x^5 + x^6).$$

$$p_0^{\text{(coin)}} = \mathbf{Pr}(\text{head}) = 1/2, p_1^{\text{(coin)}} = \mathbf{Pr}(\text{tail}) = 1/2$$

$$F^{(\text{coin})}(x) = p_0^{(\text{coin})} x^0 + p_1^{(\text{coin})} x^1 = \frac{1}{2} (1+x)$$

A generating function for a probability distribution is called a Probability Generating Function (p.g.f.).

We'll come back to these simple examples as we derive various delicious properties of generating functions.

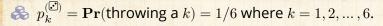
Generating Functions Definitions

Basic Properties

Giant Component
Condition
Component sizes

Size of the Giant Component Average Component Size

Rolling dice and flipping coins:



$$F^{(\bigodot)}(x) = \sum_{k=1}^6 p_k^{(\bigodot)} x^k = \frac{1}{6} (x + x^2 + x^3 + x^4 + x^5 + x^6).$$

$$p_0^{\text{(coin)}} = \mathbf{Pr}(\text{head}) = 1/2$$
, $p_1^{\text{(coin)}} = \mathbf{Pr}(\text{tail}) = 1/2$.

$$F^{\text{(coin)}}(x) = p_0^{\text{(coin)}} x^0 + p_1^{\text{(coin)}} x^1 = \frac{1}{2} (1+x).$$

A generating function for a probability distribution is called a Probability Generating Function (p.g.f.).

We'll come back to these simple examples as we derive various delicious properties of generating

Generating Functions Definitions

Definitions Basic Properties

Giant Component Condition Component sizes

Useful results
Size of the Giant
Component
Average Component Size

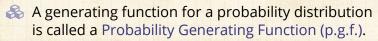
Rolling dice and flipping coins:

$$p_k^{(\bigodot)} = \mathbf{Pr}(\mathsf{throwing}\;\mathsf{a}\;k) = 1/6\;\mathsf{where}\;k = 1, 2, \dots, 6.$$

$$F^{(\bigodot)}(x) = \sum_{k=1}^6 p_k^{(\bigodot)} x^k = \frac{1}{6} (x + x^2 + x^3 + x^4 + x^5 + x^6).$$

$$p_0^{\text{(coin)}} = \mathbf{Pr}(\text{head}) = 1/2, p_1^{\text{(coin)}} = \mathbf{Pr}(\text{tail}) = 1/2.$$

$$F^{\text{(coin)}}(x) = p_0^{\text{(coin)}} x^0 + p_1^{\text{(coin)}} x^1 = \frac{1}{2} (1+x).$$



We'll come back to these simple examples as we derive various delicious properties of generating functions

Generating Functions Definitions Basic Properties

Giant Component
Condition
Component sizes
Useful results

Size of the Giant Component Average Component Size

Rolling dice and flipping coins:

$$p_k^{(\bigodot)} = \mathbf{Pr}(\mathsf{throwing}\;\mathsf{a}\;k) = 1/6\;\mathsf{where}\;k = 1, 2, \dots, 6.$$

$$F^{(\bigodot)}(x) = \sum_{k=1}^6 p_k^{(\bigodot)} x^k = \frac{1}{6} (x + x^2 + x^3 + x^4 + x^5 + x^6).$$

$$p_0^{(\text{coin})} = \mathbf{Pr}(\text{head}) = 1/2, p_1^{(\text{coin})} = \mathbf{Pr}(\text{tail}) = 1/2.$$

$$F^{\text{(coin)}}(x) = p_0^{\text{(coin)}} x^0 + p_1^{\text{(coin)}} x^1 = \frac{1}{2} (1+x).$$

- A generating function for a probability distribution is called a Probability Generating Function (p.g.f.).
- We'll come back to these simple examples as we derive various delicious properties of generating functions.

Component sizes
Useful results

Component
Average Component Size

Take a degree distribution with exponential decay:

$$P_k = c e^{-\lambda k}$$

where geometric sumfully, we have $c=1-e^{-\lambda}$

Generating

Definitions

Basic Properties Giant Component Component sizes

Useful results Size of the Giant

Component Average Component Size

Take a degree distribution with exponential decay:

$$P_k = c e^{-\lambda \, k}$$

where geometric sumfully, we have $c=1-e^{-\lambda}$ The generating function for this distribution is

$$F(x) = \sum_{k=0}^{\infty} P_k x^k$$

Generating Definitions

Component sizes

Useful results Component Average Component Size

Take a degree distribution with exponential decay:

$$P_k = c e^{-\lambda \, k}$$

where geometric sumfully, we have $c = 1 - e^{-\lambda}$ The generating function for this distribution is

$$F(x) = \sum_{k=0}^{\infty} P_k x^k = \sum_{k=0}^{\infty} c e^{-\lambda k} x^k$$

Generating Definitions

Component sizes

Useful results Component

Average Component Size

Take a degree distribution with exponential decay:

$$P_k = c e^{-\lambda \, k}$$

where geometric sumfully, we have $c = 1 - e^{-\lambda}$ The generating function for this distribution is

$$F(x) = \sum_{k=0}^{\infty} P_k x^k = \sum_{k=0}^{\infty} c e^{-\lambda k} x^k = \frac{c}{1 - x e^{-\lambda}}.$$

Generating Definitions

Component sizes

Useful results Component

Average Component Size

Take a degree distribution with exponential decay:

$$P_k = c e^{-\lambda k}$$

where geometric sumfully, we have $c = 1 - e^{-\lambda}$ The generating function for this distribution is

$$F(x) = \sum_{k=0}^{\infty} P_k x^k = \sum_{k=0}^{\infty} c e^{-\lambda k} x^k = \frac{c}{1 - x e^{-\lambda}}.$$

Notice that $F(1) = c/(1-e^{-\lambda}) = 1$.

Generating Definitions

Component sizes Useful results

Average Component Size

Take a degree distribution with exponential decay:

$$P_k = ce^{-\lambda k}$$

where geometric sumfully, we have $c = 1 - e^{-\lambda}$ The generating function for this distribution is

$$F(x) = \sum_{k=0}^{\infty} P_k x^k = \sum_{k=0}^{\infty} c e^{-\lambda k} x^k = \frac{c}{1 - x e^{-\lambda}}.$$

Solution Notice that $F(1) = c/(1 - e^{-\lambda}) = 1$.

For probability distributions, we must always have F(1) = 1 since

$$F(1) = \sum_{k=0}^{\infty} P_k 1^k$$

Component sizes Useful results Size of the Giant

Average Component Size

Take a degree distribution with exponential decay:

$$P_k = ce^{-\lambda k}$$

where geometric sumfully, we have $c = 1 - e^{-\lambda}$ The generating function for this distribution is

$$F(x) = \sum_{k=0}^{\infty} P_k x^k = \sum_{k=0}^{\infty} c e^{-\lambda k} x^k = \frac{c}{1 - x e^{-\lambda}}.$$

Solution Notice that $F(1) = c/(1 - e^{-\lambda}) = 1$.

For probability distributions, we must always have F(1) = 1 since

$$F(1) = \sum_{k=0}^{\infty} P_k 1^k = \sum_{k=0}^{\infty} P_k$$

Component sizes

Useful results Size of the Giant

Average Component Size

Take a degree distribution with exponential decay:

$$P_k = ce^{-\lambda k}$$

where geometric sumfully, we have $c = 1 - e^{-\lambda}$ The generating function for this distribution is

$$F(x) = \sum_{k=0}^{\infty} P_k x^k = \sum_{k=0}^{\infty} c e^{-\lambda k} x^k = \frac{c}{1 - x e^{-\lambda}}.$$

Solution Notice that $F(1) = c/(1 - e^{-\lambda}) = 1$.

For probability distributions, we must always have F(1) = 1 since

$$F(1) = \sum_{k=0}^{\infty} P_k 1^k = \sum_{k=0}^{\infty} P_k = 1.$$

Check die and coin p.g.f.'s.

Generating Definitions

Component sizes

Useful results Size of the Giant

Average Component Size

Outline

Generating Functions

Definition

Basic Properties

Giant Component Condition Component sizes Usefull esuits Size of the Giant Componen

References

COcoNuTS *

Generating Functions

Definitions

Basic Properties

Condition

Component sizes

Useful results

Size of the Gi Component

Average Component Size

Properties:

Average degree:

$$\langle k \rangle = \sum_{k=0}^{\infty} k P_k$$

COcoNuTS

Generating

Basic Properties Giant Component

Component sizes Useful results

Size of the Giant Component Average Component Size

Properties:

Average degree:

$$\langle k \rangle = \sum_{k=0}^{\infty} k P_k = \sum_{k=0}^{\infty} k P_k x^{k-1} \bigg|_{x=1}$$

COCONUTS

Generating

Basic Properties Giant Component

Component sizes

Useful results

Component Average Component Size

Average degree:

$$\begin{split} \langle k \rangle &= \sum_{k=0}^{\infty} k P_k = \sum_{k=0}^{\infty} k P_k x^{k-1} \bigg|_{x=1} \\ &= \left. \frac{\mathrm{d}}{\mathrm{d}x} F(x) \right|_{x=1} \end{split}$$

Generating

Basic Properties

Giant Component

Component sizes

Useful results

Size of the Giant Component

Average Component Size

Average degree:

$$\begin{split} \langle k \rangle &= \sum_{k=0}^{\infty} k P_k = \left. \sum_{k=0}^{\infty} k P_k x^{k-1} \right|_{x=1} \\ &= \left. \frac{\mathrm{d}}{\mathrm{d}x} F(x) \right|_{x=1} = F'(1) \end{split}$$

Generating

Basic Properties

Giant Component

Component sizes

Useful results

Component

Average Component Size

Average degree:

$$\begin{split} \langle k \rangle &= \sum_{k=0}^{\infty} k P_k = \left. \sum_{k=0}^{\infty} k P_k x^{k-1} \right|_{x=1} \\ &= \left. \frac{\mathrm{d}}{\mathrm{d}x} F(x) \right|_{x=1} = F'(1) \end{split}$$

In general, many calculations become simple, if a little abstract.

Generating

Basic Properties

Component sizes

Useful results

Component Average Component Size

Properties:

🙈 Average degree:

$$\begin{split} \langle k \rangle &= \sum_{k=0}^{\infty} k P_k = \sum_{k=0}^{\infty} k P_k x^{k-1} \Bigg|_{x=1} \\ &= \frac{\mathrm{d}}{\mathrm{d}x} F(x) \Bigg|_{x=1} = F'(1) \end{split}$$

- In general, many calculations become simple, if a little abstract.
- For our exponential example:

$$F'(x) = \frac{(1 - e^{-\lambda})e^{-\lambda}}{(1 - xe^{-\lambda})^2}.$$

Basic Properties

Condition

Component sizes

Size of the Giant

Average Component Size

Generating

Basic Properties
Giant Component
Condition
Component sizes

Average Component Size

Properties:

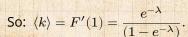
3

🙈 Average degree:

$$\begin{split} \langle k \rangle &= \sum_{k=0}^{\infty} k P_k = \sum_{k=0}^{\infty} k P_k x^{k-1} \Bigg|_{x=1} \\ &= \left. \frac{\mathrm{d}}{\mathrm{d}x} F(x) \right|_{x=1} = F'(1) \end{split}$$

- In general, many calculations become simple, if a little abstract.
- For our exponential example:

$$F'(x) = \frac{(1 - e^{-\lambda})e^{-\lambda}}{(1 - xe^{-\lambda})^2}.$$



A CITY OF THE COST OFFICE

🙈 Average degree:

$$\begin{split} \langle k \rangle &= \sum_{k=0}^{\infty} k P_k = \sum_{k=0}^{\infty} k P_k x^{k-1} \Bigg|_{x=1} \\ &= \left. \frac{\mathrm{d}}{\mathrm{d}x} F(x) \right|_{x=1} = F'(1) \end{split}$$

- In general, many calculations become simple, if a little abstract.
- For our exponential example:

$$F'(x) = \frac{(1 - e^{-\lambda})e^{-\lambda}}{(1 - xe^{-\lambda})^2}.$$

So:
$$\langle k \rangle = F'(1) = \frac{e^{-\lambda}}{(1-e^{-\lambda})}$$
.

Check for die and coin p.g.f.'s.

Basic Properties

Condition

Component sizes

Useful results Size of the Gia

Component
Average Component Size

Normalization:

F(1) =

First moment:

 $\langle k \rangle = F'(1$

Higher moments.

 $\left(x\frac{\mathrm{d}}{\mathrm{d}x}\right)^nP(x)$

kth element of sequence (general):

 $P_k = \frac{1}{k!} \frac{\mathsf{d}^k}{\mathsf{d}x^k} F(x)$

COcoNuTS

Generating Functions Definitions

Definitions

Basic Properties

Giant Component Condition

Component sizes
Useful results
Size of the Giant

Component
Average Component Size

Normalization:

$$F(1) = 1$$

$$\langle k \rangle = F'(1)$$

$$\left(x\frac{\mathsf{d}}{\mathsf{d}x}\right)^n F(x)$$

$$P_k = \frac{1}{k!} \frac{d^k}{dx^k} F(x)$$

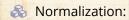
Generating

Basic Properties

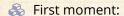
Giant Component

Component sizes Useful results Size of the Giant

Component Average Component Size



$$F(1) = 1$$



$$\langle k \rangle = F'(1)$$

$$\left(x\frac{\mathrm{d}}{\mathrm{d}x}\right)^n F(x)$$

$$\frac{1}{k!} = \frac{1}{k!} \frac{\mathsf{d}^k}{\mathsf{d}x^k} F(x)$$

Generating

Basic Properties Giant Component

Component sizes

Useful results

Size of the Giant Component Average Component Size

Normalization:

$$F(1) = 1$$

First moment:

$$\langle k \rangle = F'(1)$$

A Higher moments:

$$\langle k^n \rangle = \left(x \frac{\mathsf{d}}{\mathsf{d}x} \right)^n F(x) \bigg|_{x=0}^n$$

$$\frac{1}{k!}\frac{\mathrm{d}^k}{\mathrm{d}x^k}F(x)$$

Generating

Basic Properties

Component sizes

Useful results

Size of the Giant Component

Average Component Size

Normalization:

$$F(1) = 1$$

First moment:

$$\langle k \rangle = F'(1)$$

A Higher moments:

$$\langle k^n \rangle = \left. \left(x \frac{\mathrm{d}}{\mathrm{d}x} \right)^n F(x)
ight|_{x=1}$$

& kth element of sequence (general):

$$P_k = \frac{1}{k!} \frac{\mathrm{d}^k}{\mathrm{d}x^k} F(x) \Bigg|_{x=0}$$

Generating Functions Definitions

Basic Properties

Giant Compo

Condition

Component sizes

Size of the Gia

Component
Average Component Size

The generating function for the sum of two random variables

$$W = U + V$$

is

$$F_W(x) = F_U(x)F_V(x).$$

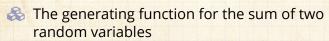
Generating

Basic Properties

Component sizes

Useful results Size of the Giant

Average Component Size



$$W = U + V$$

is

$$F_W(x) = F_U(x)F_V(x).$$

Convolve yourself with Convolutions:
Insert question from assignment 5 ...

Generating Functions

Basic Properties

Condition

Component sizes

Useful results

Component
Average Component Size

The generating function for the sum of two random variables

$$W = U + V$$

is

$$F_W(x) = F_U(x)F_V(x).$$

- Convolve yourself with Convolutions: Insert question from assignment 5 .
- Try with die and coin p.g.f.'s.
 - 1. Add two coins (tail=0, head=1)
 - 2. Add two dice
 - 3. Add a coin flip to one die roll

Generating Functions

Definitions Basic Properties

Giant Comp

Condition

Component

Useful results

Component
Average Component Size

The generating function for the sum of two random variables

$$W = U + V$$

is

$$F_W(x) = F_U(x)F_V(x).$$

- Convolve yourself with Convolutions: Insert question from assignment 5 .
- Try with die and coin p.g.f.'s.
 - 1. Add two coins (tail=0, head=1).
 - 2. Add two dice.
 - 3. Add a coin flip to one die roll

Generating Functions

Basic Properties

Giant Comp

Condition

Condition

Useful results

Component
Average Component Size

The generating function for the sum of two random variables

$$W = U + V$$

is

$$F_W(x) = F_U(x)F_V(x).$$

- Convolve yourself with Convolutions: Insert question from assignment 5 .
- Try with die and coin p.g.f.'s.
 - 1. Add two coins (tail=0, head=1).
 - 2. Add two dice.

Add a coin flip to one die roll.

Generating Functions

Basic Properties

Giant Comp

Condition

Component

Useful results

Component

Average Component Size

The generating function for the sum of two random variables

$$W = U + V$$

is

$$F_W(x) = F_U(x)F_V(x).$$

- Convolve yourself with Convolutions: Insert question from assignment 5 .
- Try with die and coin p.g.f.'s.
 - 1. Add two coins (tail=0, head=1).
 - 2. Add two dice.
 - 3. Add a coin flip to one die roll.

Generating Functions

Definitions

Basic Properties

Giant Comr

Condition

Component

Useful results

Average Component Size

Outline

Generating Functions

Definitions
Basic Propertie

Giant Component Condition

Component sizes
Usefull esults
Size of the Giant Component
Average Component Size

References

COcoNuTS *

Generating Functions

efinitions

Basic Properties
Giant Component
Condition

Condition Component sizes

Useful results
Size of the Giant
Component

Average Component Size

COCONUTS

Recall our condition for a giant component:

$$\langle k \rangle_R = \frac{\langle k^2 \rangle - \langle k \rangle}{\langle k \rangle} > 1.$$

Generating

Giant Component Condition

Component sizes Useful results

Component Average Component Size

COCONUTS

Recall our condition for a giant component:

$$\langle k \rangle_R = \frac{\langle k^2 \rangle - \langle k \rangle}{\langle k \rangle} > 1.$$

Let's re-express our condition in terms of generating functions.

Generating

Giant Component Condition

Component sizes Useful results

Component Average Component Size

Recall our condition for a giant component:

$$\langle k \rangle_R = \frac{\langle k^2 \rangle - \langle k \rangle}{\langle k \rangle} > 1.$$

- Let's re-express our condition in terms of generating functions.
- \mathbb{R} We first need the g.f. for \mathbb{R}_k .

COCONUTS

Generating

Giant Component

Condition Component sizes Useful results

Average Component Size

Recall our condition for a giant component:

$$\langle k \rangle_R = \frac{\langle k^2 \rangle - \langle k \rangle}{\langle k \rangle} > 1.$$

- Let's re-express our condition in terms of generating functions.
- \mathbb{R} We first need the g.f. for \mathbb{R}_k .
- We'll now use this notation:

COCONUTS

Generating

Giant Component

Condition Useful results

Average Component Size

Recall our condition for a giant component:

$$\langle k \rangle_R = \frac{\langle k^2 \rangle - \langle k \rangle}{\langle k \rangle} > 1.$$

- Let's re-express our condition in terms of generating functions.
- \mathbb{R} We first need the g.f. for \mathbb{R}_k .
- We'll now use this notation: $F_{\mathcal{P}}(x)$ is the g.f. for $P_{\mathcal{P}}$.

COCONUTS

Generating

Giant Component

Condition Useful results

Average Component Size

Recall our condition for a giant component:

$$\langle k \rangle_R = \frac{\langle k^2 \rangle - \langle k \rangle}{\langle k \rangle} > 1.$$

- Let's re-express our condition in terms of generating functions.
- \mathbb{R} We first need the g.f. for \mathbb{R}_k .
- We'll now use this notation:

 $F_{\mathcal{P}}(x)$ is the g.f. for $P_{\mathcal{P}}$. $F_R(x)$ is the g.f. for R_k .

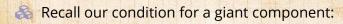
COCONUTS

Generating

Giant Component Condition

Useful results

Average Component Size



$$\langle k \rangle_R = \frac{\langle k^2 \rangle - \langle k \rangle}{\langle k \rangle} > 1.$$

- Let's re-express our condition in terms of generating functions.
- & We first need the g.f. for R_k .
- We'll now use this notation:

$$\frac{F_P(x)}{F_R(x)}$$
 is the g.f. for $\frac{P_k}{R_k}$.

Giant component condition in terms of g.f. is:

$$\langle k \rangle_R = F_R'(1) > 1.$$

Generating Functions

Basic Properties Giant Component Condition

Useful results ... Size of the Giant

Average Component Size

COCONUTS

Edge-degree distribution

Recall our condition for a giant component:

$$\langle k \rangle_R = \frac{\langle k^2 \rangle - \langle k \rangle}{\langle k \rangle} > 1.$$

- Let's re-express our condition in terms of generating functions.
- & We first need the g.f. for R_k .
- We'll now use this notation:

$$\frac{F_P(x)}{F_R(x)}$$
 is the g.f. for $\frac{P_k}{R_k}$.

Giant component condition in terms of g.f. is:

$$\langle k \rangle_R = F_R'(1) > 1.$$

& Now find how F_R is related to F_P ...

Generating Functions

Basic Properties
Giant Component
Condition

Useful results
Size of the Giant

Average Component Size

We have

$$F_R(x) = \sum_{k=0}^{\infty} R_k x^k$$

COCONUTS

Generating

Basic Properties Giant Component Condition

Component sizes Useful results

Size of the Giant Component Average Component Size

We have

$$F_R(x) = \sum_{k=0}^{\infty} \frac{R_k}{k} x^k = \sum_{k=0}^{\infty} \frac{(k+1)P_{k+1}}{\langle k \rangle} x^k.$$

COCONUTS

Generating

Basic Properties Giant Component Condition

Useful results

Size of the Giant Component Average Component Size

We have

$$F_R(x) = \sum_{k=0}^{\infty} \frac{R_k}{k} x^k = \sum_{k=0}^{\infty} \frac{(k+1)P_{k+1}}{\langle k \rangle} x^k.$$

Shift index to j = k + 1 and pull out $\frac{1}{\langle k \rangle}$:

COCONUTS

Generating

Giant Component Condition

Component sizes Useful results

Size of the Giant Component Average Component Size

We have

$$F_R(x) = \sum_{k=0}^{\infty} \frac{R_k}{k} x^k = \sum_{k=0}^{\infty} \frac{(k+1)P_{k+1}}{\langle k \rangle} x^k.$$

Shift index to j = k + 1 and pull out $\frac{1}{\langle k \rangle}$:

$$F_R(x) = \frac{1}{\langle k \rangle} \sum_{j=1}^{\infty} j P_j x^{j-1}$$

COCONUTS

Generating

Giant Component Condition

Component sizes

Useful results Component

Average Component Size

We have

$$F_R(x) = \sum_{k=0}^{\infty} \frac{R_k}{k} x^k = \sum_{k=0}^{\infty} \frac{(k+1)P_{k+1}}{\langle k \rangle} x^k.$$

Shift index to j = k + 1 and pull out $\frac{1}{\langle k \rangle}$:

$$F_R(x) = \frac{1}{\langle k \rangle} \sum_{j=1}^{\infty} j P_j x^{j-1} = \frac{1}{\langle k \rangle} \sum_{j=1}^{\infty} P_j \frac{\mathrm{d}}{\mathrm{d}x} x^j$$

COCONUTS

Generating

Giant Component Condition

Component sizes Useful results

Component Average Component Size

We have

$$F_R(x) = \sum_{k=0}^{\infty} \frac{R_k x^k}{k} = \sum_{k=0}^{\infty} \frac{(k+1)P_{k+1}}{\langle k \rangle} x^k.$$

Shift index to j = k + 1 and pull out $\frac{1}{\langle k \rangle}$:

$$F_R(x) = \frac{1}{\langle k \rangle} \sum_{j=1}^{\infty} j P_j x^{j-1} = \frac{1}{\langle k \rangle} \sum_{j=1}^{\infty} P_j \frac{\mathrm{d}}{\mathrm{d}x} x^j$$

$$= \frac{1}{\langle k \rangle} \frac{\mathsf{d}}{\mathsf{d}x} \sum_{j=1}^{\infty} P_j x^j$$

COCONUTS

Generating

Giant Component Condition Component sizes

Useful results Component

Average Component Size

We have

$$F_R(x) = \sum_{k=0}^{\infty} \frac{R_k}{k} x^k = \sum_{k=0}^{\infty} \frac{(k+1)P_{k+1}}{\langle k \rangle} x^k.$$

Shift index to j = k + 1 and pull out $\frac{1}{\langle k \rangle}$:

$$F_R(x) = \frac{1}{\langle k \rangle} \sum_{j=1}^{\infty} j P_j x^{j-1} = \frac{1}{\langle k \rangle} \sum_{j=1}^{\infty} P_j \frac{\mathrm{d}}{\mathrm{d}x} x^j$$

$$= \frac{1}{\langle k \rangle} \frac{\mathrm{d}}{\mathrm{d}x} \sum_{j=1}^{\infty} P_j x^j = \frac{1}{\langle k \rangle} \frac{\mathrm{d}}{\mathrm{d}x} \left(F_P(x) - P_0 \right)$$

COCONUTS

Generating

Giant Component Condition

Component sizes Useful results

Component Average Component Size

We have

$$F_R(x) = \sum_{k=0}^{\infty} \frac{R_k}{k} x^k = \sum_{k=0}^{\infty} \frac{(k+1)P_{k+1}}{\langle k \rangle} x^k.$$

Shift index to j = k + 1 and pull out $\frac{1}{\langle k \rangle}$:

$$F_R(x) = \frac{1}{\langle k \rangle} \sum_{j=1}^{\infty} j P_j x^{j-1} = \frac{1}{\langle k \rangle} \sum_{j=1}^{\infty} P_j \frac{\mathrm{d}}{\mathrm{d} x} x^j$$

$$=\frac{1}{\langle k\rangle}\frac{\mathrm{d}}{\mathrm{d}x}\sum_{j=1}^{\infty}P_{j}x^{j}=\frac{1}{\langle k\rangle}\frac{\mathrm{d}}{\mathrm{d}x}\left(F_{P}(x)-P_{0}\right)=\frac{1}{\langle k\rangle}F_{P}'(x).$$

Generating

Giant Component Condition

Component sizes Useful results

Average Component Size

References

Component

We have

$$F_R(x) = \sum_{k=0}^{\infty} \frac{R_k}{k} x^k = \sum_{k=0}^{\infty} \frac{(k+1)P_{k+1}}{\langle k \rangle} x^k.$$

Shift index to j = k + 1 and pull out $\frac{1}{\langle k \rangle}$:

$$F_R(x) = \frac{1}{\langle k \rangle} \sum_{j=1}^{\infty} j P_j x^{j-1} = \frac{1}{\langle k \rangle} \sum_{j=1}^{\infty} P_j \frac{\mathrm{d}}{\mathrm{d} x} x^j$$

$$= \frac{1}{\langle k \rangle} \frac{\mathrm{d}}{\mathrm{d}x} \sum_{j=1}^{\infty} P_j x^j = \frac{1}{\langle k \rangle} \frac{\mathrm{d}}{\mathrm{d}x} \left(F_P(x) - P_0 \right) = \frac{1}{\langle k \rangle} F_P'(x).$$

Finally, since $\langle k \rangle = F_P'(1)$,

$$F_R(x) = \frac{F_P'(x)}{F_P'(1)}$$

Generating

Giant Component

Condition Component sizes

Useful results Size of the Giant

Average Component Size

COcoNuTS

Recall giant component condition is $\langle k \rangle_R = F_R'(1) > 1.$

Generating

Basic Properties Giant Component Condition Component sizes

Useful results Size of the Giant Component Average Component Size

- Recall giant component condition is $\langle k \rangle_R = F_R'(1) > 1$.
- Since we have $F_R(x) = F_P'(x)/F_P'(1)$,

Setting | | | 1, | our condition becomes

COcoNuTS -

Generating Functions

Definitions

Giant Component Condition

Useful results Size of the Giant

Component
Average Component Size

- Recall giant component condition is $\langle k \rangle_R = F_R'(1) > 1.$
- Since we have $F_R(x) = F_P'(x)/F_P'(1)$,

$$F'_R(x) = \frac{F''_P(x)}{F'_P(1)}$$

COCONUTS

Generating

Giant Component Condition Component sizes

Useful results Size of the Giant Component

Average Component Size

- Recall giant component condition is $\langle k \rangle_R = F_R'(1) > 1$.
- 3 Since we have $F_R(x) = F_P'(x)/F_P'(1)$,

$$F'_R(x) = \frac{F''_P(x)}{F'_P(1)}$$

Setting x = 1, our condition becomes

$$\frac{F_P''(1)}{F_P'(1)} > 1$$

COcoNuTS -

Generating Functions

Basic Properties
Giant Component
Condition
Component sizes

Useful results
Size of the Giant
Component
Average Component Size

Outline

Generating Functions

Definitions
Basic Properties
Giant Component Conditio
Component sizes

Size of the Giant Component Average Component Size

References

COcoNuTS

Generating
Functions
Definitions
Basic Properties
Giant Component

Component sizes

Size of the Giant Component Average Component Size

Generating Functions

Definitions Basic Properties

Giant Component Condition

Component sizes
Useful results

Size of the Giant Component Average Component Size

To figure out the size of the largest component (S_1) , we need more resolution on component sizes.

Definitions:

 $\Re \pi_n$ = probability that a random node belongs to a finite component of size $n < \infty$.

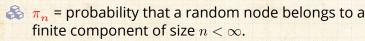
Generating

Component sizes Useful results Size of the Giant

Average Component Size

To figure out the size of the largest component (S_1) , we need more resolution on component sizes.

Definitions:



 $\underset{\rho_n}{\lozenge}$ = probability that a random end of a random link leads to a finite subcomponent of size $n < \infty$. Generating

Component sizes Size of the Giant

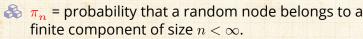
Average Component Size References

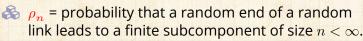
Generating

Size distributions

To figure out the size of the largest component (S_1) , we need more resolution on component sizes.

Definitions:





Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component

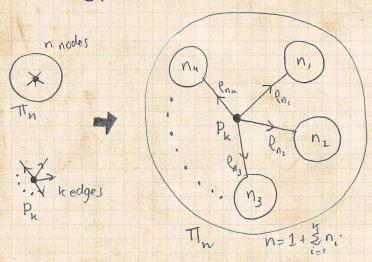
Average Component Size

References

Local-global connection:

$$P_k, R_k \Leftrightarrow \pi_n, \rho_n$$
 neighbors \Leftrightarrow components

Connecting probabilities:



Markov property of random networks connects π_n , ρ_n , and P_k .

COcoNuTS -

Generating Functions

Definitions

Basic Properties

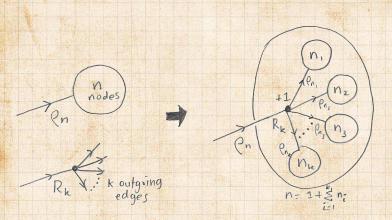
Giant Component

Condition

Component sizes
Useful results
Size of the Giant

Component
Average Component Size

Connecting probabilities:



 $\ref{eq:sphere:$

COcoNuTS -

Generating Functions

Definitions

Basic Properties

Giant Component

Condition

Component sizes
Useful results
Size of the Giant

Component
Average Component Size

G.f.'s for component size distributions:

$$F_{\pi}(x) = \sum_{n=0}^{\infty} \pi_n x^n$$
 and $F_{\rho}(x) = \sum_{n=0}^{\infty} \rho_n x^n$

COcoNuTS -

Generating Functions
Definitions
Basic Properties
Giant Component

Component sizes Useful results

Size of the Giant Component Average Component Size

$$F_{\pi}(x) = \sum_{n=0}^{\infty} \pi_n x^n \text{ and } F_{\rho}(x) = \sum_{n=0}^{\infty} \rho_n x^n$$

COCONUTS

Generating

Basic Properties

Giant Component

Component sizes Useful results

Size of the Giant Component Average Component Size

$$F_{\pi}(x) = \sum_{n=0}^{\infty} \pi_n x^n \text{ and } F_{\rho}(x) = \sum_{n=0}^{\infty} \rho_n x^n$$

The largest component:

 \Re Subtle key: $F_{\pi}(1)$ is the probability that a node belongs to a finite component.

COCONUTS

Generating

Component sizes

Useful results Size of the Giant Average Component Size

$$F_{\pi}(x) = \sum_{n=0}^{\infty} \pi_n x^n \text{ and } F_{\rho}(x) = \sum_{n=0}^{\infty} \rho_n x^n$$

The largest component:

Subtle key: $F_{\pi}(1)$ is the probability that a node belongs to a finite component.

 \Leftrightarrow Therefore: $S_1 = 1 - F_{\pi}(1)$.

COcoNuTS -

Generating Functions Definitions

Giant Component Condition Component sizes

Useful results
Size of the Giant
Component
Average Component Size

$$F_{\pi}(x) = \sum_{n=0}^{\infty} \pi_n x^n \text{ and } F_{\rho}(x) = \sum_{n=0}^{\infty} \rho_n x^n$$

The largest component:

- Subtle key: $F_{\pi}(1)$ is the probability that a node belongs to a finite component.
- \Leftrightarrow Therefore: $S_1 = 1 F_{\pi}(1)$.

Our mission, which we accept:

Determine and connect the four generating functions

$$F_P, F_R, F_{\pi}, \text{ and } F_{\rho}.$$

COcoNuTS -

Generating Functions Definitions

Basic Properties
Giant Component
Condition
Component sizes

Useful results
Size of the Giant
Component
Average Component Size

Outline

Generating Functions

Definitions
Basic Properties
Giant Component Condition
Component Sizes

Useful results

Size of the Giant Component Average Component Size

References

COcoNuTS *

Generating Functions

Basic Properties
Giant Component

Condition
Component sizes

Useful results Size of the Giant

Component

Average Component Size

Sneaky Result 1:

- Consider two random variables *U* and *V* whose values may be 0, 1, 2, ...
- Write probability distributions as U_k and V_k and g(f)'s as F_{m} and F_{k} .
- SR1: If a third random variable is defined as

 $V^{(i)}$ with each $V^{(i)} \stackrel{d}{=} V$

COcoNuTS -

Generating Functions

Basic Properties
Giant Compone
Condition

Condition
Component sizes
Useful results

Size of the Giant Component Average Component Size

Sneaky Result 1:

- \triangle Consider two random variables U and V whose values may be 0, 1, 2, ...

COCONUTS

Generating

Component sizes

Useful results Size of the Giant

Component Average Component Size

Sneaky Result 1:

- \triangle Consider two random variables U and V whose values may be $0, 1, 2, \dots$
- \triangle Write probability distributions as U_k and V_k and g.f.'s as F_U and F_V .

COCONUTS

Generating

Component sizes

Useful results Size of the Giant

Average Component Size

Sneaky Result 1:

- \Leftrightarrow Consider two random variables U and V whose values may be 0, 1, 2, ...
- \ref{Model} Write probability distributions as \ref{U}_k and \ref{V}_k and g.f.'s as F_U and F_V .
- SR1: If a third random variable is defined as

$$W = \sum_{i=1}^{U} V^{(i)}$$
 with each $V^{(i)} \stackrel{d}{=} V$

ther

COcoNuTS *

Generating Functions

Basic Properties'
Giant Component
Condition

Useful results
Size of the Giant
Component
Average Component Size

Sneaky Result 1:

- \Leftrightarrow Consider two random variables U and V whose values may be 0, 1, 2, ...
- \ref{Model} Write probability distributions as \ref{U}_k and \ref{V}_k and g.f.'s as F_U and F_V .
- SR1: If a third random variable is defined as

$$W = \sum_{i=1}^{U} V^{(i)}$$
 with each $V^{(i)} \stackrel{d}{=} V$

then

$$F_W(x) = F_U(F_V(x))$$

COcoNuTS -

Generating Functions

Definitions

Basic Properties

Giant Component

Condition

Useful results
Size of the Giant
Component
Average Component Size



COcoNuTS

Generating Functions

Basic Properties Giant Component Condition

Component sizes

Useful results Size of the Giant

Component Average Component Size

Generating Functions

efinitions

Basic Properties
Giant Component
Condition
Component sizes

Useful results

Size of the Giant Component

Average Component Size

$$W_k = \sum_{j=0}^{\infty} U_j \times \text{Pr(sum of } j \text{ draws of variable } V = k)$$

Generating

Component sizes Useful results Size of the Giant

Component Average Component Size

Write probability that variable W has value k as W_k .

$$W_k = \sum_{j=0}^{\infty} U_j imes ext{Pr(sum of } j ext{ draws of variable } V = k)$$

$$= \sum_{j=0}^{\infty} U_{j} \sum_{\substack{\{i_{1},i_{2},\ldots,i_{j}\}|\\i_{1}+i_{2}+\ldots+i_{j}=k}} V_{i_{1}}V_{i_{2}}\cdots V_{i_{j}}$$

Generating

Giant Component

Component sizes

Useful results Size of the Giant

Component

Average Component Size

Write probability that variable W has value k as W_k .

$$W_k = \sum_{j=0}^{\infty} U_j \times \text{Pr(sum of } j \text{ draws of variable } V = k)$$

$$= \sum_{j=0}^{\infty} U_{j} \sum_{\substack{\{i_{1},i_{2},\ldots,i_{j}\}|\\i_{1}+i_{2}+\ldots+i_{j}=k}} V_{i_{1}}V_{i_{2}}\cdots V_{i_{j}}$$

Generating Functions

Definitions

Basic Properties
Giant Componen
Condition

Component sizes

Useful results

Component
Average Component Size

Generating

Component sizes Useful results

Average Component Size

Proof of SR1:

Write probability that variable W has value k as W_k .

$$W_k = \sum_{j=0}^{\infty} U_j \times \text{Pr(sum of } j \text{ draws of variable } V = k)$$

$$= \sum_{j=0}^{\infty} U_j \sum_{\stackrel{\{i_1,i_2,\ldots,i_j\}|}{i_1+i_2+\ldots+i_i=k}} V_{i_1} V_{i_2} \cdots V_{i_j}$$

References

Proof of SR1:

Write probability that variable W has value k as W_k .

$$W_k = \sum_{j=0}^{\infty} U_j \times \operatorname{Pr(sum} \text{ of } j \text{ draws of variable } V = k)$$

$$= \sum_{j=0}^{\infty} U_j \sum_{\stackrel{\{i_1,i_2,\ldots,i_j\}|}{i_1+i_2+\ldots+i_j=k}} V_{i_1} V_{i_2} \cdots V_{i_j}$$

$$=\sum_{j=0}^{\infty} U_j \sum_{k=0}^{\infty}$$

Generating Functions

> Definitions Basic Properties

Giant Component Condition Component sizes

Useful results

Average Component Size

Proof of SR1:

Write probability that variable W has value k as W_k .

$$W_k = \sum_{j=0}^{\infty} U_j \times \operatorname{Pr(sum} \text{ of } j \text{ draws of variable } V = k)$$

$$= \sum_{j=0}^{\infty} U_j \sum_{\substack{\{i_1,i_2,\dots,i_j\}|\\ i_1+i_2+\dots+i_j=k}} V_{i_1}V_{i_2}\cdots V_{i_j}$$

$$= \sum_{j=0}^{\infty} \underbrace{U_j}_{\substack{k=0}}^{\infty} \sum_{\substack{\{i_1,i_2,\dots,i_j\}|\\i_1+i_2+\dots+i_j=k}} V_{i_1} x^{i_1} V_{i_2} x^{i_2} \cdots V_{i_j} x^{i_j}$$

Generating Functions

Definitions

Giant Componen

Component sizes

Useful results

Component
Average Component Size

References

THE BARRA PART OF CONTRACTOR FOR THE

$$F_W(x) = \sum_{j=0}^{\infty} U_j \sum_{k=0}^{\infty} \underbrace{\sum_{\substack{\{i_1,i_2,\dots,i_j\}|\\i_1+i_2+\dots+i_j=k}} V_{i_1} x^{i_1} V_{i_2} x^{i_2} \cdots V_{i_j} x^{i_j}}_{x^k \text{ piece of } \left(\sum_{i'=0}^{\infty} V_{i'} x^{i'}\right)^j}$$

Generating

Giant Component

Component sizes

Useful results

Component Average Component Size

$$F_W(x) = \sum_{j=0}^{\infty} U_j \sum_{k=0}^{\infty} \underbrace{\sum_{\substack{\{i_1,i_2,\dots,i_j\} |\\ i_1+i_2+\dots+i_j=k}} V_{i_1} x^{i_1} V_{i_2} x^{i_2} \cdots V_{i_j} x^{i_j}}_{x^k \text{ piece of } \left(\sum_{i'=0}^{\infty} V_{i'} x^{i'}\right)^j} \underbrace{\left(\sum_{i'=0}^{\infty} V_{i'} x^{i'}\right)^j}_{\left(\sum_{i'=0}^{\infty} V_{i'} x^{i'}\right)^j} = (F_V(x))^j$$

Generating

Giant Component Component sizes

Useful results

Average Component Size

$$F_W(x) = \sum_{j=0}^{\infty} U_j \sum_{k=0}^{\infty} \sum_{\substack{\{i_1, i_2, \dots, i_j\} | \\ i_1 + i_2 + \dots + i_j = k}} V_{i_1} x^{i_1} V_{i_2} x^{i_2} \cdots V_{i_j} x^{i_j}$$

$$x^k \text{ piece of } \left(\sum_{i'=0}^{\infty} V_{i'} x^{i'}\right)^j$$

$$\left(\sum_{i'=0}^{\infty} V_{i'} x^{i'}\right)^j = (F_V(x))^j$$

$$= \sum_{j=0}^{\infty} U_j \left(F_V(x)\right)^j$$

Generating Functions

Basic Properties
Giant Component

Component sizes

Useful results

Component
Average Component Size

$$F_W(x) = \sum_{j=0}^\infty U_j \sum_{k=0}^\infty \sum_{\substack{\{i_1,i_2,\dots,i_j\}|\\i_1+i_2+\dots+i_j=k\\}} V_{i_1}x^{i_1}V_{i_2}x^{i_2}\cdots V_{i_j}x^{i_j}$$

$$x^k \text{ piece of } \left(\sum_{i'=0}^\infty V_{i'}x^{i'}\right)^j$$

$$\left(\sum_{i'=0}^\infty V_{i'}x^{i'}\right)^j = (F_V(x))^j$$

$$= \sum_{j=0}^\infty U_j \left(F_V(x)\right)^j$$

$$= F_U \left(F_V(x)\right)$$

Generating

Giant Component

Component sizes Useful results

Average Component Size

$$F_W(x) = \sum_{j=0}^\infty U_j \sum_{k=0}^\infty \sum_{\substack{\{i_1,i_2,\dots,i_j\}|\\i_1+i_2+\dots+i_j=k\\}} V_{i_1}x^{i_1}V_{i_2}x^{i_2}\cdots V_{i_j}x^{i_j}$$

$$x^k \text{ piece of } \left(\sum_{i'=0}^\infty V_{i'}x^{i'}\right)^j$$

$$\left(\sum_{i'=0}^\infty V_{i'}x^{i'}\right)^j = (F_V(x))^j$$

$$= \sum_{j=0}^\infty U_j \left(F_V(x)\right)^j$$

$$= F_U \left(F_V(x)\right)$$

Generating

Giant Component

Component sizes Useful results

Average Component Size

Proof of SR1:

With some concentration, observe:

$$F_W(x) = \sum_{j=0}^\infty U_j \sum_{k=0}^\infty \sum_{\substack{\{i_1,i_2,\dots,i_j\}|\\i_1+i_2+\dots+i_j=k\\}} V_{i_1}x^{i_1}V_{i_2}x^{i_2}\cdots V_{i_j}x^{i_j}$$

$$x^k \text{ piece of } \left(\sum_{i'=0}^\infty V_{i'}x^{i'}\right)^j$$

$$\left(\sum_{i'=0}^\infty V_{i'}x^{i'}\right)^j = (F_V(x))^j$$

$$= \sum_{j=0}^\infty U_j \left(F_V(x)\right)^j$$

$$= F_U \left(F_V(x)\right)$$

Generating

Component sizes

Useful results

Average Component Size

References

Alternate, groovier proof in the accompanying assignment.

Sneaky Result 2:

- Start with a random variable U with distribution U_k ($k=0,1,2,\ldots$)
- SR2: If a second random variable is defined as

Reason:
$$V_k = U_{k-1}$$
 for $k \ge 1$ and $V_0 = 0$

$$F_V(x) = \sum_{k=0}^{\infty} V_k x^k$$

COCONUTS

Generating Functions

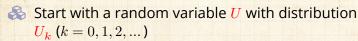
Basic Properties
Giant Componer
Condition

Condition Component sizes

Useful results Size of the Giant Component

Average Component Size

Sneaky Result 2:



SR2: If a second random variable is defined as

Reason: $V_k = U_{k-1}$ for $k \ge 1$ and $V_0 = 0$

$$F_V(x) = \sum_{k=0}^{\infty} V_k x^k$$

COcoNuTS -

Generating Functions

Basic Properties
Giant Component

Condition

Component sizes

Useful results
Size of the Giant
Component

Average Component Size

Sneaky Result 2:

- Start with a random variable U with distribution U_k (k=0,1,2,...)
- SR2: If a second random variable is defined as

$$V = U + 1$$
 then $F_V(x) = xF_D(x)$

Reason: $V_k = U_{k-1}$ for $k \ge 1$ and $V_0 = 0$

$$P_V(x) = \sum_{k=0}^{\infty} V_k x^k$$

COCONUTS

Generating Functions

> Definitions Basic Properties

Giant Component Condition Component sizes

Useful results
Size of the Giant

Average Component Size

Sneaky Result 2:

- \longrightarrow Start with a random variable U with distribution U_k (k = 0, 1, 2, ...)
- SR2: If a second random variable is defined as

$$V = U + 1$$
 then $F_V(x) = xF_U(x)$

$$F_{V}(x) = xF_{U}(x)$$

$$F_V(x) = \sum_{k=0}^{\infty} V_k x^k$$

COCONUTS

Generating

Component sizes Useful results Size of the Giant

Component Average Component Size

Sneaky Result 2:

- Start with a random variable U with distribution U_k (k=0,1,2,...)
- SR2: If a second random variable is defined as

$$V = U + 1$$
 then $F_V(x) = xF_U(x)$

 \Re Reason: $V_k = U_{k-1}$ for $k \ge 1$ and $V_0 = 0$.

$$F_V(x) = \sum_{k=0}^{\infty} V_k x^k$$

COcoNuTS -

Generating Functions

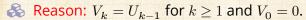
Basic Properties
Giant Component

Useful results
Size of the Giant
Component
Average Component Size

Sneaky Result 2:

- Start with a random variable U with distribution U_k (k=0,1,2,...)
- SR2: If a second random variable is defined as

$$V = U + 1$$
 then $F_V(x) = xF_U(x)$



 $=x\sum^{\infty}U_{j}x^{j}=xF_{U}(x).$

Generating Functions

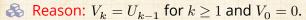
Basic Properties
Giant Component

Component sizes
Useful results
Size of the Giant
Component
Average Component Size

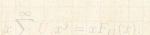
Sneaky Result 2:

- Start with a random variable U with distribution U_k (k=0,1,2,...)
- SR2: If a second random variable is defined as

$$V = U + 1$$
 then $F_V(x) = xF_U(x)$



$$\dot{\cdot\cdot} F_V(x) = \sum_{k=0}^\infty V_k x^k = \sum_{k=1}^\infty {\color{red}U_{k-1} x^k}$$



COcoNuTS -

Generating Functions

Basic Properties
Giant Component

Component sizes
Useful results
Size of the Giant
Component
Average Component Size

Sneaky Result 2:

- Start with a random variable U with distribution U_k (k=0,1,2,...)
- SR2: If a second random variable is defined as

$$V = U + 1$$
 then $F_V(x) = xF_U(x)$

$$\begin{split} \dot{\cdot} F_V(x) &= \sum_{k=0}^\infty V_k x^k = \sum_{k=1}^\infty \underbrace{U_{k-1} x^k}_{} \\ &= x \sum_{j=0}^\infty \underbrace{U_j x^j}_{} = x F_U(x). \end{split}$$

Generating Functions

Basic Properties
Giant Component

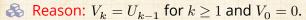
Component sizes
Useful results
Size of the Giant
Component

Average Component Size

Sneaky Result 2:

- Start with a random variable U with distribution U_k (k=0,1,2,...)
- SR2: If a second random variable is defined as

$$V=U+1$$
 then $\boxed{F_V(x)=xF_U(x)}$



$$\begin{split} :&F_V(x) = \sum_{k=0}^\infty V_k x^k = \sum_{k=1}^\infty \underbrace{U_{k-1}} x^k \\ &= x \sum_{j=0}^\infty \underbrace{U_j} x^j = x F_U(x). \end{split}$$

Generating Functions

Basic Properties
Giant Component
Condition
Component sizes

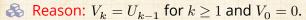
Useful results
Size of the Giant
Component

Average Component Size

Sneaky Result 2:

- Start with a random variable U with distribution U_k (k=0,1,2,...)
- SR2: If a second random variable is defined as

$$V=U+1$$
 then $\boxed{F_V(x)=xF_U(x)}$



$$\begin{split} :&F_V(x) = \sum_{k=0}^\infty V_k x^k = \sum_{k=1}^\infty \underbrace{U_{k-1}} x^k \\ &= x \sum_{j=0}^\infty \underbrace{U_j} x^j = x F_U(x). \end{split}$$

Generating Functions

Basic Properties
Giant Component
Condition
Component sizes

Useful results
Size of the Giant
Component

Average Component Size

Generalization of SR2:

(1) If
$$V = U + i$$
 then

COCONUTS

Generating

Basic Properties

Giant Component

Component sizes Useful results Size of the Giant

Component Average Component Size

Generalization of SR2:

$$\clubsuit$$
 (1) If $V = U + i$ then

$$F_V(x) = x^i F_U(x).$$

COCONUTS

Generating

Basic Properties

Giant Component

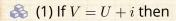
Component sizes

Useful results

Size of the Giant Component Average Component Size

Useful results we'll need for g.f.'s

Generalization of SR2:



$$F_V(x) = x^i F_U(x).$$

 \clubsuit (2) If V = U - i then

$$F_V(x) = x^{-i} F_U(x)$$

$$= x^{-i} \sum_{k=0}^{\infty} U_k x^k$$

COcoNuTS

Generating Functions

Definitions

Basic Properties

Giant Component Condition

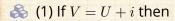
Component sizes

Useful results
Size of the Giant

Component
Average Component Size

Useful results we'll need for g.f.'s

Generalization of SR2:



$$F_V(x) = x^i F_U(x).$$

 \clubsuit (2) If V = U - i then

$$F_V(x) = x^{-i} F_U(x)$$

$$= x^{-i} \sum_{k=0}^{\infty} U_k x^k$$

COcoNuTS

Generating Functions

Definitions

Basic Properties

Giant Component Condition

Component sizes

Useful results
Size of the Giant

Component
Average Component Size

Outline

Generating Functions

Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results

Size of the Giant Component

Average Component Size

References

COcoNuTS *

Generating Functions

Definitions

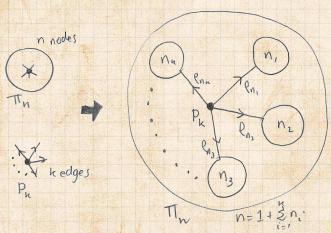
Basic Properties

Giant Component Condition

Component sizes
Useful results

Size of the Giant Component Average Component Size

Goal: figure out forms of the component generating functions, F_{π} and F_{o} .



 $\begin{cases} \& \end{cases}$ Relate π_n to P_k and ρ_n through one step of recursion.

COCONUTS

Generating

Basic Properties

Giant Component Component sizes

Useful results

Size of the Giant Component Average Component Size

COCONUTS

 $\Re \pi_n$ = probability that a random node belongs to a finite component of size n

Generating

Basic Properties

Component sizes Useful results

Size of the Giant Component Average Component Size

COCONUTS

 $\Re \pi_n$ = probability that a random node belongs to a finite component of size n

$$= \sum_{k=0}^{\infty} P_k \times \Pr\left(\begin{array}{c} \text{sum of sizes of subcomponents} \\ \text{at end of } k \text{ random links} = n-1 \end{array}\right)$$

Generating

Component sizes

Useful results Size of the Giant

Component Average Component Size

COCONUTS

 $\Re \pi_n$ = probability that a random node belongs to a finite component of size n

$$= \sum_{k=0}^{\infty} P_k \times \Pr\left(\begin{array}{c} \text{sum of sizes of subcomponents} \\ \text{at end of } k \text{ random links} = n-1 \end{array}\right)$$

Generating

Component sizes

Useful results Size of the Giant Component Average Component Size

References

Therefore:

$$F_{\pi}(x) =$$

COCONUTS

 $\Re \pi_n$ = probability that a random node belongs to a finite component of size n

$$= \sum_{k=0}^{\infty} P_k \times \Pr\left(\begin{array}{c} \text{sum of sizes of subcomponents} \\ \text{at end of } k \text{ random links} = n-1 \end{array}\right)$$

Generating

Component sizes

Useful results Size of the Giant Component Average Component Size

References

Therefore:

$$F_{\pi}(x) = \underbrace{F_{P}\left(F_{\rho}(x)\right)}_{\text{SR1}}$$

 $\Re \pi_n$ = probability that a random node belongs to a finite component of size n

$$= \sum_{k=0}^{\infty} P_k \times \Pr\left(\begin{array}{c} \text{sum of sizes of subcomponents} \\ \text{at end of } k \text{ random links} = n-1 \end{array}\right)$$

Generating

Component sizes

Useful results Size of the Giant Component Average Component Size

References

Therefore:

$$F_{\pi}(x) = \underbrace{x}_{\text{SR2}} \underbrace{F_{P}\left(F_{\rho}(x)\right)}_{\text{SR1}}$$

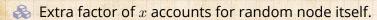
Generating

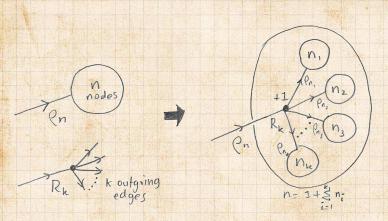
 $\Re \pi_n$ = probability that a random node belongs to a finite component of size n

$$= \sum_{k=0}^{\infty} P_k \times \Pr\left(\begin{array}{c} \text{sum of sizes of subcomponents} \\ \text{at end of } k \text{ random links} = n-1 \end{array}\right)$$

Useful results Size of the Giant Component Average Component Size

Therefore:
$$F_{\pi}(x) = \underbrace{x}_{\text{SR2}} \underbrace{F_{P}\left(F_{\rho}(x)\right)}_{\text{SR1}}$$





 \Re Relate ρ_n to R_k and ρ_n through one step of recursion.

COcoNuTS

Generating

Basic Properties Giant Component

Component sizes Useful results Size of the Giant Component Average Component Size

 ρ_n = probability that a random link leads to a finite subcomponent of size n.

Generating

COCONUTS

Component sizes

Useful results Size of the Giant

Component Average Component Size

 ρ_n = probability that a random link leads to a finite subcomponent of size n.

Invoke one step of recursion: ρ_n = probability that in following a random edge, the outgoing edges of the node reached lead to finite subcomponents of combined size n-1,

COCONUTS

Generating Component sizes Useful results

Component References

Size of the Giant

Average Component Size

 ρ_n = probability that a random link leads to a finite subcomponent of size n.

Invoke one step of recursion: ρ_n = probability that in following a random edge, the outgoing edges of the node reached lead to finite subcomponents of combined size n-1,

$$= \sum_{k=0}^{\infty} R_k \times \Pr\left(\begin{array}{c} \text{sum of sizes of subcomponents} \\ \text{at end of } k \text{ random links} = n-1 \end{array}\right)$$

Generating
Functions
Definitions
Rasis Properties

Giant Component
Condition
Component sizes

Size of the Giant
Component
Average Component Size

- ρ_n = probability that a random link leads to a finite subcomponent of size n.
- Invoke one step of recursion: ρ_n = probability that in following a random edge, the outgoing edges of the node reached lead to finite subcomponents of combined size n-1,

$$=\sum_{k=0}^{\infty}R_k imes \Pr\left(egin{array}{ll} {
m sum \ of \ sizes \ of \ subcomponents} \ {
m at \ end \ of \ } k \ {
m random \ links} = n-1 \end{array}
ight)$$

Therefore:
$$F_{\rho}(x) =$$

Average Component Size References

COCONUTS

Generating

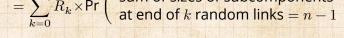
Useful results Size of the Giant Component

Connecting generating functions:

 ρ_n = probability that a random link leads to a finite subcomponent of size n.

Invoke one step of recursion: ρ_n = probability that in following a random edge, the outgoing edges of the node reached lead to finite subcomponents of combined size n-1,

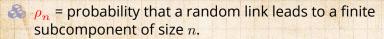
$$= \sum_{k=0}^{\infty} R_k \times \Pr\left(\begin{array}{c} \text{sum of sizes of subcomponents} \\ \text{at end of } k \text{ random links} = n-1 \end{array} \right)$$



3

Therefore:
$$F_{\rho}(x) = \underbrace{F_{R}\left(F_{\rho}(x)\right)}_{\text{SR1}}$$

Average Component Size References



Invoke one step of recursion: ρ_n = probability that in following a random edge, the outgoing edges of the node reached lead to finite subcomponents of combined size n-1,

$$= \sum_{k=0}^{\infty} R_k \times \Pr\left(\begin{array}{c} \text{sum of sizes of subcomponents} \\ \text{at end of } k \text{ random links} = n-1 \end{array} \right)$$

Therefore:
$$F_{\rho}(x) = \underbrace{x}_{\text{SR2}} \underbrace{F_{R}\left(F_{\rho}(x)\right)}_{\text{SR1}}$$

Average Component Size References

Generating

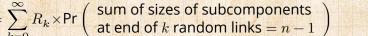
Size of the Giant Component

Average Component Size References

Connecting generating functions:

- $\underset{\rho_n}{\otimes} \rho_n$ = probability that a random link leads to a finite subcomponent of size n.
- Invoke one step of recursion: ρ_n = probability that in following a random edge, the outgoing edges of the node reached lead to finite subcomponents of combined size n-1,

$$= \sum_{k=0}^{\infty} R_k \times \Pr\left(\begin{array}{c} \text{sum of sizes of subcomponents} \\ \text{at end of } k \text{ random links} = n-1 \end{array}\right)$$



Therefore:
$$F_{\rho}(x) = \underbrace{x}_{\text{SR2}} \underbrace{F_{R}\left(F_{\rho}(x)\right)}_{\text{SR1}}$$

itself.

3

We now have two functional equations connecting our generating functions:

$$F_{\pi}(x) = xF_{P}\left(F_{\rho}(x)\right)$$
 and $F_{\rho}(x) = xF_{R}\left(F_{\rho}(x)\right)$

Generating

Component sizes Useful results

Size of the Giant Component Average Component Size

We now have two functional equations connecting our generating functions:

$$F_{\pi}(x) = x F_{P}\left(F_{\rho}(x)\right) \text{ and } F_{\rho}(x) = x F_{R}\left(F_{\rho}(x)\right)$$

 \mathbb{R} Taking stock: We know $F_{P}(x)$ and $F_{R}(x) = F'_{P}(x)/F'_{P}(1).$

Generating

Component sizes

Useful results Size of the Giant Component Average Component Size

We now have two functional equations connecting our generating functions:

$$F_{\pi}(x) = x F_{P}\left(F_{\rho}(x)\right) \text{ and } F_{\rho}(x) = x F_{R}\left(F_{\rho}(x)\right)$$

- \mathbb{R} Taking stock: We know $F_{P}(x)$ and $F_{P}(x) = F'_{P}(x)/F'_{P}(1)$.
- & We first untangle the second equation to find F_o

Generating

Useful results Size of the Giant Component Average Component Size

We now have two functional equations connecting our generating functions:

$$F_{\pi}(x) = x F_{P}\left(F_{\rho}(x)\right) \text{ and } F_{\rho}(x) = x F_{R}\left(F_{\rho}(x)\right)$$

- Taking stock: We know $F_P(x)$ and $F_R(x) = F_P'(x)/F_P'(1)$.
- & We first untangle the second equation to find $F_{
 ho}$
- $\red {\Bbb S}$ We can do this because it only involves $F_
 ho$ and F_R .

Generating Functions

> lasic Properties Siant Componer Condition

Useful results
Size of the Giant
Component

Average Component Size

We now have two functional equations connecting our generating functions:

$$F_{\pi}(x) = x F_{P}\left(F_{
ho}(x)\right) \text{ and } F_{
ho}(x) = x F_{R}\left(F_{
ho}(x)\right)$$

- Taking stock: We know $F_P(x)$ and $F_R(x) = F_P'(x)/F_P'(1)$.
- & We first untangle the second equation to find F_{o}
- $\red {\Bbb S}$ We can do this because it only involves $F_
 ho$ and F_R .
- The first equation then immediately gives us F_{π} in terms of F_{ρ} and F_{R} .

iant Componer ondition

Useful results

Size of the Giant Component Average Component Size

Remembering vaguely what we are doing:

Generating

Basic Properties Giant Component

Component sizes Useful results

Size of the Giant Component Average Component Size

COCONUTS

Remembering vaguely what we are doing:

Finding F_{π} to obtain the fractional size of the largest component $S_1 = 1 - F_{\pi}(1)$.

Generating

Basic Properties

Giant Component Component sizes

Useful results

Size of the Giant Component Average Component Size

Remembering vaguely what we are doing: Finding F_{π} to obtain the fractional size of the largest component $S_1 = 1 - F_{\pi}(1)$.

Set x = 1 in our two equations:

Solve second education numerically

Plug Full and first equation to dollars Full

Generating Functions

Basic Properties
Giant Componen

Component sizes
Useful results

Size of the Giant
Component
Average Component Size

Remembering vaguely what we are doing: Finding F_{π} to obtain the fractional size of the largest component $S_1=1-F_{\pi}(1)$.

Set x = 1 in our two equations:

$$F_{\pi}(1) = F_{P}\left(F_{\rho}(1)\right) \text{ and } F_{\rho}(1) = F_{R}\left(F_{\rho}(1)\right)$$

Solve second equation numerically

Rugary is a to instrogulation to do am re

Generating Functions

Basic Properties
Giant Component
Condition
Component sizes

Useful results . Size of the Giant

Size of the Giant Component Average Component Size

Remembering vaguely what we are doing: Finding F_{π} to obtain the fractional size of the largest component $S_1 = 1 - F_{\pi}(1)$.

Set x = 1 in our two equations:

$$F_{\pi}(1) = F_{P}\left(F_{\rho}(1)\right) \text{ and } F_{\rho}(1) = F_{R}\left(F_{\rho}(1)\right)$$

 $\red {\$}$ Solve second equation numerically for $F_{
ho}(1)$.

Generating Functions

Basic Properties
Giant Component
Condition
Component sizes

Useful results
Size of the Giant
Component

Average Component Size

Remembering vaguely what we are doing: Finding F_{π} to obtain the fractional size of the largest component $S_1 = 1 - F_{\pi}(1)$.

Set x = 1 in our two equations:

$$F_{\pi}(1) = F_{P}\left(F_{\rho}(1)\right) \text{ and } F_{\rho}(1) = F_{R}\left(F_{\rho}(1)\right)$$

- $\red {\Bbb S}$ Solve second equation numerically for $F_{
 ho}(1).$
- $\ensuremath{\mathfrak{S}}$ Plug $F_{\rho}(1)$ into first equation to obtain $F_{\pi}(1)$.

Generating
Functions
Definitions
Basic Properties
Giant Component

Component sizes
Useful results
Size of the Giant
Component

Average Component Size

Example: Standard random graphs.

We can show $F_P(x) = e^{-\langle k \rangle (1-x)}$

COCONUTS

Generating

Basic Properties Giant Component Component sizes

Useful results

Size of the Giant Component Average Component Size

Example: Standard random graphs.

We can show $F_P(x) = e^{-\langle k \rangle (1-x)}$

$$\Rightarrow F_R(x) = F_P'(x)/F_P'(1)$$

COCONUTS

Generating

Basic Properties

Giant Component Component sizes

Useful results

Size of the Giant Component Average Component Size

Example: Standard random graphs.

We can show $F_P(x) = e^{-\langle k \rangle (1-x)}$

$$\Rightarrow F_R(x) = F_P'(x)/F_P'(1)$$

$$= \langle k \rangle e^{-\langle k \rangle (1-x)} / \langle k \rangle e^{-\langle k \rangle (1-x')} |_{x'=1}$$

COCONUTS

Generating

Basic Properties

Component sizes

Useful results

Size of the Giant Component Average Component Size

Example: Standard random graphs.

We can show $F_P(x) = e^{-\langle k \rangle (1-x)}$

$$\Rightarrow F_R(x) = F_P'(x)/F_P'(1)$$

$$= \langle k \rangle e^{-\langle k \rangle (1-x)} / \langle k \rangle e^{-\langle k \rangle (1-x')} |_{x'=1}$$

$$= e^{-\langle k \rangle (1-x)}$$

COCONUTS

Generating

Component sizes

Useful results Size of the Giant

Component Average Component Size

Example: Standard random graphs.

We can show $F_P(x) = e^{-\langle k \rangle (1-x)}$

$$\Rightarrow F_R(x) = F_P'(x)/F_P'(1)$$

$$= \langle k \rangle e^{-\langle k \rangle (1-x)} / \langle k \rangle e^{-\langle k \rangle (1-x')}|_{x'=1}$$

$$=e^{-\langle k \rangle(1-x)}=F_P(x)$$
 ...aha!

COCONUTS

Generating

Component sizes

Useful results

Size of the Giant Component Average Component Size

Example: Standard random graphs.

We can show $F_P(x) = e^{-\langle k \rangle (1-x)}$

$$\Rightarrow F_R(x) = F_P'(x)/F_P'(1)$$

$$= \langle k \rangle e^{-\langle k \rangle (1-x)} / \langle k \rangle e^{-\langle k \rangle (1-x')}|_{x'=1}$$

$$=e^{-\langle k \rangle(1-x)}=F_P(x)$$
 ...aha!

RHS's of our two equations are the same.

COCONUTS

Generating

Component sizes

Useful results

Size of the Giant Component Average Component Size

Example: Standard random graphs.

We can show $F_P(x) = e^{-\langle k \rangle (1-x)}$

$$\Rightarrow F_R(x) = F_P'(x)/F_P'(1)$$

$$= \langle k \rangle e^{-\langle k \rangle (1-x)} / \langle k \rangle e^{-\langle k \rangle (1-x')}|_{x'=1}$$

$$=e^{-\langle k\rangle(1-x)}=F_P(x)$$
 ...aha!

RHS's of our two equations are the same.

 $F_{\pi}(x) = F_{\rho}(x) = xF_{R}(F_{\rho}(x)) = xF_{R}(F_{\pi}(x))$

Generating

Component sizes Useful results

Size of the Giant Component

Average Component Size

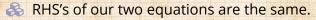
Example: Standard random graphs.

We can show $F_P(x) = e^{-\langle k \rangle (1-x)}$

$$\Rightarrow F_R(x) = F_P'(x)/F_P'(1)$$

$$= \langle k \rangle e^{-\langle k \rangle (1-x)} / \langle k \rangle e^{-\langle k \rangle (1-x')}|_{x'=1}$$

$$=e^{-\langle k
angle (1-x)}=F_P(x)$$
 ...aha!



Consistent with how our dirty (but wrong) trick worked earlier ...

Generating Functions

Definitions Jasic Properties

Giant Component Condition Component sizes

Component
Average Component Size

References

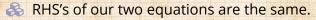
Example: Standard random graphs.

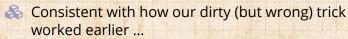
We can show $F_P(x) = e^{-\langle k \rangle (1-x)}$

$$\Rightarrow F_R(x) = F_P'(x)/F_P'(1)$$

$$= \langle k \rangle e^{-\langle k \rangle (1-x)} / \langle k \rangle e^{-\langle k \rangle (1-x')} |_{x'=1}$$

$$=e^{-\langle k
angle (1-x)}=F_P(x)$$
 ...aha!





$$\ensuremath{\mathfrak{S}} \pi_n = \rho_n$$
 just as $P_k = R_k$.

Generating Functions

Definitions Basic Properties

Giant Component Condition Component sizes

Useful results
Size of the Giant

Component
Average Component Size

References

We are down to

$$F_\pi(x) = x F_R(F_\pi(x))$$
 and $F_R(x) = e^{-\langle k \rangle (1-x)}$.

Generating

Basic Properties Giant Component

Component sizes Useful results

Size of the Giant Component Average Component Size

We are down to

$$F_\pi(x) = x F_R(F_\pi(x))$$
 and $F_R(x) = e^{-\langle k \rangle (1-x)}$.

$$: F_{\pi}(x) = xe^{-\langle k \rangle (1 - F_{\pi}(x))}$$

COCONUTS

Generating

Basic Properties Giant Component

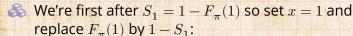
Component sizes Useful results

Size of the Giant Component Average Component Size

We are down to

$$F_{\pi}(x) = xF_{R}(F_{\pi}(x))$$
 and $F_{R}(x) = e^{-\langle k \rangle(1-x)}$.

$$: F_{\pi}(x) = xe^{-\langle k \rangle (1 - F_{\pi}(x))}$$



COCONUTS

Generating

Giant Component Component sizes

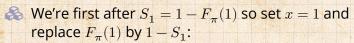
Useful results

Size of the Giant Component Average Component Size

We are down to

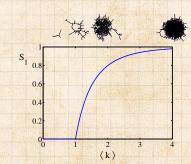
$$F_\pi(x) = x F_R(F_\pi(x))$$
 and $F_R(x) = e^{-\langle k \rangle (1-x)}$.

$$:: F_{\pi}(x) = xe^{-\langle k \rangle (1 - F_{\pi}(x))}$$



$$1 - S_1 = e^{-\langle k \rangle S_1}$$

Or:
$$\langle k \rangle = \frac{1}{S_1} \ln \frac{1}{1 - S_1}$$



COCONUTS

Generating

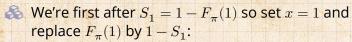
Component sizes Useful results

Size of the Giant Component Average Component Size

We are down to

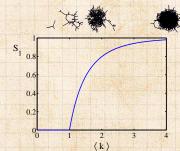
$$F_{\pi}(x) = xF_R(F_{\pi}(x))$$
 and $F_R(x) = e^{-\langle k \rangle (1-x)}$.

$$:: F_{\pi}(x) = xe^{-\langle k \rangle (1 - F_{\pi}(x))}$$



$$1 - S_1 = e^{-\langle k \rangle S_1}$$

Or:
$$\langle k \rangle = \frac{1}{S_1} \ln \frac{1}{1 - S_1}$$



Just as we found with our dirty trick ...

Generating

Component sizes

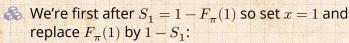
Useful results

Size of the Giant Component Average Component Size

We are down to

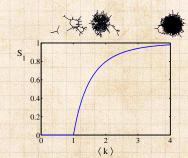
$$F_{\pi}(x) = x F_R(F_{\pi}(x))$$
 and $F_R(x) = e^{-\langle k
angle (1-x)}.$

$$: F_{\pi}(x) = xe^{-\langle k \rangle (1 - F_{\pi}(x))}$$



$$1 - S_1 = e^{-\langle k \rangle S_1}$$

$$\text{Or: } \langle k \rangle = \frac{1}{S_1} \ln \frac{1}{1-S_1}$$



Just as we found with our dirty trick ...

Again, we (usually) have to resort to numerics ...

Generating

Component sizes

Useful results

Size of the Giant Component Average Component Size

Notation: The Kronicker delta function Ω $\delta_{ij}=1$ if i=j and 0 otherwise.

$$P_k = \delta_{k1}$$

$$P_k = \delta_{k2}$$

$$P_k = \delta_k$$

 $P_k = \delta_{kk'}$ for some fixed $k' \ge 0$.

$$P_k = \frac{1}{2}\delta_{k1} + \frac{1}{2}\delta_{k3}$$

$$P_k = a\delta_{k1} + (1-a)\delta_{k3}$$
, with $0 \le a \le a$

$$P_k = \frac{1}{2}\delta_{k1} + \frac{1}{2}\delta_{kk'}$$
 for some fixed $k' \geq 2$

$$P_k = a\delta_{k1} + (1-a)\delta_{kk'}$$
 for some fixed $k' \geq 2$ with

$$0 \le a \le$$

Generating Functions Definitions

Basic Properties
Giant Component
Condition
Component sizes

Useful results
Size of the Giant

Component
Average Component Size

if i = j and 0 otherwise.

Generating

Giant Component Component sizes

Useful results Size of the Giant

Component Average Component Size

 \Re Notation: The Kronecker delta function $\Im \delta_{ij} = 1$ if i = j and 0 otherwise.

$$P_k = \delta_{k1}.$$

Generating

Giant Component

Component sizes Useful results

> Size of the Giant Component Average Component Size

Notation: The Kronecker delta function $\delta_{ij} = 1$ if i = j and 0 otherwise.

$$P_k = \delta_{k1}.$$

$$P_k = \delta_{k2}.$$

$$P_k = \delta_{ki}$$

 $P_k = \delta_{kk'}$ for some fixed $k' \ge 0$.

$$P_k = \frac{1}{2}\delta_{k1} + \frac{1}{2}\delta_{k3}$$

 $P_k = a\delta_{k,1} + (1-a)\delta_{k,3}$, with $0 \le a \le 1$

 $P_k = \frac{1}{3}\delta_{k1} + \frac{1}{3}\delta_{kk'}$ for some fixed $k' \geq 2$

 $P_k = a \delta_{k1} + (1-a) \delta_{kk'}$ for some fixed $k' \geq 2$ with

0 < a < 1

Generating Functions

Definitions Basic Properties

Giant Component Condition

Component sizes
Useful results

Size of the Giant Component Average Component Size

Notation: The Kronecker delta function $\ \ \, \delta_{ij}=1$ if i=j and 0 otherwise.

$$P_k = \delta_{k1}.$$

$$P_k = \delta_{k2}.$$

$$P_k = \delta_{k3}.$$

 $P_k = \delta_{kk'}$ for some fixed $k' \ge 0$.

 $P_k = \frac{1}{2}\delta_{k1} + \frac{1}{2}\delta_{k3}$

 $P_k = a\delta_{k,1} + (1-a)\delta_{k,3}$, with $0 \le a \le 1$

 $P_k = \frac{1}{2}\delta_{k1} + \frac{1}{2}\delta_{kk'}$ for some fixed $k' \geq 2$

 $P_k = a\delta_{k1} + (1-a)\delta_{kk'}$ for some fixed $k' \geq 2$ with

 $0 \le a \le 1$

Generating Functions

> Basic Properties Giant Component Condition

Component sizes
Useful results

Size of the Giant Component Average Component Size

Notation: The Kronecker delta function $\delta_{ij} = 1$ if i = j and 0 otherwise.

$$P_k = \delta_{k1}.$$

$$P_k = \delta_{k2}.$$

$$P_k = \delta_{k3}.$$

 $\Re P_k = \delta_{kk'}$ for some fixed $k' \ge 0$.

$$P_k = \frac{1}{2}\delta_{k1} + \frac{1}{2}\delta_{k3}.$$

 $P_k = a\delta_{k1} + (1-a)\delta_{k3}$, with $0 \le a \le 1$

 $P_k = \frac{1}{2}\delta_{k1} + \frac{1}{2}\delta_{kk'}$ for some fixed $k' \ge 2$.

 $P_k = a\delta_{k1} + (1-a)\delta_{kk'}$ for some fixed $k' \geq 2$ with $0 \leq a \leq 1$

Generating Functions

efinitions asic Properties

Giant Component Condition

Component sizes
Useful results

Size of the Giant Component Average Component Size

References

Notation: The Kronecker delta function $\delta_{ij} = 1$ if i = j and 0 otherwise.

$$P_k = \delta_{k1}.$$

$$P_k = \delta_{k2}.$$

$$P_k = \delta_{k3}.$$

$$P_k = \delta_{kk'}$$
 for some fixed $k' \ge 0$.

$$P_k = \frac{1}{2}\delta_{k1} + \frac{1}{2}\delta_{k3}.$$

$$\begin{split} P_k &= a\delta_{k1} + (1-a)\delta_{k3} \text{, with } 0 \leq a \leq 1. \\ P_k &= \frac{1}{2}\delta_{k1} + \frac{1}{2}\delta_{kk'} \text{ for some fixed } k' \geq 2. \\ P_k &= a\delta_{k1} + (1-a)\delta_{kk'} \text{ for some fixed } k' \geq 2 \text{ with } 0 \leq a \leq 1. \end{split}$$

Generating Functions

Basic Properties

Giant Component

Condition

Component sizes
Useful results

Size of the Giant Component Average Component Size

Notation: The Kronecker delta function $\delta_{ij} = 1$ if i = j and 0 otherwise.

$$P_k = \delta_{k1}.$$

$$P_k = \delta_{k2}.$$

$$P_k = \delta_{k3}.$$

$$\Re P_k = \delta_{kk'}$$
 for some fixed $k' \ge 0$.

$$P_k = \frac{1}{2}\delta_{k1} + \frac{1}{2}\delta_{k3}.$$

$$\Re P_k = a\delta_{k1} + (1-a)\delta_{k3}$$
, with $0 \le a \le 1$.

 $P_k = \frac{1}{2}\delta_{k1} + \frac{1}{2}\delta_{kk'}$ for some fixed $k' \ge 2$.

 $P_k = a\delta_{kk} + (1-a)\delta_{kk'}$ for some fixed $k' \ge 2$ with

Generating Functions

> lasic Properties Siant Componer Condition

Component sizes
Useful results

Size of the Giant Component Average Component Size

Notation: The Kronecker delta function $\delta_{ij} = 1$ if i = j and 0 otherwise.

$$P_k = \delta_{k1}.$$

$$P_k = \delta_{k2}.$$

$$P_k = \delta_{k3}.$$

$$\Re P_k = \delta_{kk'}$$
 for some fixed $k' \ge 0$.

$$P_k = \frac{1}{2}\delta_{k1} + \frac{1}{2}\delta_{k3}.$$

$$Reg P_k = a\delta_{k1} + (1-a)\delta_{k3}$$
, with $0 \le a \le 1$.

$$\Re P_k = \frac{1}{2}\delta_{k1} + \frac{1}{2}\delta_{kk'}$$
 for some fixed $k' \geq 2$.

 $P_k = a\delta_{k\,k} + (1-a)\delta_{k\,k'}$ for some fixed $k' \geq 2$ with $0 \leq a \leq 1$

Generating Functions

Basic Properties

Biant Componer

Condition

Component sizes
Useful results

Size of the Giant Component Average Component Size

 \Re Notation: The Kronecker delta function $\Im \delta_{ij} = 1$ if i = j and 0 otherwise.

$$P_k = \delta_{k1}.$$

$$P_k = \delta_{k2}.$$

$$P_k = \delta_{k3}.$$

 $P_k = \delta_{kk'}$ for some fixed $k' \geq 0$.

$$P_k = \frac{1}{2}\delta_{k1} + \frac{1}{2}\delta_{k3}.$$

$$\Re P_k = a\delta_{k1} + (1-a)\delta_{k3}$$
, with $0 \le a \le 1$.

$$\Re P_k = \frac{1}{2}\delta_{k1} + \frac{1}{2}\delta_{kk'}$$
 for some fixed $k' \geq 2$.

 $P_k = a\delta_{k1} + (1-a)\delta_{kk'}$ for some fixed $k' \ge 2$ with 0 < a < 1.

Generating

Component sizes Useful results

Size of the Giant Component Average Component Size

A joyful example □:

$$P_k = \frac{1}{2}\delta_{k1} + \frac{1}{2}\delta_{k3}.$$

Arr We find (two ways): $R_k = \frac{1}{4}\delta_{k0} + \frac{3}{4}\delta_{k2}$.

$$F_P(x) = rac{1}{2}x + rac{1}{2}x^3$$
 and $F_R(x) = rac{1}{4}x^0 + rac{3}{4}x^2$

COCONUTS

Generating

Basic Properties Giant Component Component sizes Useful results Size of the Giant Component

Average Component Size

A joyful example □:

$$P_k = \frac{1}{2}\delta_{k1} + \frac{1}{2}\delta_{k3}.$$

 \aleph We find (two ways): $R_k = \frac{1}{4}\delta_{k0} + \frac{3}{4}\delta_{k2}$.

A giant component exists because:

$$\langle k \rangle_R = 0 \times 1/4 + 2 \times 3/4 = 3/2 > 1.$$

$$F_P(x) = \frac{1}{2}x + \frac{1}{2}x^3$$
 and $F_R(x) = \frac{1}{4}x^0 + \frac{3}{4}x^2$

COCONUTS

Generating **Basic Properties** Giant Component Component sizes Useful results

Size of the Giant Component Average Component Size References

A joyful example ::

$$P_k = \frac{1}{2}\delta_{k1} + \frac{1}{2}\delta_{k3}.$$

- & We find (two ways): $R_k = \frac{1}{4}\delta_{k0} + \frac{3}{4}\delta_{k2}$.
- A giant component exists because: $\langle k \rangle_R = 0 \times 1/4 + 2 \times 3/4 = 3/2 > 1$.
- & Generating functions for P_k and R_k :

$$F_P(x) = \frac{1}{2}x + \frac{1}{2}x^3 \text{ and } F_R(x) = \frac{1}{4}x^0 + \frac{3}{4}x^2$$

Check for goodness:

Things to figure out: Component size generating functions for π_n and ρ_n , and the size of the giant component

COcoNuTS =

Generating

Functions
Definitions
Basic Properties
Giant Component
Condition
Component sizes
Useful results
Size of the Giant
Component

Average Component Size

A joyful example ::

$$P_k = \frac{1}{2}\delta_{k1} + \frac{1}{2}\delta_{k3}.$$

- & We find (two ways): $R_k = \frac{1}{4}\delta_{k0} + \frac{3}{4}\delta_{k2}$.
- A giant component exists because: $\langle k \rangle_R = 0 \times 1/4 + 2 \times 3/4 = 3/2 > 1.$
- & Generating functions for P_k and R_k :

$$F_P(x) = \frac{1}{2}x + \frac{1}{2}x^3 \text{ and } F_R(x) = \frac{1}{4}x^0 + \frac{3}{4}x^2$$

Check for goodness:

 $F_R(x)=F_P'(x)/F_P'(1)$ and $F_P(1)=F_R(1)$ $F_P'(1)=\langle k \rangle_P=2$ and $F_R'(1)=\langle k \rangle_R=rac{3}{2}$.

Things to figure out: Component size generating functions for π_n and ρ_n , and the size of the giant component

COcoNuTS -

Generating

Punctions
Definitions
Basic Properties
Glant Component
Condition
Component sizes
Useful results
Size of the Glant
Component

Average Component Size

A joyful example ::

$$P_k = \frac{1}{2}\delta_{k1} + \frac{1}{2}\delta_{k3}.$$

- \clubsuit We find (two ways): $R_k = \frac{1}{4}\delta_{k0} + \frac{3}{4}\delta_{k2}$.
- A giant component exists because: $\langle k \rangle_R = 0 \times 1/4 + 2 \times 3/4 = 3/2 > 1.$
- & Generating functions for P_k and R_k :

$$F_P(x) = \frac{1}{2}x + \frac{1}{2}x^3 \text{ and } F_R(x) = \frac{1}{4}x^0 + \frac{3}{4}x^2$$

- Check for goodness:
 - $\widehat{ } \quad F_R(x) = F_P'(x)/F_P'(1) \text{ and } F_P(1) = F_R(1) = 1.$

Things to figure out: Component size generating functions for π_n and ρ_n , and the size of the giant component

Generating

Punctions
Definitions
Basic Properties
Giant Component
Condition
Component sizes
Useful results
Size of the Giant
Component

Average Component Size

A joyful example □:

$$P_k = \frac{1}{2}\delta_{k1} + \frac{1}{2}\delta_{k3}.$$

- \aleph We find (two ways): $R_k = \frac{1}{4}\delta_{k0} + \frac{3}{4}\delta_{k2}$.
- A giant component exists because: $\langle k \rangle_B = 0 \times 1/4 + 2 \times 3/4 = 3/2 > 1.$
- \triangle Generating functions for P_k and R_k :

$$F_P(x) = \frac{1}{2}x + \frac{1}{2}x^3 \text{ and } F_R(x) = \frac{1}{4}x^0 + \frac{3}{4}x^2$$

- Check for goodness:
 - $F_R(x) = F_P'(x)/F_P'(1)$ and $F_P(1) = F_R(1) = 1$.
 - $F_P'(1) = \langle k \rangle_P = 2$ and $F_R'(1) = \langle k \rangle_R = \frac{3}{2}$.

COCONUTS

Generating

Component sizes Useful results Size of the Giant

Component References

Average Component Size

A joyful example □:

$$P_k = \frac{1}{2}\delta_{k1} + \frac{1}{2}\delta_{k3}.$$

- \aleph We find (two ways): $R_k = \frac{1}{4}\delta_{k0} + \frac{3}{4}\delta_{k2}$.
- A giant component exists because: $\langle k \rangle_{R} = 0 \times 1/4 + 2 \times 3/4 = 3/2 > 1.$
- \triangle Generating functions for P_k and R_k :

$$F_P(x) = \frac{1}{2}x + \frac{1}{2}x^3 \text{ and } F_R(x) = \frac{1}{4}x^0 + \frac{3}{4}x^2$$

- Check for goodness:
 - $F_R(x) = F_P'(x)/F_P'(1)$ and $F_P(1) = F_R(1) = 1$.
 - $F_P'(1) = \langle k \rangle_P = 2$ and $F_R'(1) = \langle k \rangle_R = \frac{3}{2}$.
- Things to figure out: Component size generating functions for π_n and ρ_n , and the size of the giant component.

COCONUTS

Generating Component sizes Useful results Size of the Giant

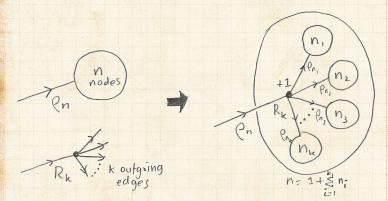
Component References

Average Component Size

Find $F_{\rho}(x)$ first:

We know:

$$F_{\rho}(x) = xF_{R}(F_{\rho}(x)).$$



Generating

Basic Properties Giant Component

Component sizes Useful results

Size of the Giant Component Average Component Size

$$F_{\rho}(x) = x \left(\frac{1}{4} + \frac{3}{4} \left[F_{\rho}(x)\right]^2\right).$$

$$3x \left[F_{\rho}(x)\right]^2 - 4F_{\rho}(x) + x = 0$$

$$F_{\rho}(x) = \frac{2}{3x} \left(1 \pm \sqrt{1 + \frac{3}{4}x^2} \right)$$

COCONUTS

Generating Basic Properties Giant Component Component sizes

Size of the Giant Component Average Component Size

References

Useful results

$$F_{\rho}(x) = x \left(\frac{1}{4} + \frac{3}{4} \left[F_{\rho}(x) \right]^2 \right).$$

Rearranging:

$$3x \left[F_{\rho}(x) \right]^2 - 4F_{\rho}(x) + x = 0.$$

Please and thank you:

$$F_{\rho}(x) = \frac{2}{3x} \left(1 \pm \sqrt{1 - \frac{3}{4}x^2} \right)$$

Time for a Taylor series expansion.

The promise: non-negative powers of x with non-negative coefficients.

First: which sign do we take?

COcoNuTS =

Generating
Functions
Definitions
Basic Properties

Giant Component Condition Component sizes

Useful results Size of the Giant

Component

Average Component Size

$$F_{\rho}(x) = x \left(\frac{1}{4} + \frac{3}{4} \left[F_{\rho}(x)\right]^{2}\right).$$

Rearranging:

$$3x\left[F_{\rho}(x)\right]^2 - 4F_{\rho}(x) + x = 0.$$

Please and thank you:

$$F_{\rho}(x) = \frac{2}{3x} \left(1 \pm \sqrt{1 - \frac{3}{4}x^2} \right)$$

Generating

Basic Properties

Component sizes

Useful results Size of the Giant

Component Average Component Size

$$F_{\rho}(x) = x \left(\frac{1}{4} + \frac{3}{4} \left[F_{\rho}(x)\right]^{2}\right).$$

Rearranging:

$$3x\left[F_{\rho}(x)\right]^2 - 4F_{\rho}(x) + x = 0.$$

Please and thank you:

$$F_{\rho}(x) = \frac{2}{3x} \left(1 \pm \sqrt{1 - \frac{3}{4}x^2} \right)$$

Time for a Taylor series expansion.

Generating

Component sizes

Useful results Size of the Giant

Component Average Component Size

$$F_{\rho}(x) = x \left(\frac{1}{4} + \frac{3}{4} \left[F_{\rho}(x) \right]^2 \right).$$

Rearranging:

$$3x\left[F_{\rho}(x)\right]^2 - 4F_{\rho}(x) + x = 0.$$

Please and thank you:

$$F_{\rho}(x) = \frac{2}{3x} \left(1 \pm \sqrt{1 - \frac{3}{4}x^2} \right)$$

- Time for a Taylor series expansion.
- The promise: non-negative powers of x with non-negative coefficients.

Component sizes Useful results

Size of the Giant Component Average Component Size

$$F_{\rho}(x) = x \left(\frac{1}{4} + \frac{3}{4} \left[F_{\rho}(x)\right]^{2}\right).$$

Rearranging:

$$3x\left[F_{\rho}(x)\right]^2 - 4F_{\rho}(x) + x = 0.$$

Please and thank you:

$$F_{\rho}(x) = \frac{2}{3x} \left(1 \pm \sqrt{1 - \frac{3}{4}x^2} \right)$$

- Time for a Taylor series expansion.
- The promise: non-negative powers of x with non-negative coefficients.
- First: which sign do we take?

Generating

Component sizes

Useful results Size of the Giant Component Average Component Size

$$F_{\rho}(x)=\frac{2}{3x}\left(1\pm\sqrt{1-\frac{3}{4}x^2}\right)$$

$$F_{\rho}(x)=\frac{2}{3x}\left(1-\sqrt{1-\frac{3}{4}x^2}\right)$$

$$(1+z)^{\theta} = {\theta \choose 0} z^0 + {\theta \choose 1} z^1 + {\theta \choose 2} z^2 + {\theta \choose 2} z^3 + \dots$$

COCONUTS

Generating **Basic Properties** Giant Component Component sizes

Size of the Giant Component Average Component Size

References

Useful results

3 Thinking about the limit $x \to 0$ in

$$F_{\rho}(x) = \frac{2}{3x} \left(1 \pm \sqrt{1 - \frac{3}{4}x^2}\right), \label{eq:free_point}$$

we see that the positive sign solution blows to smithereens, and the negative one is okay.

$$F_{\rho}(x) = \frac{2}{3x} \left(1 - \sqrt{1 - \frac{3}{4}x^2} \right)$$

COCONUTS

Generating **Basic Properties** Component sizes

Component References

Average Component Size

Useful results Size of the Giant

3 Thinking about the limit $x \to 0$ in

$$F_{\rho}(x) = \frac{2}{3x} \left(1 \pm \sqrt{1-\frac{3}{4}x^2}\right), \label{eq:free_point}$$

we see that the positive sign solution blows to smithereens, and the negative one is okay.

So we must have:

$$F_{\rho}(x) = \frac{2}{3x} \left(1 - \sqrt{1 - \frac{3}{4}x^2} \right),$$

Generating **Basic Properties** Component sizes

Size of the Giant Component Average Component Size

References

Useful results

3 Thinking about the limit $x \to 0$ in

$$F_{\rho}(x) = \frac{2}{3x} \left(1 \pm \sqrt{1-\frac{3}{4}x^2}\right), \label{eq:free_point}$$

we see that the positive sign solution blows to smithereens, and the negative one is okay.

So we must have:

$$F_{\rho}(x) = \frac{2}{3x} \left(1 - \sqrt{1 - \frac{3}{4}x^2} \right),$$

We can now deploy the Taylor expansion:

$$(1+z)^{\theta} = {\theta \choose 0} z^0 + {\theta \choose 1} z^1 + {\theta \choose 2} z^2 + {\theta \choose 2} z^3 + \dots$$

Generating Component sizes Useful results

Component References

Size of the Giant

Average Component Size

Let's define a binomial for arbitrary θ and k = 0, 1, 2, ...:

$$\binom{\theta}{k} = \frac{\Gamma(\theta+1)}{\Gamma(k+1)\Gamma(\theta-k+1)}$$

$$(1+z)^{rac{1}{2}}={rac{1}{2}\choose 0}z^0+{rac{1}{2}\choose 1}z^1+{rac{1}{2}\choose 2}z^2+.$$

Generating **Basic Properties**

Giant Component Component sizes

Useful results Size of the Giant

Component Average Component Size

 \clubsuit Let's define a binomial for arbitrary θ and k = 0, 1, 2, ...

$$\binom{\theta}{k} = \frac{\Gamma(\theta+1)}{\Gamma(k+1)\Gamma(\theta-k+1)}$$

 \Re For $\theta = \frac{1}{2}$, we have:

$$(1+z)^{\frac{1}{2}} = {\frac{1}{2} \choose 0} z^0 + {\frac{1}{2} \choose 1} z^1 + {\frac{1}{2} \choose 2} z^2 + \dots$$

$$=1+\frac{1}{2}z-\frac{1}{8}z^2+\frac{1}{16}z^3$$

Component sizes Useful results

Size of the Giant Component Average Component Size

 \clubsuit Let's define a binomial for arbitrary θ and k = 0, 1, 2, ...

$${\theta \choose k} = \frac{\Gamma(\theta+1)}{\Gamma(k+1)\Gamma(\theta-k+1)}$$

 \Re For $\theta = \frac{1}{2}$, we have:

$$(1+z)^{\frac{1}{2}} = {\frac{1}{2} \choose 0} z^0 + {\frac{1}{2} \choose 1} z^1 + {\frac{1}{2} \choose 2} z^2 + \dots$$

$$= \frac{\Gamma(\frac{3}{2})}{\Gamma(1)\Gamma(\frac{3}{2})}z^0 + \frac{\Gamma(\frac{3}{2})}{\Gamma(2)\Gamma(\frac{1}{2})}z^1 + \frac{\Gamma(\frac{3}{2})}{\Gamma(3)\Gamma(-\frac{1}{2})}z^2 + \dots$$

Component sizes

Useful results

Size of the Giant Component Average Component Size

 \clubsuit Let's define a binomial for arbitrary θ and k=0,1,2,...

$${\theta \choose k} = \frac{\Gamma(\theta+1)}{\Gamma(k+1)\Gamma(\theta-k+1)}$$

 \Re For $\theta = \frac{1}{2}$, we have:

$$\begin{split} (1+z)^{\frac{1}{2}} &= {\frac{1}{2} \choose 0} z^0 + {\frac{1}{2} \choose 1} z^1 + {\frac{1}{2} \choose 2} z^2 + \dots \\ &= \frac{\Gamma(\frac{3}{2})}{\Gamma(1)\Gamma(\frac{3}{2})} z^0 + \frac{\Gamma(\frac{3}{2})}{\Gamma(2)\Gamma(\frac{1}{2})} z^1 + \frac{\Gamma(\frac{3}{2})}{\Gamma(3)\Gamma(-\frac{1}{2})} z^2 + \dots \\ &= 1 + \frac{1}{2} z - \frac{1}{8} z^2 + \frac{1}{16} z^3 - \dots \end{split}$$

where we've used $\Gamma(x+1) = x\Gamma(x)$ and noted that $\Gamma(\frac{1}{2}) = \frac{\sqrt{\pi}}{2}$.

Component sizes Useful results

Size of the Giant Component Average Component Size

 \clubsuit Let's define a binomial for arbitrary θ and k=0,1,2,...

$${\theta \choose k} = \frac{\Gamma(\theta+1)}{\Gamma(k+1)\Gamma(\theta-k+1)}$$

 \Re For $\theta = \frac{1}{2}$, we have:

$$\begin{split} (1+z)^{\frac{1}{2}} &= {\frac{1}{2} \choose 0} z^0 + {\frac{1}{2} \choose 1} z^1 + {\frac{1}{2} \choose 2} z^2 + \dots \\ &= \frac{\Gamma(\frac{3}{2})}{\Gamma(1)\Gamma(\frac{3}{2})} z^0 + \frac{\Gamma(\frac{3}{2})}{\Gamma(2)\Gamma(\frac{1}{2})} z^1 + \frac{\Gamma(\frac{3}{2})}{\Gamma(3)\Gamma(-\frac{1}{2})} z^2 + \dots \\ &= 1 + \frac{1}{2} z - \frac{1}{8} z^2 + \frac{1}{16} z^3 - \dots \end{split}$$

where we've used $\Gamma(x+1) = x\Gamma(x)$ and noted that $\Gamma(\frac{1}{2}) = \frac{\sqrt{\pi}}{2}$.

Solution Note: $(1+z)^{\theta} \sim 1 + \theta z$ always.

Component sizes

Useful results Size of the Giant

Component Average Component Size

$$F_{\rho}(x)=\frac{2}{3x}\left(1-\sqrt{1-\frac{3}{4}x^2}\right).$$

$$F_{\rho}(x) =$$

$$\frac{2}{3x} \left(1 - \left[1 + \frac{1}{2} \left(-\frac{3}{4} x^2 \right)^1 - \frac{1}{8} \left(-\frac{3}{4} x^2 \right)^2 + \frac{1}{16} \left(-\frac{3}{4} x^2 \right) \right]$$

$$F_{
ho}(x) = \sum_{n=0}^{\infty}
ho_n x^n$$

$$\frac{1}{4}x + \frac{3}{64}x^3 + \frac{9}{512}x^5 + \ldots + \frac{2}{3}\left(\frac{3}{4}\right)^k \frac{(-1)^{k+1}\Gamma(\frac{3}{2})}{\Gamma(k+1)\Gamma(\frac{3}{2}-k)}x^{2k-1}$$

$$F_{\rho}(x)=\frac{2}{3x}\left(1-\sqrt{1-\frac{3}{4}x^2}\right).$$

3 Setting $z = -\frac{3}{4}x^2$ and expanding, we have:

$$F_{\rho}(x) =$$

$$\frac{2}{3x} \left(1 - \left[1 + \frac{1}{2} \left(-\frac{3}{4} x^2 \right)^1 - \frac{1}{8} \left(-\frac{3}{4} x^2 \right)^2 + \frac{1}{16} \left(-\frac{3}{4} x^2 \right)^3 \right] + \dots \right)$$

$$F_{
ho}(x)=\sum_{n=0}^{\infty}
ho_nx^n=$$

$$F_{\rho}(x)=\frac{2}{3x}\left(1-\sqrt{1-\frac{3}{4}x^2}\right).$$

 $\stackrel{\text{\tiny $\&$}}{\&}$ Setting $z=-\frac{3}{4}x^2$ and expanding, we have:

$$F_{\rho}(x) =$$

$$\frac{2}{3x} \left(1 - \left[1 + \frac{1}{2} \left(-\frac{3}{4} x^2 \right)^1 - \frac{1}{8} \left(-\frac{3}{4} x^2 \right)^2 + \frac{1}{16} \left(-\frac{3}{4} x^2 \right)^3 \right] + \dots \right)$$

🚳 Giving:

$$F_{\rho}(x) = \sum_{n=0}^{\infty} \rho_n x^n =$$

$$\frac{1}{4}x + \frac{3}{64}x^3 + \frac{9}{512}x^5 + \ldots + \frac{2}{3}\left(\frac{3}{4}\right)^k \frac{(-1)^{k+1}\Gamma(\frac{3}{2})}{\Gamma(k+1)\Gamma(\frac{3}{2}-k)}x^{2k-1} + \ldots$$

Do odd powers make sense?

$$F_{\rho}(x)=\frac{2}{3x}\left(1-\sqrt{1-\frac{3}{4}x^2}\right).$$

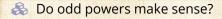
Setting $z = -\frac{3}{4}x^2$ and expanding, we have:

$$F_{\rho}(x) =$$

$$\frac{2}{3x} \left(1 - \left[1 + \frac{1}{2} \left(-\frac{3}{4} x^2 \right)^1 - \frac{1}{8} \left(-\frac{3}{4} x^2 \right)^2 + \frac{1}{16} \left(-\frac{3}{4} x^2 \right)^3 \right] + \dots \right)$$

$$F_{\rho}(x) = \sum_{n=0}^{\infty} \rho_n x^n =$$

$$\frac{1}{4}x + \frac{3}{64}x^3 + \frac{9}{512}x^5 + \ldots + \frac{2}{3}\left(\frac{3}{4}\right)^k \frac{(-1)^{k+1}\Gamma(\frac{3}{2})}{\Gamma(k+1)\Gamma(\frac{3}{2}-k)}x^{2k-1} + \ldots$$



$$F_{\pi}(x) = x F_P\left(F_{\pi}(x)\right)$$

$$= x \frac{1}{2} \left(\left(F_{\rho}(x) \right)^{1} + \left(F_{\rho}(x) \right)^{3} \right)$$

$$= x \frac{1}{2} \left[\frac{2}{3x} \left(1 - \sqrt{1 - \frac{3}{4}x^{2}} \right) + \frac{2^{3}}{(3x)^{3}} \left(1 - \sqrt{1 - \frac{3}{4}x^{2}} \right) \right]$$

Generating

Basic Properties

Giant Component

Component sizes Useful results

Size of the Giant

Component Average Component Size

$$F_{\pi}(x) = x F_P\left(F_{\pi}(x)\right)$$

$$=x\frac{1}{2}\left(\left(F_{\rho}(x)\right)^{1}+\left(F_{\rho}(x)\right)^{3}\right)$$

$$= x \frac{1}{2} \left[\frac{2}{3x} \left(1 + \sqrt{1 - \frac{3}{4}x^2} \right) + \frac{2^3}{(3x)^3} \left(1 - \sqrt{1 - \frac{3}{4}x^2} \right) \right]$$

Generating

Basic Properties Giant Component

Component sizes

Useful results Size of the Giant

Component Average Component Size

$$F_{\pi}(x) = xF_{P}\left(F_{\pi}(x)\right)$$

$$=x\frac{1}{2}\left(\left(F_{\rho}(x)\right)^{1}+\left(F_{\rho}(x)\right)^{3}\right)$$

$$= x \frac{1}{2} \left[\frac{2}{3x} \left(1 - \sqrt{1 - \frac{3}{4}x^2} \right) + \frac{2^3}{(3x)^3} \left(1 - \sqrt{1 - \frac{3}{4}x^2} \right)^3 \right].$$

Basic Properties

Component sizes

Useful results

Size of the Giant Component Average Component Size

$$F_{\pi}(x) = x F_P\left(F_{\pi}(x)\right)$$

$$=x\frac{1}{2}\left(\left(F_{\rho}(x)\right)^{1}+\left(F_{\rho}(x)\right)^{3}\right)$$

$$=x\frac{1}{2}\left[\frac{2}{3x}\left(1-\sqrt{1-\frac{3}{4}x^2}\right)+\frac{2^3}{(3x)^3}\left(1-\sqrt{1-\frac{3}{4}x^2}\right)^3\right].$$

Delicious.

Component sizes

Useful results

Size of the Giant Component Average Component Size

$$F_{\pi}(x) = x F_{P}\left(F_{\pi}(x)\right)$$

$$=x\frac{1}{2}\left(\left(F_{\rho}(x)\right)^{1}+\left(F_{\rho}(x)\right)^{3}\right)$$

$$= x \frac{1}{2} \left[\frac{2}{3x} \left(1 - \sqrt{1 - \frac{3}{4}x^2} \right) + \frac{2^3}{(3x)^3} \left(1 - \sqrt{1 - \frac{3}{4}x^2} \right)^3 \right].$$

Delicious.

In principle, we can now extract all the π_n .

Component sizes

Useful results

Size of the Giant Component Average Component Size

Generating

Useful results

Size of the Giant Component Average Component Size References

 $\begin{cases} \& \& \end{cases}$ We can now find $F_{\pi}(x)$ with:

$$F_{\pi}(x) = x F_P\left(F_{\pi}(x)\right)$$

$$=x\frac{1}{2}\left(\left(F_{\rho}(x)\right)^{1}+\left(F_{\rho}(x)\right)^{3}\right)$$

$$= x \frac{1}{2} \left[\frac{2}{3x} \left(1 - \sqrt{1 - \frac{3}{4}x^2} \right) + \frac{2^3}{(3x)^3} \left(1 - \sqrt{1 - \frac{3}{4}x^2} \right)^3 \right].$$

Delicious.

In principle, we can now extract all the π_n .

But let's just find the size of the giant component.

$$\left. F_{\rho}(x) \right|_{x=1} = \frac{2}{3 \cdot 1} \left(1 - \sqrt{1 - \frac{3}{4} 1^2} \right) = \frac{1}{3}.$$

$$F_{\pi}(1) = 1 \cdot F_{P}\left(F_{\rho}(1)\right)$$

$$S_1 = 1 - F_{\pi}(1) = 1 - \frac{5}{27} = \frac{22}{27}$$

COCONUTS

Generating

Basic Properties Giant Component Component sizes

Useful results Size of the Giant Component Average Component Size

$$\left. F_{\rho}(x) \right|_{x=1} = \frac{2}{3 \cdot 1} \left(1 - \sqrt{1 - \frac{3}{4} 1^2} \right) = \frac{1}{3}.$$

This is the probability that a random edge leads to a sub-component of finite size.

$$S_1 = 1 - F_{\pi}(1) = 1 - \frac{5}{27} = \frac{22}{27}$$

Generating

Basic Properties

Giant Component Component sizes

Useful results Size of the Giant Component

Average Component Size

$$\left. F_{\rho}(x) \right|_{x=1} = \frac{2}{3 \cdot 1} \left(1 - \sqrt{1 - \frac{3}{4} 1^2} \right) = \frac{1}{3}.$$

- This is the probability that a random edge leads to a sub-component of finite size.
- Next:

$$F_{\pi}(1) = 1 \cdot F_{P}\left(F_{\rho}(1)\right) = F_{P}\left(\frac{1}{3}\right) = \frac{1}{2} \cdot \frac{1}{3} + \frac{1}{2} \left(\frac{1}{3}\right)^{3} = \frac{5}{27}$$

$$S_1 = 1 - F_{\pi}(1) = 1 - \frac{5}{27} = \frac{22}{27}$$

Generating

Basic Properties

Giant Component Component sizes

Useful results Size of the Giant

Component Average Component Size

$$\left. F_{\rho}(x) \right|_{x=1} = \frac{2}{3 \cdot 1} \left(1 - \sqrt{1 - \frac{3}{4} 1^2} \right) = \frac{1}{3}.$$

- This is the probability that a random edge leads to a sub-component of finite size.
- Next:

$$F_{\pi}(1) = 1 \cdot F_{P}\left(F_{\rho}(1)\right) = F_{P}\left(\frac{1}{3}\right) = \frac{1}{2} \cdot \frac{1}{3} + \frac{1}{2} \left(\frac{1}{3}\right)^{3} = \frac{5}{27}$$

$$S_1 = 1 - F_{\pi}(1) = 1 - \frac{5}{27} = \frac{22}{27}$$

Generating

Basic Properties

Giant Component Component sizes

Useful results Size of the Giant

Component Average Component Size

$$\left. F_{\rho}(x) \right|_{x=1} = \frac{2}{3 \cdot 1} \left(1 - \sqrt{1 - \frac{3}{4} 1^2} \right) = \frac{1}{3}.$$

- This is the probability that a random edge leads to a sub-component of finite size.
- Next:

$$F_{\pi}(1) = 1 \cdot F_{P}\left(F_{\rho}(1)\right) = F_{P}\left(\frac{1}{3}\right) = \frac{1}{2} \cdot \frac{1}{3} + \frac{1}{2}\left(\frac{1}{3}\right)^{3} = \frac{5}{27}$$

$$S_1 = 1 - F_{\pi}(1) = 1 - \frac{5}{27} = \frac{22}{27}$$

Generating

Basic Properties

Giant Component Component sizes

Useful results Size of the Giant

Component Average Component Size

$$\left. F_{\rho}(x) \right|_{x=1} = \frac{2}{3 \cdot 1} \left(1 - \sqrt{1 - \frac{3}{4} 1^2} \right) = \frac{1}{3}.$$

- This is the probability that a random edge leads to a sub-component of finite size.
- Next:

$$F_{\pi}(1) = 1 \cdot F_{P} \left(F_{\rho}(1) \right) \\ = F_{P} \left(\frac{1}{3} \right) \\ = \frac{1}{2} \cdot \frac{1}{3} + \frac{1}{2} \left(\frac{1}{3} \right)^{3} \\ = \frac{5}{27}.$$

$$S_1 = 1 - F_{\pi}(1) = 1 - \frac{5}{27} = \frac{22}{27}$$

Generating

Basic Properties

Giant Component Component sizes

Useful results Size of the Giant Component

Average Component Size

$$\left. F_{\rho}(x) \right|_{x=1} = \frac{2}{3 \cdot 1} \left(1 - \sqrt{1 - \frac{3}{4} 1^2} \right) = \frac{1}{3}.$$

- This is the probability that a random edge leads to a sub-component of finite size.
- Next:

$$F_{\pi}(1) = 1 \cdot F_{P}\left(F_{\rho}(1)\right) = F_{P}\left(\frac{1}{3}\right) = \frac{1}{2} \cdot \frac{1}{3} + \frac{1}{2}\left(\frac{1}{3}\right)^{3} = \frac{5}{27}.$$

- This is the probability that a random chosen node belongs to a finite component.

$$1 - F_{\pi}(1) = 1 - \frac{5}{27} = \frac{22}{27}.$$

Generating

Component sizes Useful results Size of the Giant Component

Average Component Size

$$\left. F_{\rho}(x) \right|_{x=1} = \frac{2}{3 \cdot 1} \left(1 - \sqrt{1 - \frac{3}{4} 1^2} \right) = \frac{1}{3}.$$

- This is the probability that a random edge leads to a sub-component of finite size.
- Next:

$$F_{\pi}(1) = 1 \cdot F_{P}\left(F_{\rho}(1)\right) = F_{P}\left(\frac{1}{3}\right) = \frac{1}{2} \cdot \frac{1}{3} + \frac{1}{2}\left(\frac{1}{3}\right)^{3} = \frac{5}{27}.$$

- This is the probability that a random chosen node belongs to a finite component.
- Finally, we have

$$S_1 = 1 - F_\pi(1) = 1 - \frac{5}{27} = \frac{22}{27}.$$

Useful results Size of the Giant Component

Average Component Size

Outline

Generating Functions

Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant Componer

Average Component Size

COcoNuTS *

Generating Functions

Definitions

Basic Properties

Giant Component

Condition

Component sizes
Useful results
Size of the Giant
Component

Average Component Size

Next: find average size of finite components $\langle n \rangle$.

COcoNuTS

Generating

Basic Properties Giant Component

Component sizes Useful results Size of the Giant Component

Average Component Size

 \mathbb{A} Next: find average size of finite components $\langle n \rangle$.

 \mathbb{R} Using standard G.F. result: $\langle n \rangle = F'_{\pi}(1)$.

COCONUTS

Generating

Basic Properties Giant Component

Component sizes Useful results Size of the Giant Component

Average Component Size

Next: find average size of finite components $\langle n \rangle$.

 $\ref{Mathematics}$ Using standard G.F. result: $\langle n \rangle = F_\pi'(1)$.

 $\red {
m S}$ Try to avoid finding $F_{\pi}(x)$...

COcoNuTS

Generating Functions

unctions

Basic Properties

Giant Component

Condition

Component sizes
Useful results

Component
Average Component Size

- \mathbb{A} Next: find average size of finite components $\langle n \rangle$.
- \Leftrightarrow Using standard G.F. result: $\langle n \rangle = F'_{\pi}(1)$.
- $\red{\red{\red{S}}}$ Try to avoid finding $F_{\pi}(x)$...
- Starting from $F_{\pi}(x) = xF_{P}\left(F_{\rho}(x)\right)$, we differentiate:

$$F_{\pi}'(x) = F_{P}\left(F_{\rho}(x)\right) + xF_{\rho}'(x)F_{P}'\left(F_{\rho}(x)\right)$$

COcoNuTS -

Generating Functions

Definitions Basic Properties

Giant Component Condition Component sizes

Useful results . Size of the Gian Component

Average Component Size

Generating

Component sizes

Component
Average Component Size

References

Average component size

- Next: find average size of finite components $\langle n \rangle$.
- \Leftrightarrow Using standard G.F. result: $\langle n \rangle = F'_{\pi}(1)$.
- $\red{\red{\red{S}}}$ Try to avoid finding $F_{\pi}(x)$...
- Starting from $F_{\pi}(x) = xF_{P}\left(F_{\rho}(x)\right)$, we differentiate:

$$F_{\pi}'(x) = F_{P}\left(F_{\rho}(x)\right) + xF_{\rho}'(x)F_{P}'\left(F_{\rho}(x)\right)$$

 \Longrightarrow While $F_{\rho}(x)=xF_{R}\left(F_{\rho}(x)\right)$ gives

$$F_{\rho}'(x) = F_{R}\left(F_{\rho}(x)\right) + xF_{\rho}'(x)F_{R}'\left(F_{\rho}(x)\right)$$

N. T.

- Next: find average size of finite components $\langle n \rangle$.
- \Leftrightarrow Using standard G.F. result: $\langle n \rangle = F'_{\pi}(1)$.
- $\red{ }$ Try to avoid finding $F_\pi(x)$...
- Starting from $F_{\pi}(x) = xF_{P}\left(F_{\rho}(x)\right)$, we differentiate:

$$F_{\pi}'(x) = F_{P}\left(F_{\rho}(x)\right) + xF_{\rho}'(x)F_{P}'\left(F_{\rho}(x)\right)$$

 $lap{N}$ While $F_{
ho}(x)=xF_{R}\left(F_{
ho}(x)
ight)$ gives

$$F_{\rho}'(x) = F_{R}\left(F_{\rho}(x)\right) + xF_{\rho}'(x)F_{R}'\left(F_{\rho}(x)\right)$$

Now set x = 1 in both equations.

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes

Component

Average Component Size

References

Useful results

- Next: find average size of finite components $\langle n \rangle$.
- \Leftrightarrow Using standard G.F. result: $\langle n \rangle = F'_{\pi}(1)$.
- $\red{ }$ Try to avoid finding $F_\pi(x)$...
- Starting from $F_{\pi}(x) = xF_{P}\left(F_{\rho}(x)\right)$, we differentiate:

$$F_{\pi}'(x) = F_{P}\left(F_{\rho}(x)\right) + xF_{\rho}'(x)F_{P}'\left(F_{\rho}(x)\right)$$

 \Longrightarrow While $F_{\rho}(x)=xF_{R}\left(F_{\rho}(x)\right)$ gives

$$F_{\rho}'(x) = F_{R}\left(F_{\rho}(x)\right) + xF_{\rho}'(x)F_{R}'\left(F_{\rho}(x)\right)$$

- Now set x = 1 in both equations.
- We solve the second equation for $F'_{\rho}(1)$ (we must already have $F_{\rho}(1)$).

Generating Functions

Definitions

Basic Properties
Giant Component
Condition
Component sizes

Useful results .
Size of the Giant
Component
Average Component Size

- Next: find average size of finite components $\langle n \rangle$.
- \Leftrightarrow Using standard G.F. result: $\langle n \rangle = F'_{\pi}(1)$.
- $\red{\red{\red{S}}}$ Try to avoid finding $F_{\pi}(x)$...
- Starting from $F_{\pi}(x) = xF_{P}\left(F_{\rho}(x)\right)$, we differentiate:

$$F_{\pi}'(x) = F_{P}\left(F_{\rho}(x)\right) + xF_{\rho}'(x)F_{P}'\left(F_{\rho}(x)\right)$$

 \Longrightarrow While $F_{\rho}(x)=xF_{R}\left(F_{\rho}(x)\right)$ gives

$$F_{\rho}'(x) = F_{R}\left(F_{\rho}(x)\right) + xF_{\rho}'(x)F_{R}'\left(F_{\rho}(x)\right)$$

- Now set x = 1 in both equations.
- We solve the second equation for $F'_{\rho}(1)$ (we must already have $F_{\rho}(1)$).
- Plug $F'_{\rho}(1)$ and $F_{\rho}(1)$ into first equation to find $F'_{\pi}(1)$.

Generating
Functions
Definitions
Basic Properties
Giant Component
Condition
Component sizes
Useful results

Average Component Size

Example: Standard random graphs.

COcoNuTS

Generating

Basic Properties Giant Component

Component sizes Useful results

Component Average Component Size

Example: Standard random graphs.

 \blacksquare Use fact that $F_P = F_R$ and $F_\pi = F_\rho$.

COCONUTS

Generating

Basic Properties

Giant Component Component sizes

Useful results Component

Average Component Size

Example: Standard random graphs.

Use fact that $F_P = F_R$ and $F_\pi = F_o$.

Two differentiated equations reduce to only one:

$$F'_{\pi}(x) = F_P(F_{\pi}(x)) + xF'_{\pi}(x)F'_P(F_{\pi}(x))$$

COCONUTS

Generating

Basic Properties Giant Component

Component sizes Useful results

Component Average Component Size

Example: Standard random graphs.

Use fact that $F_P = F_R$ and $F_\pi = F_o$.

Two differentiated equations reduce to only one:

$$F'_{\pi}(x) = F_P(F_{\pi}(x)) + xF'_{\pi}(x)F'_P(F_{\pi}(x))$$

Rearrange:
$$F'_{\pi}(x) = \frac{F_{P}(F_{\pi}(x))}{1 - xF'_{P}(F_{\pi}(x))}$$

COCONUTS

Generating

Component sizes

Useful results Component

Average Component Size

Example: Standard random graphs.

Use fact that $F_P = F_R$ and $F_\pi = F_o$.

Two differentiated equations reduce to only one:

$$F'_{\pi}(x) = F_P(F_{\pi}(x)) + xF'_{\pi}(x)F'_P(F_{\pi}(x))$$

Rearrange:
$$F'_{\pi}(x) = \frac{F_P(F_{\pi}(x))}{1 - xF'_P(F_{\pi}(x))}$$

 \Longrightarrow Simplify denominator using $F_P(x) = \langle k \rangle F_P(x)$

COCONUTS

Generating

Component sizes

Useful results

Component Average Component Size

Example: Standard random graphs.

Use fact that $F_P = F_R$ and $F_\pi = F_o$.

Two differentiated equations reduce to only one:

$$F'_{\pi}(x) = F_P(F_{\pi}(x)) + xF'_{\pi}(x)F'_P(F_{\pi}(x))$$

Rearrange:
$$F'_{\pi}(x) = \frac{F_{P}(F_{\pi}(x))}{1 - xF'_{P}(F_{\pi}(x))}$$

 \Longrightarrow Simplify denominator using $F_P(x) = \langle k \rangle F_P(x)$

Replace $F_P(F_{\pi}(x))$ using $F_{\pi}(x) = xF_P(F_{\pi}(x))$.

COCONUTS

Generating

Component sizes Useful results

Component Average Component Size

Example: Standard random graphs.

- $\red {\Bbb S}$ Use fact that $F_P=F_R$ and $F_\pi=F_
 ho.$
- Two differentiated equations reduce to only one:

$$F'_{\pi}(x) = F_P(F_{\pi}(x)) + xF'_{\pi}(x)F'_P(F_{\pi}(x))$$

Rearrange:
$$F_{\pi}'(x) = \frac{F_P(F_{\pi}(x))}{1 - xF_P'(F_{\pi}(x))}$$

- \red{shift} Simplify denominator using $F_P'(x) = \langle k \rangle F_P(x)$
- Set x = 1 and replace $F_{\pi}(1)$ with $1 S_1$.

COcoNuTS

Generating
Functions
Definitions
Basic Properties
Giant Component
Condition
Component sizes

Useful results

Size of the Glant Component Average Component Size

Example: Standard random graphs.

- Use fact that $F_P = F_R$ and $F_\pi = F_o$.
- Two differentiated equations reduce to only one:

$$F'_{\pi}(x) = F_P(F_{\pi}(x)) + xF'_{\pi}(x)F'_P(F_{\pi}(x))$$

Rearrange:
$$F_{\pi}'(x) = \frac{F_P\left(F_{\pi}(x)\right)}{1 - xF_P'\left(F_{\pi}(x)\right)}$$

 \Longrightarrow Simplify denominator using $F_P(x) = \langle k \rangle F_P(x)$

Replace $F_{\mathcal{P}}(F_{\pi}(x))$ using $F_{\pi}(x) = xF_{\mathcal{P}}(F_{\pi}(x))$.

 \Longrightarrow Set x=1 and replace $F_{\pi}(1)$ with $1-S_1$.

End result:
$$\langle n \rangle = F_\pi'(1) = \frac{(1-S_1)}{1-\langle k \rangle(1-S_1)}$$

Generating

Component sizes Useful results

Average Component Size References

Our result for standard random networks:

$$\langle n \rangle = F_\pi'(1) = \frac{(1-S_1)}{1-\langle k \rangle (1-S_1)}$$

COCONUTS

Generating

Basic Properties Giant Component

Component sizes

Useful results Component

Average Component Size

Our result for standard random networks:

$$\langle n \rangle = F_\pi'(1) = \frac{(1-S_1)}{1-\langle k \rangle (1-S_1)}$$

Recall that $\langle k \rangle = 1$ is the critical value of average degree for standard random networks.

COCONUTS

Generating

Basic Properties

Giant Component

Component sizes

Useful results

Component Average Component Size

Our result for standard random networks:

$$\langle n \rangle = F_\pi'(1) = \frac{(1-S_1)}{1-\langle k \rangle (1-S_1)}$$

- Recall that $\langle k \rangle = 1$ is the critical value of average degree for standard random networks.
- Look at what happens when we increase $\langle k \rangle$ to 1 from below.

COcoNuTS -

Generating Functions

Definitions

Giant Component Condition Component sizes

Useful results Size of the Gia Component

Average Component Size

Our result for standard random networks:

$$\langle n \rangle = F_\pi'(1) = \frac{(1-S_1)}{1-\langle k \rangle (1-S_1)}$$

- Recall that $\langle k \rangle = 1$ is the critical value of average degree for standard random networks.
- \Leftrightarrow Look at what happens when we increase $\langle k \rangle$ to 1 from below.
- \clubsuit We have $S_1 = 0$ for all $\langle k \rangle < 1$

COcoNuTS

Generating Functions

Definitions

Giant Component Condition Component sizes

Useful results

Component
Average Component Size

Our result for standard random networks:

$$\langle n \rangle = F_\pi'(1) = \frac{(1-S_1)}{1-\langle k \rangle (1-S_1)}$$

- Recall that $\langle k \rangle = 1$ is the critical value of average degree for standard random networks.
- \Leftrightarrow Look at what happens when we increase $\langle k \rangle$ to 1 from below.
- $\red {\$}$ We have $S_1=0$ for all $\langle k \rangle <1$ so

$$\langle n \rangle = \frac{1}{1 - \langle k \rangle}$$

 \clubsuit This blows up as $\langle k \rangle \to 1$.

COcoNuTS

Generating Functions Definitions

Basic Properties
Giant Component
Condition
Component sizes

Useful results

Size of the Gian

Component

Average Component Size

COCONUTS

Average component size

Our result for standard random networks:

$$\langle n \rangle = F_\pi'(1) = \frac{(1-S_1)}{1-\langle k \rangle (1-S_1)}$$

- Recall that $\langle k \rangle = 1$ is the critical value of average degree for standard random networks.
- Look at what happens when we increase $\langle k \rangle$ to 1 from below.
- $\red {\$}$ We have $S_1=0$ for all $\langle k \rangle < 1$ so

$$\langle n \rangle = \frac{1}{1 - \langle k \rangle}$$

- \clubsuit This blows up as $\langle k \rangle \to 1$.
- Reason: we have a power law distribution of component sizes at $\langle k \rangle = 1$.

Generating Functions

Basic Properties Giant Component Condition

Useful results . Size of the Giant

Average Component Size

COCONUTS

Average component size

Our result for standard random networks:

$$\langle n \rangle = F_\pi'(1) = \frac{(1-S_1)}{1-\langle k \rangle (1-S_1)}$$

- Recall that $\langle k \rangle = 1$ is the critical value of average degree for standard random networks.
- Look at what happens when we increase $\langle k \rangle$ to 1 from below.
- $\red {\$}$ We have $S_1=0$ for all $\langle k \rangle < 1$ so

$$\langle n \rangle = \frac{1}{1 - \langle k \rangle}$$

- \clubsuit This blows up as $\langle k \rangle \to 1$.
- Reason: we have a power law distribution of component sizes at $\langle k \rangle = 1$.
- Typical critical point behavior ...

Generating
Functions
Definitions
Basic Properties
Giant Component
Condition
Component sizes
Useful results
Size of the Giant
Component sizes

Average Component Size

 \Longrightarrow Limits of $\langle k \rangle = 0$ and ∞ make sense for

$$\langle n \rangle = F_\pi'(1) = \frac{(1-S_1)}{1-\langle k \rangle (1-S_1)}$$

COCONUTS

Generating

Basic Properties

Giant Component

Component sizes Useful results

Component

Average Component Size

 \Longrightarrow Limits of $\langle k \rangle = 0$ and ∞ make sense for

$$\langle n \rangle = F_\pi'(1) = \frac{(1-S_1)}{1-\langle k \rangle (1-S_1)}$$

 $As \langle k \rangle \rightarrow 0$, $S_1 = 0$, and $\langle n \rangle \rightarrow 1$.

COCONUTS

Generating

Component sizes

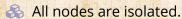
Useful results

Component Average Component Size

 \Longrightarrow Limits of $\langle k \rangle = 0$ and ∞ make sense for

$$\langle n \rangle = F_\pi'(1) = \frac{(1-S_1)}{1-\langle k \rangle (1-S_1)}$$

 \Leftrightarrow As $\langle k \rangle \to 0$, $S_1 = 0$, and $\langle n \rangle \to 1$.



COCONUTS

Generating

Component sizes Useful results

Component

Average Component Size

 \Longrightarrow Limits of $\langle k \rangle = 0$ and ∞ make sense for

$$\langle n \rangle = F_\pi'(1) = \frac{(1-S_1)}{1-\langle k \rangle (1-S_1)}$$

 $As \langle k \rangle \rightarrow 0$, $S_1 = 0$, and $\langle n \rangle \rightarrow 1$.

All nodes are isolated.

 $As \langle k \rangle \to \infty$, $S_1 \to 1$ and $\langle n \rangle \to 0$.

COCONUTS

Generating

Component sizes

Useful results Component

Average Component Size

 \Longrightarrow Limits of $\langle k \rangle = 0$ and ∞ make sense for

$$\langle n \rangle = F_\pi'(1) = \frac{(1-S_1)}{1-\langle k \rangle (1-S_1)}$$

- $As \langle k \rangle \rightarrow 0$, $S_1 = 0$, and $\langle n \rangle \rightarrow 1$.
- All nodes are isolated.
- $As \langle k \rangle \to \infty$, $S_1 \to 1$ and $\langle n \rangle \to 0$.
- No nodes are outside of the giant component.

COCONUTS

Generating

Component sizes

Useful results

Average Component Size

 \Longrightarrow Limits of $\langle k \rangle = 0$ and ∞ make sense for

$$\langle n \rangle = F_\pi'(1) = \frac{(1-S_1)}{1-\langle k \rangle (1-S_1)}$$

- $As \langle k \rangle \rightarrow 0$, $S_1 = 0$, and $\langle n \rangle \rightarrow 1$.
- All nodes are isolated.
- $As \langle k \rangle \to \infty$, $S_1 \to 1$ and $\langle n \rangle \to 0$.
- No nodes are outside of the giant component.

Extra on largest component size:

 \Longrightarrow For $\langle k \rangle = 1$, $S_1 \sim N^{2/3}/N$.

COCONUTS

Generating

Component sizes Useful results

Component Average Component Size

 \Longrightarrow Limits of $\langle k \rangle = 0$ and ∞ make sense for

$$\langle n \rangle = F_\pi'(1) = \frac{(1-S_1)}{1-\langle k \rangle (1-S_1)}$$

- $As \langle k \rangle \rightarrow 0$, $S_1 = 0$, and $\langle n \rangle \rightarrow 1$.
- All nodes are isolated.
- $As \langle k \rangle \to \infty$, $S_1 \to 1$ and $\langle n \rangle \to 0$.
- No nodes are outside of the giant component.

Extra on largest component size:

- \Leftrightarrow For $\langle k \rangle = 1$, $S_1 \sim N^{2/3}/N$.
- \Longrightarrow For $\langle k \rangle < 1$, $S_1 \sim (\log N)/N$.

COCONUTS

Generating

Component sizes

Useful results

Average Component Size

$$\langle n \rangle = F_\pi'(1) = F_P\left(F_\rho(1)\right) + F_\rho'(1)F_P'\left(F_\rho(1)\right)$$

$$F_P(x)=\frac{1}{2}x+\frac{1}{2}x^3 \text{ and } F_R(x)=\frac{1}{4}x^0+\frac{3}{4}x^2$$

$$F_P'(x) = rac{1}{2} + rac{3}{2} x^2 ext{ and } F_R'(x) = rac{3}{2} x^2$$

Generating **Basic Properties** Giant Component Component sizes Useful results Component Average Component Size

We're after:

$$\langle n \rangle = F_\pi'(1) = F_P\left(F_\rho(1)\right) + F_\rho'(1)F_P'\left(F_\rho(1)\right)$$

$$F_{\rho}'(1) = F_{R}(F_{\rho}(1)) + F_{\rho}'(1)F_{R}'(F_{\rho}(1))$$

$$F_P(x)=\frac{1}{2}x+\frac{1}{2}x^3 \text{ and } F_R(x)=\frac{1}{4}x^0+\frac{3}{4}x^2$$

$$F_P'(x) = rac{1}{2} + rac{3}{2}x^2$$
 and $F_B'(x) = rac{3}{2}x^2$

Generating **Basic Properties** Giant Component Component sizes Useful results

Average Component Size

Component References

We're after:

$$\langle n \rangle = F_\pi'(1) = F_P\left(F_\rho(1)\right) + F_\rho'(1)F_P'\left(F_\rho(1)\right)$$

where we first need to compute

$$F_{\rho}'(1) = F_R \left(F_{\rho}(1)\right) + F_{\rho}'(1) F_R' \left(F_{\rho}(1)\right). \label{eq:free_point}$$

$$F_P(x)=\frac{1}{2}x+\frac{1}{2}x^3$$
 and $F_R(x)=\frac{1}{4}x^0+\frac{3}{4}x^2$

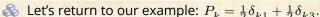
$$F_P'(x) = \frac{1}{2} + \frac{3}{2}x^2$$
 and $F_B'(x) = \frac{3}{2}x$

Generating

Component sizes

Useful results Component

Average Component Size



We're after:

$$\langle n \rangle = F_\pi'(1) = F_P\left(F_\rho(1)\right) + F_\rho'(1)F_P'\left(F_\rho(1)\right)$$

where we first need to compute

$$F_{\rho}'(1) = F_R \left(F_{\rho}(1) \right) + F_{\rho}'(1) F_R' \left(F_{\rho}(1) \right). \label{eq:free_point}$$

Place stick between teeth, and recall that we have:

$$F_P(x) = \frac{1}{2}x + \frac{1}{2}x^3 \text{ and } F_R(x) = \frac{1}{4}x^0 + \frac{3}{4}x^2.$$

$$F_P'(x) = \frac{1}{2} + \frac{3}{2}x^2$$
 and $F_R'(x) = \frac{3}{2}x^2$

Component sizes

Useful results Size of the Giant

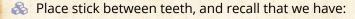
Average Component Size

We're after:

$$\langle n \rangle = F_\pi'(1) = F_P\left(F_\rho(1)\right) + F_\rho'(1)F_P'\left(F_\rho(1)\right)$$

where we first need to compute

$$F_{\rho}'(1) = F_R \left(F_{\rho}(1)\right) + F_{\rho}'(1) F_R' \left(F_{\rho}(1)\right). \label{eq:free_point}$$



$$F_P(x) = \frac{1}{2}x + \frac{1}{2}x^3 \text{ and } F_R(x) = \frac{1}{4}x^0 + \frac{3}{4}x^2.$$

Differentiation gives us:

$$F_P'(x) = \frac{1}{2} + \frac{3}{2} x^2 \text{ and } F_R'(x) = \frac{3}{2} x.$$

Component sizes

Size of the Giant Average Component Size

References

Useful results

$$F_{\rho}'(1) = F_R\left(F_{\rho}(1)\right) + F_{\rho}'(1)F_R'\left(F_{\rho}(1)\right)$$

$$= F_R\left(\frac{1}{3}\right) + F'_{\rho}(1)F'_R\left(\frac{1}{3}\right)$$
$$= \frac{1}{4} + \frac{3}{4}\frac{1}{3^2} + F'_{\rho}(1)\frac{3}{2}\frac{1}{3}.$$

Finally:
$$\langle n \rangle = F_\pi'(1) = F_P\left(\frac{1}{3}\right) + \frac{13}{2}F_P'\left(\frac{1}{3}\right)$$

COCONUTS

Generating **Basic Properties** Giant Component Component sizes Useful results Component

Average Component Size

$$F'_{\rho}(1) = F_{R}\left(F_{\rho}(1)\right) + F'_{\rho}(1)F'_{R}\left(F_{\rho}(1)\right)$$

$$= F_{R}\left(\frac{1}{3}\right) + F'_{\rho}(1)F'_{R}\left(\frac{1}{3}\right)$$

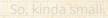
$$= \frac{1}{4} + \frac{3}{4}\frac{1}{23} + F'_{\rho}(1)\frac{3}{2}\frac{1}{2}$$

Finally:
$$\langle n \rangle = F_\pi'(1) = F_P\left(\frac{1}{3}\right) + \frac{13}{2}F_P'\left(\frac{1}{3}\right)$$

COCONUTS

Generating **Basic Properties** Component sizes Useful results Component

Average Component Size



$$\begin{split} F_{\rho}'(1) &= F_{R} \left(F_{\rho}(1) \right) + F_{\rho}'(1) F_{R}' \left(F_{\rho}(1) \right) \\ &= F_{R} \left(\frac{1}{3} \right) + F_{\rho}'(1) F_{R}' \left(\frac{1}{3} \right) \\ &= \frac{1}{4} + \frac{\cancel{3}}{4} \frac{1}{\cancel{3}^{\cancel{2}}} + F_{\rho}'(1) \frac{\cancel{3}}{2} \frac{1}{\cancel{3}}. \end{split}$$

Finally:
$$\langle n \rangle = F_\pi'(1) = F_P\left(\frac{1}{3}\right) + \frac{13}{2}F_P'\left(\frac{1}{3}\right)$$

COCONUTS

Generating **Basic Properties** Giant Component Component sizes Useful results Component

Average Component Size

$$\begin{split} F_{\rho}'(1) &= F_{R}\left(F_{\rho}(1)\right) + F_{\rho}'(1)F_{R}'\left(F_{\rho}(1)\right) \\ &= F_{R}\left(\frac{1}{3}\right) + F_{\rho}'(1)F_{R}'\left(\frac{1}{3}\right) \\ &= \frac{1}{4} + \frac{3}{4}\frac{1}{3^{2}} + F_{\rho}'(1)\frac{3}{2}\frac{1}{3}. \end{split}$$

After some reallocation of objects, we have $F_0'(1) = \frac{13}{2}$.

Finally:
$$\langle n \rangle = F_\pi'(1) = F_P\left(\frac{1}{3}\right) + \frac{13}{2}F_P'\left(\frac{1}{3}\right)$$

Generating **Basic Properties** Component sizes Useful results Component

Average Component Size

$$\begin{split} F_{\rho}'(1) &= F_R\left(F_{\rho}(1)\right) + F_{\rho}'(1)F_R'\left(F_{\rho}(1)\right) \\ \\ &= F_R\left(\frac{1}{3}\right) + F_{\rho}'(1)F_R'\left(\frac{1}{3}\right) \\ \\ &= \frac{1}{4} + \frac{\cancel{3}}{4}\frac{1}{\cancel{3}\cancel{2}} + F_{\rho}'(1)\frac{\cancel{3}}{2}\frac{1}{\cancel{3}}. \end{split}$$

After some reallocation of objects, we have $F_a'(1) = \frac{13}{3}$.

Finally:
$$\langle n \rangle = F_{\pi}'(1) = F_{P}\left(\frac{1}{3}\right) + \frac{13}{2}F_{P}'\left(\frac{1}{3}\right)$$

$$\frac{1}{2}\frac{1}{3} + \frac{1}{2}\frac{1}{3^{3}} + \frac{13}{2}\left(\frac{1}{2} + \frac{3}{2}\frac{1}{3^{2}}\right) = \frac{5}{27} + \frac{13}{3} = \frac{122}{27}$$

Generating Component sizes Useful results Size of the Giant Component

Average Component Size

$$\begin{split} F_{\rho}'(1) &= F_R \left(F_{\rho}(1) \right) + F_{\rho}'(1) F_R' \left(F_{\rho}(1) \right) \\ \\ &= F_R \left(\frac{1}{3} \right) + F_{\rho}'(1) F_R' \left(\frac{1}{3} \right) \\ \\ &= \frac{1}{4} + \frac{3}{4} \frac{1}{32} + F_{\rho}'(1) \frac{3}{2} \frac{1}{3}. \end{split}$$

After some reallocation of objects, we have $F_0'(1) = \frac{13}{2}$.

$$\begin{split} & \text{Finally: } \langle n \rangle = F_\pi'(1) = F_P\left(\frac{1}{3}\right) + \frac{13}{2}F_P'\left(\frac{1}{3}\right) \\ &= \frac{1}{2}\frac{1}{3} + \frac{1}{2}\frac{1}{3^3} + \frac{13}{2}\left(\frac{1}{2} + \frac{\cancel{3}}{2}\frac{1}{3\cancel{2}}\right) = \frac{5}{27} + \frac{13}{3} = \frac{122}{27} \end{split}$$

Generating Component sizes Useful results Size of the Giant

Average Component Size

$$\begin{split} F_\rho'(1) &= F_R \left(F_\rho(1) \right) + F_\rho'(1) F_R' \left(F_\rho(1) \right) \\ \\ &= F_R \left(\frac{1}{3} \right) + F_\rho'(1) F_R' \left(\frac{1}{3} \right) \\ \\ &= \frac{1}{4} + \frac{3}{4} \frac{1}{3^2} + F_\rho'(1) \frac{3}{2} \frac{1}{3}. \end{split}$$

After some reallocation of objects, we have $F'_{o}(1) = \frac{13}{2}$.

$$\begin{split} & \text{Finally: } \langle n \rangle = F_\pi'(1) = F_P\left(\frac{1}{3}\right) + \frac{13}{2}F_P'\left(\frac{1}{3}\right) \\ & = \frac{1}{2}\frac{1}{3} + \frac{1}{2}\frac{1}{3^3} + \frac{13}{2}\left(\frac{1}{2} + \frac{3}{2}\frac{1}{3^2}\right) = \frac{5}{27} + \frac{13}{3} = \frac{122}{27} \end{split}$$

COCONUTS

Generating Component sizes Useful results Size of the Giant

Average Component Size

$$\begin{split} F_{\rho}'(1) &= F_R\left(F_{\rho}(1)\right) + F_{\rho}'(1)F_R'\left(F_{\rho}(1)\right) \\ \\ &= F_R\left(\frac{1}{3}\right) + F_{\rho}'(1)F_R'\left(\frac{1}{3}\right) \\ \\ &= \frac{1}{4} + \frac{3}{4}\frac{1}{2^2} + F_{\rho}'(1)\frac{3}{2}\frac{1}{3}. \end{split}$$

After some reallocation of objects, we have $F'_{o}(1) = \frac{13}{2}$.

$$\begin{split} & \text{Finally: } \langle n \rangle = F_\pi'(1) = F_P\left(\frac{1}{3}\right) + \frac{13}{2}F_P'\left(\frac{1}{3}\right) \\ &= \frac{1}{2}\frac{1}{3} + \frac{1}{2}\frac{1}{3^3} + \frac{13}{2}\left(\frac{1}{2} + \frac{\cancel{3}}{2}\frac{1}{\cancel{3}\cancel{2}}\right) = \frac{5}{27} + \frac{13}{3} = \frac{122}{27} \,. \end{split}$$

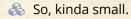
Generating Component sizes Useful results Size of the Giant

Average Component Size

$$\begin{split} F_{\rho}'(1) &= F_R \left(F_{\rho}(1) \right) + F_{\rho}'(1) F_R' \left(F_{\rho}(1) \right) \\ \\ &= F_R \left(\frac{1}{3} \right) + F_{\rho}'(1) F_R' \left(\frac{1}{3} \right) \\ \\ &= \frac{1}{4} + \frac{3}{4} \frac{1}{3^2} + F_{\rho}'(1) \frac{3}{2} \frac{1}{3}. \end{split}$$

After some reallocation of objects, we have $F_0'(1) = \frac{13}{2}$.

$$\begin{split} & \text{Finally: } \langle n \rangle = F_\pi'(1) = F_P\left(\frac{1}{3}\right) + \frac{13}{2}F_P'\left(\frac{1}{3}\right) \\ &= \frac{1}{2}\frac{1}{3} + \frac{1}{2}\frac{1}{3^3} + \frac{13}{2}\left(\frac{1}{2} + \frac{\cancel{3}}{2}\frac{1}{\cancel{3}^2}\right) = \frac{5}{27} + \frac{13}{3} = \frac{122}{27}. \end{split}$$



Generating Component sizes Useful results Size of the Giant

Average Component Size

Generating functions allow us to strangely calculate features of random networks.

Generating **Basic Properties** Giant Component Component sizes

Average Component Size

Component References

Useful results

- Generating functions allow us to strangely calculate features of random networks.
- They're a bit scary and magical.

We'll find generating functions useful for contagion.

But we'll also see that more direct, physics-bearing calculations are possible.

Generating
Functions
Definitions
Basic Properties
Giant Component
Condition
Component sizes
Useful results
Size of the Giant
Component

Average Component Size

- Generating functions allow us to strangely calculate features of random networks.
- They're a bit scary and magical.
- We'll find generating functions useful for contagion.

But we'll also see that more direct, physics-bearing calculations are possible.

Generating Functions

Definitions

Basic Properties

Giant Component
Condition

Component sizes

Useful results
Size of the Giant
Component

Average Component Size

- Generating functions allow us to strangely calculate features of random networks.
- They're a bit scary and magical.
- We'll find generating functions useful for contagion.
- But we'll also see that more direct, physics-bearing calculations are possible.

Generating Functions

Definitions
Basic Properties
Giant Component
Condition
Component sizes
Useful results

Component
Average Component Size

Neural reboot (NR):

Elevation:

COcoNuTS -

Generating
Functions
Definitions
Basic Properties
Giant Component
Condition
Component sizes
Useful results
Size of the Giant
Component

Average Component Size

References I

[1] H. S. Wilf.

Generatingfunctionology.

A K Peters, Natick, MA, 3rd edition, 2006. pdf

COCONUTS

Generating
Functions
Definitions
Basic Properties
Giant Component
Condition
Component sizes
Useful results
Size of the Giant
Component

References

Average Component Size

