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| GeneratinngnctionoIogyW

Idea: Given a sequence a,a,,a,, ..., associate Generating
Functions

each element with a distinct function or other Def
mathematical object. o

Well-chosen functions allow us to manipulate
sequences and retrieve sequence elements.

erage Component Size

References

The generating function (g.f.) for a sequence {a,,}

is
oo
Ffn) = Z il en P
n=0 || S8
Roughly: transforms a vector in R*° into a (
function defined on R1. —
Related to Fourier, Laplace, Mellin, ... a0
4 [Red
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- Simple exarhples:

p;@) = Pr(throwinga k) = 1/6 where k = 1,2, ..., 6.

6
FO (g Zpk@)zk l‘+z + 23+t +2° +25).

p§°™ = Pr(head) = 1/2, p™ = Pr(tail) = 1/2.
; ; ; 1
F(com)(x) = p(OCOIn)J?O +p(1c0|n)$1 e §<1 i x)

A generating function for a probability distribution
is called a Probability Generating Function (p.g.f.).
We'll come back to these simple examples as we

derive various delicious properties of generating
functions.
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Example

Take a degree distribution with exponential decay:
Generating
Functions

= ce % Definitions

where geometricsumfully, we have ¢ =1 — e .
The generating function for this distribution is oo

55 By ompon
x) b E kak 25 E Cef}\kxk s, 1 c . References
k=0 k=0 ok

Notice that F(1) = ¢/(1 —e ) = 1.
For probability distributions, we must always have
F(1) = 1since

Zpklk Zpk;*l L“"’ 4
| g
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Properties:

Average degree:

(k) = i kP, = i kP, k1
k=0 k=0

Generating
Functions

et
d
= ZJIEF(:zc) = Fii(ly
L=1
References
In general, many calculations become simple, if a little
abstract.
For our exponential example:
1—e e I \
F/ B ( ; [
@) (1—ze )2 | 55
s
2 67>‘ = d
S@ikk) = Pl — .
k) =Pl
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" Useful pieces for probability distributions:

&> Normalization:

& First moment:

<% Higher moments:

)= (242) F@

g ==t
<% kth element of sequence (general):
g
) o B
k™ kI dzk @)
a=i0)
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The generating function for the sum of two
random variables

W=U+V

Fy (z) = Fy(z)Fy (2).

Convolve yourself with Convolutions:
Insert question from assignment 5 (£'.

Try with die and coin p.g.f.'s.
1. Add two coins (tail=0, head=1).
2. Add two dice.
3. Add a coin flip to one die roll.
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Edge—degfeé distribution

Recall our condition for a giant component:

Let's re-express our condition in terms of
generating functions.
We first need the g.f. for R,..

We'll now use this notation:

Fp(z)is the g.f. for P,.
Fr(x)is the g.f. for R,..

Giant component condition in terms of g.f. is:

Ry = Fh(l) > L.

Now find how FF, is related to Fp ...
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i Edge—degreeﬁdistribution
| We have

Generating
Functions

- o (Bt 1 P Tt D1 & i g
=S Rz : e
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Shiftindex to j = k + 1 and pull out T
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Edge-degr'ee' distribution

Generating
Functions

Recall giant component condition is b
Since we have F(z) = Fp(z)/Fp(1),

Fhto) = Hy

Setting « = 1, our condition becomes

FA( s
P Iy
e
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Size distributions

To figure out the size of the largest component (S, ),
we need more resolution on component sizes.

7,, = probability that a random node belongs to a
finite component of size n < oc.

p,, = probability that a random end of a random

link leads to a finite subcomponent of size n < .

Pk,‘Rk < Ty Pn

neighbors < components
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' Connecting probabilities: B
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<% Markov property of random networks connects p,,
and R,.
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wa and F,( Z

Subtle key: F_(1) is the probability that a node
belongs to a finite component.

Therefore: S; =1— F,_(1).

Determine and connect the four generating
functions

oy Pyt and e

T
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- Useful results we'll need for g.f's

Generating
Functions

Consider two random variables U and V whose
values may be 0, 1,2, ...

Write probability distributions as U,, and V. and
g.f'sas F;; and F,.

SR1: If a third random variable is defined as

References

el

W = V() with each V@ = v

&

U
=1

then |G5R
| Py (@) = Fy (Fy(x)) ]
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Proof of S'R1 :

Write probability that variable W has value k as 17/,..

Wy, =Y U, x Pr(sum of j draws of variable V = k)

3=0

o0
i z :UJ z : ‘/11‘/12‘/%
Jj=0 {e1,82,075}
Sy Fiotti=k
o0
Fy(@)=) W, E E e Y V, Vi,
k=0 k=0 j=0 (STt
iy tigt.ti=k
oo oo
= E o5 E E Vilx IViQJU 2 --V;-jCL’J
7=0 k=0 {#1,32,35}

diibig i =k
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Proof of SR1: g

With some concentration, observe:

Generating
Functions

Definitions

o0 o0 ;
YUY N WV

7=0 k=0 {i1,i,m 5]

i1 +ig+..ti=k
z* piece of (Y57 V,z¥)’ Referefices
( ) = (Fy(2))’
>
= Fy (Fy(z)) g.‘;,
Alternate, groovier proof in the accompanying B 9

aSS|gnment. SHa 250f55
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- Useful results we'll need for g.f's

Start with a random variable U with distribution
U, (k=0,1,2,...)

SR2: If a second random variable is defined as

V =U+1 then | Fy(z) = 2Fy(a)]

Reason: V,, = U,_; for k > 1and V; = 0.

sl () = i Vigtt i g
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; Useful results we II need for g.f. S

- Generalization of SR2;
& MIfV =U+ithen

FV<55> =5 :EZFU@:)
& QIfV =U—ithen

Fy(z) = 2" Fy(z)

o0

= Z ynk

k=0
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~ Connecting generating functions: R

Goal: figure out forms of the component
generating functions, £, and F,. Gencpgung

Functions

Condition

n (\odfs

Component sizes

mponent Size

References

7 I ed??J

pk
Relate 7,, to P, and p,, through one step of 4 [l |
recursion.
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- Connecting generating functions:

w,, = probability that a random node belongs to a
finite component of size n

2 i p wpr( SYM of sizes of subcomponents
=4 at end of k random links = n — 1

Therefore: || F.(z)= ¢ Fp(F,(2))

Extra factor of x accounts for random node itself.
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~ Connecting generating functions: Bl
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<% Relate p,, to R, and p,, through one step of
recursion.
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Connecting generating functions:

p,, = probability that a random link leads to a finite
subcomponent of size n.

Invoke one step of recursion:

p,, = probability that in following a random edge,
the outgoing edges of the node reached lead to
finite subcomponents of combined size n — 1,

= i R oxpr( SUM of sizes of subcomponents
=k at end of k random links = n — 1

Therefore: L F () = . Fp (F(z))

Again, extra factor of x accounts for random node
itself.
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- Connecting generating functions:

Generating
Functions

We now have two functional equations connecting
our generating functions:

F. (z)=aFp (Filz)) and F,(r) =aFg(F,(x))

Taking stock: We know F(x) and

Fr(z) = Fp(x)/Fp(1).

We first untangle the second equation to find F,
We can do this because it only involves F, and F'g.

The first equation then immediately gives us F_ in
terms of F, and F'g.
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- Component sizes

Remembering vaguely what we are doing:

Finding F. to obtain the fractional size of the
largest component S§; =1 — F,_(1).
Set x = 1 in our two equations:

Fel)y= Fp (F, (1)) and "Fi(l) = Fg (F (1))

Solve second equation numerically for F,(1).
Plug F,(1) into first equation to obtain F, (1).
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- Component sizes
Example: Standard random graphs.
We can show Fp(z) = e~ (F)(1=2)

= Fg(z) = Fp(2)/Fp(1)

i <k>e—<k><1—m>/<k>e—<k><1—m’>yz,zl
—es bt LR () ...ahal

RHS's of our two equations are the same.

S0 F (1) = F,(2) = 2FR(F, () = 2Fg(F, ()

Consistent with how our dirty (but wrong) trick
worked earlier ...

Toi=p istas P = R, |

COcoNuTS
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- Component sizes
We are down to
F _(z) = zFg(F.(x)) and Fg(z) = e—{k)(1-x)

e

~F (.%') = :Ue*(k:ﬂl*F«(z))

v

We're first after S; =1— F, (1) sosetz =1 and

replace F,_(1) by 1 — S;:
% &

1—51 :€7<k>sl 1

1 1 08
D= 5 In =5, 3

Just as we found with our dirty trick ...
Again, we (usually) have to resort to numerics ...
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A few simple random networks to contemplate
and play around with:

®

R R R R R R

if i = j and 0 otherwise.

P, = 6, for some fixed £’ > 0.

Py, = 50k1 + 30p3-

Pkl = a6k1 + (1 —a)5k3, Wlth 0 S a S 1.
Py, = 16,1 + 10y, for some fixed &’ > 2.

P, = ad,, + (1 — a)d,,  for some fixed £’ > 2 with
0<a<l.

LU . LS

COCoNUTS =

Generating
Functions
Definitions
Basic Properties

Glant Component
Condition

Component sizes

Useful r

Fra oo

Average Component Size’

References

;
1 B3 o
B UNIVERSITY Iﬁl i
Csll Y VERMONT (O

Q> 37 of 55


http://www.uvm.edu
http://www.uvm.edu/~pdodds
https://en.wikipedia.org/wiki/Kronecker_delta

1 1
Pk} — 5574:1 + 551{33

We find (two ways): Ry, = 16,0 + 20y.
A giant component exists because:
(kYp=0%x1/44+2x%x3/4=3/2>1.
Generating functions for P, and R;:

S iy ieh

Holr) — 2x—i— 5% and F(x) = 1% + 12
Check for goodness:

Fp(z) = Fi(x)/Fh(1) and Fp(1) = Fp(l) =1,

BAG e o and e G
Things to figure out: Component size generating
functions for 7,, and p,,, and the size of the giant
component.
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Find F () first:
o5 We know:

_," k Ou"gn]Hg
edgeg
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Sticking things in things, we have:

Rearranging:

3z [F,(z)]* — 4F,(z) + £ = 0.

P

Please and thank you:

r@= 2 (10 41- 32

Time for a Taylor series expansion.

The promise: non-negative powers of x with

non-negative coefficients.
First: which sign do we take?

COcoNuTS
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Because p,, is a probability distribution, we know
B (r<iand Fi(z) <f for0-<- a1

Thinking about the limit z — 0 in

Fp(m):% (1;{:\/1—zm2) 3

we see that the positive sign solution blows to
smithereens, and the negative one is okay.

So we must have:

Fp(:v):% (1\/13:62) k

We can now deploy the Taylor expansion:

a9 = Qs ()4 (o (oo

COcoNuTS
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Let's define a binomial for arbitrary 6 and k =0, 1, 2, ....

N 6+1)
(k) T Tk+1)T(0—k+1)

For 6 = 1, we have:

s,
(Y
+
I
S~—"
e
I
e
O =
S8
I
_|_
Ve
™ (e
N
N
+
e
N -
\_/
l\'}
+

1 1 1
= e e I R L
S
where we've used I'(z + 1) = «T'(x) and noted that
r(H)=¥x

2 25

Note: (1 + 2)? ~ 1 + 6z always.
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Totally psyched, we go back to here:

Fp(x):?)% (1—\/1—23:2).

Setting z = — 322 and expanding, we have:

Giving
o0
P N
n=0
g oo 2 (3)’“ (250 Yo S e
1 +64:c +512a: +...—|—3 1 F(k:+1)I‘(%—k:)x St

Do odd powers make sense?



COcoNuTS

We can now find F (z) with: Generating
Functions
Definitions

F.(z) = Fp (Fr(x))

sults

L (B, + (Fy(a)?)

Delicious. ; /
ds

In principle, we can now extract all the = ,. il
N

But let's just find the size of the giant component. N/

The (o]
ﬁ UNIVERSITY |9|
il ¥ VERMONT 1O

DA 440f 55


http://www.uvm.edu
http://www.uvm.edu/~pdodds

First, we need F',(1):

Fp(x)|x:1 = % (1 —4/1— 212>

This is the probability that a random edge leads to a

sub-component of finite size.
Next:

Fo(1) = 1-Fp (F,(1) = Fa (5

>:

This is the probability that a random chosen node

belongs to a finite component.

Finally, we have

S, =1-F (1)=1—

5 22

o0 2T
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- Average component size
Next: find average size of finite components (n).
Using standard G.F. result: (n) = F/(1).
Try to avoid finding F_(x) ...
Starting from F, () = 2 Fp (F,(z)), we
differentiate:

File) = Fo (F (x)) + 2EL(2)F R {FLi(x))
While F,(z) = 2Fg (F,()) gives
Fi(x)=Fg (F,(z)) + £F)(z)Fg (F(z))

Now set 2 = 1 in both equations.

We solve the second equation for F/ (1) (we must
already have F,(1)).

Plug F/(1) and F,(1) into first equation to find
Bty

COcoNuTS

Generating
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- Average component size
Example: Standard random graphs.

Use factthat Fp = Fpand F. = F,.

Two differentiated equations reduce to only one:

Fr(z) = Fp (Fr(2)) + 2F (2)Fp (F,(2))

Fp (Fr(2))
1—2Fp (Fr(2))

TT

Rearrange: F/(z)=

Simplify denominator using Fy(z) = (k) Fp(x)

Replace Fp(F, (z)) using F._(z) = zFp(F,.(x)).

Set z = 1 and replace F.(1) with 1 — 5.

(1-5,)

End result: (n) = F;.(1) = 1B =S,

COcoNuTS

Generating
Functions

Definitions
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- Average component size
Our result for standard random networks: -

bl ) Bt
el T o anl

Recall that (k) = 1 is the critical value of average
degree for standard random networks.

Look at what happens when we increase (k) to 1 Referefces
from below.
We have S; =0forall (k) <1 so

1

This blows up as (k) — 1.
Reason: we have a power law distribution of |
component sizes at (k) = 1. P 2

, el

2 L : = o/ VERMONT
Typical critical point behavior ... e
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 Average component size

Limits of (k) = 0 and oo make sense for

Syl Y] (1_S>

As (k) - 0,5, =0, and (n) — 1.
All nodes are isolated.
As (k) — 00, S — 1and (n) — 0.

No nodes are outside of the giant component.

FOF-(e) =l 5. o N2/3 N
For (k) <1, S; ~ (log N)/N.
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Let's return to our example: P, = 14, + $6;3.

We're after:
)= Al (O () + B (B ()
where we first need to compute

F/(1) = Fg (F,(1)) + F/(1)Fg (F.(1)).

Place stick between teeth, and recall that we have:
et 1 1 3 et 1 0 3 2
Eo(x) = 5% T 5 and FR(.’IJ)—4.’L’ +4a: :

Differentiation gives us:

Tl siss 3
i (af) = = + 5372 and Fp(z) = 5T
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We bite harder and use F,(1) = 1 to find:

o= Iy (F, (1)) + PR (R (1))

After some reallocation of objects, we have F (1) = 13.

1 13 1

Finally: =l = (—) —F (—)

inally: (n) i) Hla 5 f'P\3
LT gyt i 5 s 109
SO INEE B DD SRED IV LT e G Ll I T

So, kinda small.

COcoNuTS

Generating
Functions

Definitions

Vs

e O
ﬁ UNIVERSITY |Q|
il ¥ VERMONT 1O

A 520f 55


http://www.uvm.edu
http://www.uvm.edu/~pdodds

| Nutshell COCONUTS |

Generating
Functions

Definitions
Basic Properties

Generating functions allow us to strangely
calculate features of random networks.

They're a bit scary and magical. References

We'll find generating functions useful for
contagion.

But we'll also see that more direct, physics-bearing
calculations are possible.
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