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Generatingfunctionology '

&> Idea: Given a sequence ay,ay, as, ..., associate
each element with a distinct function or other
mathematical object.

&5 Well-chosen functions allow us to manipulate
sequences and retrieve sequence elements.

Definition:
& The generating function (g.f.) for a sequence {a,, }

is
o0
= g a,z"
n=0

&% Roughly: transforms a vector in R> into a
function defined on R?.

&5 Related to Fourier, Laplace, Mellin, ...

Simple examples:
Rolling dice and flipping coins:

& ngE) = Pr(throwing a k) = 1/6 where k = 1,2, ..., 6.

6
Z @k = (1'+1' +a3 a2t + 2% +25).

& po™ = Pr(head) = 1/2, p"™ = Pr(tail) = 1/2.

) » ; 1

F(com)(z) _ pE)com)I.O +p(1c0|n)x1 — 5(1 +x).

&5 A generating function for a probability distribution
is called a Probability Generating Function (p.g.f.).

&5 We'll come back to these simple examples as we
derive various delicious properties of generating
functions.
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Example

&> Take a degree distribution with exponential decay:

— ek
P, =ce

where geometricsumfully, we have c =1 — ¢
&% The generating function for this distribution is

- c
:Zka E ce Mgk = gy
k=0

& Noticethat F(1) = ¢/(1 —e ) = 1.
&% For probability distributions, we must always have
F(1) = 1since

ZPklk

& Check die and coin p.g.f.'s.

Zpk=1

Properties:
&> Average degree:

= i kP, = i kP aht
k=0 k=0

& In general, many calculations become simple, if a little
abstract.

& For our exponential example:

F’(I) _ (1 - ei/\)eiA

(1—xe )2 "
&
. e
S0 (K) = F/(1) = 7=

&> Check for die and coin p.g.f.'s.

Useful pieces for probability distributions:

& Normalization:
F(1)=1

& First moment:
(k) =F’(1)

&> Higher moments:

(km) = <T%> F(x)

=1
&> kth element of sequence (general):
1 d*
P = k! dzk F(z)
x=0

COcoNuTS

Generating
Functions

References

.l NIVERSITY |§|
/ VERMONT

DA 8of55

COcoNuTS

Generating
Functions

References

—
d

Iy 0
@l UNIVERSITY |o|
P8 s VERMONT IOl

“a 100f 55

COcoNuTS

Generating
Functions

References

vag 110of55

A beautiful, fundamental thing:

<> The generating function for the sum of two
random variables

W=U+V
is
Fy(2) = Fy(2)Fy(2).

< Convolve yourself with Convolutions:
Insert question from assignment 5 (.

&> Try with die and coin p.g.f.'s.
1. Add two coins (tail=0, head=1).
2. Add two dice.
3. Add a coin flip to one die roll.

Edge-degree distribution

< Recall our condition for a giant component:

<k>R =

< Let's re-express our condition in terms of
generating functions.

<> We first need the g.f. for R,

&> We'll now use this notation:

Fp(x)is the g.f. for P,,.
Fp(z)isthe g.f. for R,

<& Giant component condition in terms of g.f. is:

(K g = FR(1) > 1.

< Now find how Fp, is related to Fp ...

Edge-degree distribution
<> We have

Fr@) =3 R

i "+1Pk+1 ok
k=0 k=0

Shiftindex to j = k£ + 1 and pull out %:

Finally, since (k) = Fp(1),
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Edge-degree distribution

&% Recall giant component condition is
(k) g = Fp(1) > 1.
<% Since we have Fr(z) = Fp(z)/Fp(1),

_ Fp@)

&> Setting x = 1, our condition becomes

Fp(1)

> 1
0

Size distributions

To figure out the size of the largest component (5,),
we need more resolution on component sizes.

Definitions:

&% 7, = probability that a random node belongs to a
finite component of size n < .

&> p,, = probability that a random end of a random
link leads to a finite subcomponent of size n < co.

Local-global connection:
ka Rk < Ty Pn

neighbors < components

Connecting probabilities:

n (\oa(eS

&> Markov property of random networks connects
Topr Prr @Nd Py,
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Connecting probabilities:

/Q/kék Ouf‘j;ﬂ’\g

edgp; n- 14»_5. n;

=

& Markov property of random networks connects p,,

and R,

G.f's for component size distributions:

& o0 oo
F, (z)= Z np,z™and F,(z) = Z Pr™
n=0 n=0

The largest component:

<> Subtle key: F_(1) is the probability that a node
belongs to a finite component.

<> Therefore: S, =1— F,(1).

Our mission, which we accept:

<> Determine and connect the four generating
functions
Fp,Fg,F,, and F,.

Useful results we'll need for g.f.'s

Sneaky Result 1:
<& Consider two random variables U and V whose
values may be 0,1,2, ...

< Write probability distributions as U,, and V,, and
gf'sas F and Fy,.

&> SR1: If a third random variable is defined as

U
w =3 v with each V& £ v
i=1

i=

then

| Py (2) = Fy (Fy(x))|
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Proof of SR1: coeene
With some concentration, observe:
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x* piece of (357 OV,xi/)j

(25 Veat) = (Fy(2))?

References

K3
= Z U; (Fy (2))’
7=0
= Fy (Fy(x))
&% Alternate, groovier proof in the accompanying Pty 2]

assignment. Ha e 25055

Useful results we'll need for g.f.'s

Sneaky Result 2:

&% Start with a random variable U with distribution
U, (k=0,1,2,...)

&% SR2: If a second random variable is defined as

V =U+1 then | Fy(x) = zFy(x)
& Reason: V, =U,_, fork>1and V, =0.
&
Z o1
k=1

= fz Ujad = zFy ().

5=0

~Fy(2) =

?Mg

Useful results we'll need for g.f.'s

Generalization of SR2:
& (MIfV =U+ithen

Fy(x) = 2t Fy ().
& QIfV=U—ithen

Fy(z) = 27 Fy ()

e

=270 Z Uz

k=0

Connecting generating functions:

<> Goal: figure out forms of the component
generating functions, F, and F,,.

n aodes

P

& Relate 7, to P, and p,, through one step of
recursion.
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Connecting generating functions:

& ,, = probability that a random node belongs to a
finite component of size n

i": wpr( sum of sizes of subcomponents
s Pi atend of k random links = n — 1

Therefore: |F,(z)= z Fp(F,(z))
m m

& Extra factor of z accounts for random node itself.

Connecting generating functions:

@n
//ék ufgring
Ry eodgggr

&> Relate p,, to R, and p,, through one step of
recursion.

Connecting generating functions:

& p,, = probability that a random link leads to a finite
subcomponent of size n.

&% Invoke one step of recursion:
p,, = probability that in following a random edge,
the outgoing edges of the node reached lead to
finite subcomponents of combined size n — 1,

_ i R xpr( SUM of sizes of subcomponents
ek at end of k random links =n — 1

Therefore: |F,(z)= z Fg(F,(x))
[ sR2 ] Py

<% Again, extra factor of z accounts for random node
itself.
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Connecting generating functions:

<> We now have two functional equations connecting
our generating functions:

F.(z)=xFp(F,(z)) and F,(z)=xFg (F,(z))

™

<o Taking stock: We know Fp(z) and

Fg(x) = Fp(2)/Fp(1).
< We first untangle the second equation to find F,
<% We can do this because it only involves F, and Fi.

& The first equation then immediately gives us £, in
terms of F, and Fj.

Component sizes

<> Remembering vaguely what we are doing:

Finding F. to obtain the fractional size of the
largest component S; =1 — F,(1).
< Setx = 1in our two equations:

F.(1) =

™

Fp(F,(1)) and F,(1) = Fg (F,(1))
< Solve second equation numerically for F,(1).
<> Plug F,(1) into first equation to obtain F, (1).

Component sizes

Example: Standard random graphs.
& We canshow Fp(z) = ¢ (P12

= Fr(z) = Fp(x)/Fp(1)

= (R)e= M=) RO,y
= e R1-2) — [ (2) ...ahal

<> RHS's of our two equations are the same.

& SO F,(1) = F, () = aFp(F,(v)) = 2Fp(Fr(2))

<> Consistent with how our dirty (but wrong) trick
worked earlier ...

& m, =p, justas P, = Ry,
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Component sizes

&> We are down to
F, (z) =aFg(F,.(z)) and Fg(z) =€

™

~(k)(1-x),

AF(z) = me~(R(1-Fr(2)
&> We're first after S; =1 — F, (1) sosetz =1 and

replace F, (1) by 1 — S;:
T

1 1 0§
or: (k) = 5 In =5, o

0.2

1-5,=e"

1 2 3 4
kO

&% Just as we found with our dirty trick ...
<& Again, we (usually) have to resort to numerics ...

A few simple random networks to contemplate
and play around with:

<& Notation: ,T,h,e,KEQU?QKQ[‘??@,‘@UPF'E’PE)" =1
if i = j and 0 otherwise.

& Py = 06p1-

& Py =640

& Py, = 63

&> P, = 6, for some fixed &’ > 0.

& Py = 30,1 + 3043

-3 P, =ady; + (1 —a)d,s, with0 <a <1.

& Py, = 16,1 + 16, for some fixed k' > 2.

&b P, = ad,, + (1 —a)dy, for some fixed &’ > 2 with
0<a<l.

A joyful example (X

1 1
= §5k1 + §5k3~

& We find (two ways): Ry, = 16,0 + 36,,.

<& A giant component exists because:
(kYr=0x1/44+2x3/4=3/2>1.

&> Generating functions for P, and R,;:

1 1 1 3
Fp(z) = o+ 52° and Fr(z) = J2° + {2
& Check for goodness:
& Fp(x) = Fp(z)/Fp(1) and Fp(1) = Fp(l) = 1.
© Fp(l)=(k)p=2and Fi(1)= (k) = 3.

&> Things to figure out: Component size generating
functions for =, and p,,, and the size of the giant
component.
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Find F,(x) first:
<> We know:

/’Q/kék oufgung

edgeg

< Sticking things in things, we have:

<> Rearranging:

3z [F,(2)]® —4F,(z) + = 0.

<& Please and thank you:

o= 2 (1241-32)

Time for a Taylor series expansion.

&
< The promise: non-negative powers of x with
non-negative coefficients.

< First: which sign do we take?

< Because p,, is a probability distribution, we know
F,(1)<land F () <1for0 <z <1.

<& Thinking about the limitz — 0 in

2 3
F (x) = x2

we see that the positive sign solution blows to
smithereens, and the negative one is okay.

<& So we must have:

F,(z)= 32x (1—1/1—3172) ,

< We can now deploy the Taylor expansion:

(et (0o (@)oo

(1+42) =
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Let's define a binomial for arbitrary 6 and k = 0,1, 2, ...:

N r+1)
(k) TTk+DT(0—k+1)

For 6 = 1, we have:

,\
[
+
n

N

-

Il
Yy
Ok
N

)

+
—~
= ol
—

N

+
A~
DO o=
\_/

l\'J

+

11 1
Sl oa— a4 B
T3 T 167

where we've used I'(x + 1) = «I'(x) and noted that
P()=F

Note: (1 + 2)? ~ 1 + 6z always.

Totally psyched, we go back to here:

Fy(z)= 321_ (171/172322).

Setting z = —3 2 and expanding, we have:

Giving:

F,(z) = i =

l +i 3+i + +2 <§> w
461" 12" 3\1) T+ DTG -k

Do odd powers make sense?

We can now find F_(x) with:

Fo(w) = o Fp (Fr(x))

Delicious.
In principle, we can now extract all the «,.

But let's just find the size of the giant component.
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First, we need F,(1):

2 / 3 1
— 12 —
F’)((E>|‘T:1 3.1 (1 ! 41 ) -3

This is the probability that a random edge leads to a
sub-component of finite size.

Next:

=0 = () -1 () 5

This is the probability that a random chosen node
belongs to a finite component.

Finally, we have

5 22
1—— =22

Si=1-F()=1-57=5

Average component size

Next: find average size of finite components (n).
Using standard G.F. result: (n) = F.(1).

Try to avoid finding F,.(z) ...

Starting from F, (z) = Fp (F,(z)), we
differentiate:

Fl(x) = Fp (F,(z)) + 2F)(2)Fp (F,(x))
While F,(z) = zFg (F,(z)) gives
F(z) = Fr (F,(x)) + aF)(2)Fg (F,(x))

Now set z = 1 in both equations.

We solve the second equation for F (1) (we must
already have F,(1)).

Plug F,(1) and F,(1) into first equation to find
FL(1).

Average component size
Example: Standard random graphs.

Use factthat Fp = Fpand F, = F,.
Two differentiated equations reduce to only one:

Fr(x) = Fp (Fe(2)) + 2 F(2)Fp (Fr(2))

Fp (Fr(2))
L —aFp (Fr())

™

Rearrange: F.(x) =

Simplify denominator using Fp(z) = (k) Fp(z)
Replace Fp(F, (z)) using F,.(z) = 2Fp(F, (x)).
Setz =1 and replace F,_ (1) with 1 —5;.

(1-5,)

Endresult: (n) = F.(1) = T—(k(1-25,)
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Average component size
Our result for standard random networks:

1—-5;)
n)=F.(1) = (71
Recall that (k) = 1 is the critical value of average

degree for standard random networks.

Look at what happens when we increase (k) to 1
from below.

We have S; =0 forall (k) <1 so

This blows up as (k) — 1.

Reason: we have a power law distribution of
component sizes at (k) = 1.

Typical critical point behavior ...

Average component size

Limits of (k) = 0 and co make sense for
(n) =Fr(1) =

As (k) —0,5; =0,and (n) — 1.

All nodes are isolated.

As (k) = o0, S; — 1 and (n) — 0.

No nodes are outside of the giant component.

Extra on largest component size:
For (k) =1, 8, ~ N?/3/N.
For (k) <1, S, ~ (log N)/N.

Let's return to our example: P, = 16,; + 16,3.

We're after:
(n) = F(1) = Fp (F,(1)) + F;(1)Fp (F,(1))
where we first need to compute

F)(1) = Fg (F,(1)) + F)(1)Ff (F,(1)).

Place stick between teeth, and recall that we have:

1 1
Fp(z) = 7a:+293 and Fr(z )*ZzOJr%w?.

Differentiation gives us:

1 3 3
Fp(z) = 5+ §m2 and Fj(z) = 5T
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We bite harder and use F,(1) =  to find:

Fj(1) = Fr (F,(1)) + FL(1) Fp (F,(1))

(%) + F(1)FY, (%)
LB 131
4

/ —
F 23.

»lkh—t
%

After some reallocation of objects, we have F (1) =

Finally: (n) = Fr(1) = Fp (%) LSFP (3)
1 3
3 ( 2

+ + +

&

L>,5 13 122
37

N
Wl =
N =
N =

So, kinda small.

Nutshell

Generating functions allow us to strangely
calculate features of random networks.

They're a bit scary and magical.

We'll find generating functions useful for
contagion.

But we'll also see that more direct, physics-bearing

calculations are possible.
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