Generating Functions and Networks

Complex Networks | @networksvox CSYS/MATH 303, Spring, 2016

Prof. Peter Dodds | @peterdodds

Generating Functions
Definitions
Basic Properties
Giant Component
Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References
Dept. of Mathematics \& Statistics | Vermont Complex Systems Center Vermont Advanced Computing Core | University of Vermont

(c) ©(9)(

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

These slides are brought to you by:

Generating Functions
Definitions
Basic Properties Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Siz
References

Outline

Generating Functions

Definitions
Basic Properties
Giant Component Condition

References

つa@ 3 of 55

Generating Functions
Definitions
Basic Properties
Giant Component
Condition
Component sizes Useful results

Size of the Giant Component

Average Component Size
References

Zho	
UNIVERSITY	0
UTRMONT	

ef VERMONT

Generatingfunctionology ${ }^{[1]}$

Idea: Given a sequence $a_{0}, a_{1}, a_{2}, \ldots$, associate each element with a distinct function or other mathematical object.
Well-chosen functions allow us to manipulate sequences and retrieve sequence elements.

Generating Functions
Definitions
Basic Properties
Giant Component
Condition
Component sizes
Useful results

Definition:

The generating function (g.f.) for a sequence $\left\{a_{n}\right\}$ is

$$
F(x)=\sum_{n=0}^{\infty} a_{n} x^{n} .
$$

Roughly: transforms a vector in R^{∞} into a function defined on R^{1}.
Related to Fourier, Laplace, Mellin, ...

Simple examples:

Rolling dice and flipping coins:

永 $p_{k}^{(\cdot)}=\operatorname{Pr}($ throwing a $k)=1 / 6$ where $k=1,2, \ldots, 6$.

$$
F^{(\odot)}(x)=\sum_{k=1}^{6} p_{k}^{(\cdot)} x^{k}=\frac{1}{6}\left(x+x^{2}+x^{3}+x^{4}+x^{5}+x^{6}\right)
$$

Generating
\& $p_{0}^{(\text {coin })}=\operatorname{Pr}($ head $)=1 / 2, p_{1}^{(\text {coin })}=\operatorname{Pr}($ tail $)=1 / 2$.

$$
F^{(\mathrm{coin})}(x)=p_{0}^{(\mathrm{coin})} x^{0}+p_{1}^{(\mathrm{coin})} x^{1}=\frac{1}{2}(1+x)
$$

- A generating function for a probability distribution is called a Probability Generating Function (p.g.f.).
- We'll come back to these simple examples as we derive various delicious properties of generating functions.

Example

Take a degree distribution with exponential decay:

$$
P_{k}=c e^{-\lambda k}
$$

where geometricsumfully, we have $c=1-e^{-\lambda}$
8 The generating function for this distribution is

$$
F(x)=\sum_{k=0}^{\infty} P_{k} x^{k}=\sum_{k=0}^{\infty} c e^{-\lambda k} x^{k}=\frac{c}{1-x e^{-\lambda}}
$$

Notice that $F(1)=c /\left(1-e^{-\lambda}\right)=1$.
R For probability distributions, we must always have $F(1)=1$ since

$$
F(1)=\sum_{k=0}^{\infty} P_{k} 1^{k}=\sum_{k=0}^{\infty} P_{k}=1
$$

Check die and coin p.g.f.'s.

Properties:

Average degree:

$$
\begin{aligned}
\langle k\rangle= & \sum_{k=0}^{\infty} k P_{k}=\left.\sum_{k=0}^{\infty} k P_{k} x^{k-1}\right|_{x=1} \\
& =\left.\frac{\mathrm{d}}{\mathrm{~d} x} F(x)\right|_{x=1}=F^{\prime}(1)
\end{aligned}
$$

Generating
Functions
Definitions
Basic Properties
Giant Component
Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

In general, many calculations become simple, if a little abstract.
\& For our exponential example:

$$
F^{\prime}(x)=\frac{\left(1-e^{-\lambda}\right) e^{-\lambda}}{\left(1-x e^{-\lambda}\right)^{2}}
$$

$$
\text { So: }\langle k\rangle=F^{\prime}(1)=\frac{e^{-\lambda}}{\left(1-e^{-\lambda}\right)}
$$

Check for die and coin p.g.f.'s.

Useful pieces for probability distributions:

Normalization:

$$
F(1)=1
$$

First moment:

$$
\langle k\rangle=F^{\prime}(1)
$$

Higher moments:

Generating Functions
Definitions
Basic Properties
Giant Component
Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

$$
\left\langle k^{n}\right\rangle=\left.\left(x \frac{\mathrm{~d}}{\mathrm{~d} x}\right)^{n} F(x)\right|_{x=1}
$$

k th element of sequence (general):

$$
P_{k}=\left.\frac{1}{k!} \frac{\mathrm{d}^{k}}{\mathrm{~d} x^{k}} F(x)\right|_{x=0}
$$

A beautiful, fundamental thing:

The generating function for the sum of two random variables

$$
W=U+V
$$

is
Generating

$$
F_{W}(x)=F_{U}(x) F_{V}(x)
$$

R Convolve yourself with Convolutions: Insert question from assignment 5[].
Try with die and coin p.g.f.'s.

1. Add two coins (tail=0, head=1).
2. Add two dice.
3. Add a coin flip to one die roll.

Edge-degree distribution

8. Recall our condition for a giant component:

$$
\langle k\rangle_{R}=\frac{\left\langle k^{2}\right\rangle-\langle k\rangle}{\langle k\rangle}>1
$$

Let's re-express our condition in terms of generating functions.

Generating Functions
Definitions
Basic Properties
Giant Component
Condition --...-
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

8 We first need the g.f. for R_{k}.
Be'll now use this notation:

$$
\begin{aligned}
& F_{P}(x) \text { is the g.f. for } P_{k} \text {. } \\
& F_{R}(x) \text { is the g.f. for } R_{k} .
\end{aligned}
$$

- Giant component condition in terms of g.f. is:

$$
\langle k\rangle_{R}=F_{R}^{\prime}(1)>1 .
$$

Now find how F_{R} is related to $F_{P} \ldots$

Edge-degree distribution

We have

$$
F_{R}(x)=\sum_{k=0}^{\infty} R_{k} x^{k}=\sum_{k=0}^{\infty} \frac{(k+1) P_{k+1}}{\langle k\rangle} x^{k} .
$$

Shift index to $j=k+1$ and pull out $\frac{1}{\langle k\rangle}$:

$$
\begin{gathered}
F_{R}(x)=\frac{1}{\langle k\rangle} \sum_{j=1}^{\infty} j P_{j} x^{j-1}=\frac{1}{\langle k\rangle} \sum_{j=1}^{\infty} P_{j} \frac{\mathrm{~d}}{\mathrm{~d} x} x^{j} \\
=\frac{1}{\langle k\rangle} \frac{\mathrm{d}}{\mathrm{~d} x} \sum_{j=1}^{\infty} P_{j} x^{j}=\frac{1}{\langle k\rangle} \frac{\mathrm{d}}{\mathrm{~d} x}\left(F_{P}(x)-P_{0}\right)=\frac{1}{\langle k\rangle} F_{P}^{\prime}(x) .
\end{gathered}
$$

Finally, since $\langle k\rangle=F_{P}^{\prime}(1)$,

$$
F_{R}(x)=\frac{F_{P}^{\prime}(x)}{F_{P}^{\prime}(1)}
$$

Generating Functions
Definitions
Basic Properties
Giant Component
Condition-----
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Edge-degree distribution

Recall giant component condition is
$\langle k\rangle_{R}=F_{R}^{\prime}(1)>1$.
Since we have $F_{R}(x)=F_{P}^{\prime}(x) / F_{P}^{\prime}(1)$,

$$
F_{R}^{\prime}(x)=\frac{F_{P}^{\prime \prime}(x)}{F_{P}^{\prime}(1)}
$$

Definitions
Basic Properties
Giant Component

Setting $x=1$, our condition becomes

$$
\frac{F_{P}^{\prime \prime}(1)}{F_{P}^{\prime}(1)}>1
$$

Size distributions

To figure out the size of the largest component (S_{1}), we need more resolution on component sizes.

Definitions:

\& $\pi_{n}=$ probability that a random node belongs to a finite component of size $n<\infty$.
. $\rho_{n}=$ probability that a random end of a random link leads to a finite subcomponent of size $n<\infty$.

Local-global connection:

$$
\begin{aligned}
& P_{k}, R_{k} \Leftrightarrow \pi_{n}, \rho_{n} \\
& \text { neighbors } \Leftrightarrow \text { components }
\end{aligned}
$$

Generating

Connecting probabilities:

Generating Functions Basic Properties Giant Component Component sizes Useful results size of the Giant
Component Average Component Size

Markov property of random networks connects π_{n}, ρ_{n}, and P_{k}.

Connecting probabilities:

Markov property of random networks connects ρ_{n} and R_{k}.

Generating Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes Useful results

Size of the Gian

Component
Average Component Size
References

G.f.'s for component size distributions:

$$
F_{\pi}(x)=\sum_{n=0}^{\infty} \pi_{n} x^{n} \text { and } F_{\rho}(x)=\sum_{n=0}^{\infty} \rho_{n} x^{n}
$$

The largest component:

Subtle key: $F_{\pi}(1)$ is the probability that a node belongs to a finite component.
Therefore: $S_{1}=1-F_{\pi}(1)$.

Our mission, which we accept:
Determine and connect the four generating functions

$$
F_{P}, F_{R}, F_{\pi} \text {, and } F_{\rho} .
$$

Generating Functions
Definitions
Basic Properties
Giant Component

Condition

Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Useful results we'll need for g.f.'s

Sneaky Result 1:

\& Consider two random variables U and V whose values may be $0,1,2, \ldots$
Write probability distributions as U_{k} and V_{k} and g.f.'s as F_{U} and F_{V}.

SR1: If a third random variable is defined as

$$
W=\sum_{i=1}^{U} V^{(i)} \text { with each } V^{(i)} \stackrel{d}{=} V
$$

then

$$
F_{W}(x)=F_{U}\left(F_{V}(x)\right)
$$

Proof of SR1:

Write probability that variable W has value k as W_{k}.

$$
\begin{gathered}
W_{k}=\sum_{j=0}^{\infty} U_{j} \times \operatorname{Pr}(\text { sum of } j \text { draws of variable } V=k) \\
=\sum_{j=0}^{\infty} U_{j} \sum_{\substack{\left\{i_{1}, i_{2}, \ldots, i_{j}\right\} \mid \\
i_{1}+i_{2}+\ldots+i_{j}=k}} V_{i_{1}} V_{i_{2}} \ldots V_{i_{j}} \\
\therefore F_{W}(x)=\sum_{k=0}^{\infty} W_{k} x^{k}=\sum_{k=0}^{\infty} \sum_{j=0}^{\infty} U_{j} \sum_{\left\{i_{1}, i_{2}, \ldots, i_{j}\right\}}^{\infty} V_{i_{1}+i_{2}+\ldots+i_{j}=k} V_{i_{1}} V_{i_{2}} \ldots V_{i_{j}} x^{k} \\
=\sum_{j=0}^{\infty} U_{j} \sum_{k=0}^{\infty} \sum_{\substack{ }}^{\sum_{\left.i i_{1}, i_{2}, \ldots, i_{j}\right\}}} \begin{array}{l}
i_{1}+i_{2}+\ldots+i_{j}=k
\end{array}
\end{gathered}
$$

Proof of SR1:

With some concentration, observe:

$$
\begin{aligned}
& F_{W}(x)=\sum_{j=0}^{\infty} U_{j} \sum_{k=0}^{\infty} \sum_{\substack{\left\{i_{1}, i_{2}, \ldots, i_{j}\right\} \\
i_{1}+i_{2}+\ldots+i_{j}=k}} V_{i_{1}} x^{i_{1}} V_{i_{2}} x^{i_{2} \cdots V_{i_{j}} x^{i_{j}}} \\
& \underbrace{\left(\sum_{i^{\prime}=0}^{\infty} V_{i^{\prime}} x^{i^{\prime}}\right)^{j}=\left(F_{V}(x)\right)^{j}}_{x^{k} \text { piece of }\left(\sum_{i^{\prime}=0}^{\infty} V_{i^{\prime}} x^{i^{\prime}}\right)^{j}} \\
&=\sum_{j=0}^{\infty} U_{j}\left(F_{V}(x)\right)^{j} \\
&=F_{U}\left(F_{V}(x)\right)
\end{aligned}
$$

Alternate, groovier proof in the accompanying assignment.

Generating
Functions
Definitions
Basic Properties
Giant Component
Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Useful results we'll need for g.f.'s

Sneaky Result 2:

Start with a random variable U with distribution
$U_{k}(k=0,1,2, \ldots)$
SR2: If a second random variable is defined as

$$
V=U+1 \text { then } F_{V}(x)=x F_{U}(x)
$$

Generating

Reason: $V_{k}=U_{k-1}$ for $k \geq 1$ and $V_{0}=0$.

$$
\begin{aligned}
& \therefore F_{V}(x)=\sum_{k=0}^{\infty} V_{k} x^{k}=\sum_{k=1}^{\infty} U_{k-1} x^{k} \\
& \quad=x \sum_{j=0}^{\infty} U_{j} x^{j}=x F_{U}(x)
\end{aligned}
$$

Useful results we'll need for g.f.'s

Generalization of SR2:

(1) If $V=U+i$ then

$$
F_{V}(x)=x^{i} F_{U}(x) .
$$

Generating Functions
Definitions
Basic Properties
Giant Component
Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References
(2) If $V=U-i$ then

$$
\begin{gathered}
F_{V}(x)=x^{-i} F_{U}(x) \\
=x^{-i} \sum_{k=0}^{\infty} U_{k} x^{k}
\end{gathered}
$$

Connecting generating functions:
Goal: figure out forms of the component generating functions, F_{π} and F_{ρ}.

Relate π_{n} to P_{k} and ρ_{n} through one step of \square recursion.

Connecting generating functions:

Functions
Definitions
$\pi_{n}=$ probability that a random node belongs to a finite component of size n
$=\sum_{k=0}^{\infty} P_{k} \times \operatorname{Pr}\binom{$ sum of sizes of subcomponents }{ at end of k random links $=n-1}$

Therefore: $F_{\pi}(x)=\underbrace{x}_{\mathrm{SR}^{2} 2} \underbrace{F_{P}\left(F_{\rho}(x)\right)}_{\mathrm{SR} 1}$
Extra factor of x accounts for random node itself.

Connecting generating functions:

Relate ρ_{n} to R_{k} and ρ_{n} through one step of recursion.

Generating
Functions
Deffinitions
Basic Properties
Giant Component
Condition

Component sizes

Size of the Giant
Component
Average Component Size
References

Connecting generating functions:

- $\rho_{n}=$ probability that a random link leads to a finite
subcomponent of size n. Invoke one step of recursion:
$\rho_{n}=$ probability that in following a random edge, the outgoing edges of the node reached lead to finite subcomponents of combined size $n-1$,

Generating Functions
Definitions
Basic Properties
Giant Component
Condition
Component sizes
Useful results
Size of the Giant
Component
$=\sum_{k=0}^{\infty} R_{k} \times \operatorname{Pr}\binom{$ sum of sizes of subcomponents }{ at end of k random links $=n-1}$

Therefore:

$$
F_{\rho}(x)=\underbrace{x}_{\text {SR } 2} \underbrace{F_{R}\left(F_{\rho}(x)\right)}_{\text {SR1 }}
$$

Again, extra factor of x accounts for random node itself.

Connecting generating functions:

We now have two functional equations connecting our generating functions:

$$
F_{\pi}(x)=x F_{P}\left(F_{\rho}(x)\right) \text { and } F_{\rho}(x)=x F_{R}\left(F_{\rho}(x)\right)
$$

Taking stock: We know $F_{P}(x)$ and $F_{R}(x)=F_{P}^{\prime}(x) / F_{P}^{\prime}(1)$.
. We first untangle the second equation to find F_{ρ}
We can do this because it only involves F_{ρ} and F_{R}.
The first equation then immediately gives us F_{π} in terms of F_{ρ} and F_{R}.

Component sizes

Remembering vaguely what we are doing:
Finding F_{π} to obtain the fractional size of the largest component $S_{1}=1-F_{\pi}(1)$.
Set $x=1$ in our two equations:
Generating
Functions
Definitions
Basic Properties
Giant Component
Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

$$
F_{\pi}(1)=F_{P}\left(F_{\rho}(1)\right) \text { and } F_{\rho}(1)=F_{R}\left(F_{\rho}(1)\right)
$$

Solve second equation numerically for $F_{\rho}(1)$.
\& Plug $F_{\rho}(1)$ into first equation to obtain $F_{\pi}(1)$.

Component sizes

Example: Standard random graphs.

We can show $F_{P}(x)=e^{-\langle k\rangle(1-x)}$

$$
\begin{gathered}
\Rightarrow F_{R}(x)=F_{P}^{\prime}(x) / F_{P}^{\prime}(1) \\
=\langle k\rangle e^{-\langle k\rangle(1-x)} /\left.\langle k\rangle e^{-\langle k\rangle\left(1-x^{\prime}\right)}\right|_{x^{\prime}=1} \\
=e^{-\langle k\rangle(1-x)}=F_{P}(x) \quad \text {..aha! }
\end{gathered}
$$

RHS's of our two equations are the same.
So $F_{\pi}(x)=F_{\rho}(x)=x F_{R}\left(F_{\rho}(x)\right)=x F_{R}\left(F_{\pi}(x)\right)$
Consistent with how our dirty (but wrong) trick
Generating Functions
Deffinitions
Basic Properties
Giant Component
Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component size
 worked earlier ...
8 $\pi_{n}=\rho_{n}$ just as $P_{k}=R_{k}$.

Component sizes

We are down to

$$
F_{\pi}(x)=x F_{R}\left(F_{\pi}(x)\right) \text { and } F_{R}(x)=e^{-\langle k\rangle(1-x)} .
$$

$$
\therefore F_{\pi}(x)=x e^{-\langle k\rangle\left(1-F_{\pi}(x)\right)}
$$

Re're first after $S_{1}=1-F_{\pi}(1)$ so set $x=1$ and replace $F_{\pi}(1)$ by $1-S_{1}$:

Generating

Functions
Deffinitions
Basic Properties
Giant Component
Condition

- Component sizes

Useful results
Size of the Giant
Component
Average Component Size
References
$1-S_{1}=e^{-\langle k\rangle S_{1}}$
Or: $\langle k\rangle=\frac{1}{S_{1}} \ln \frac{1}{1-S_{1}}$

A few simple random networks to contemplate and play around with:

Notation: The Kronecker delta function [$\delta_{i j}=1$ if $i=j$ and 0 otherwise.

- $P_{k}=\delta_{k 1}$.

P $P_{k}=\delta_{k 2}$.

Generating
Functions
Definitions
Basic Properties
Giant Component
Condition
Component sizes
Useful results
Size of the Giant
component
Average Component Size
References
($P_{k}=\delta_{k 3}$.
($P_{k}=\delta_{k k^{\prime}}$ for some fixed $k^{\prime} \geq 0$.

- $P_{k}=\frac{1}{2} \delta_{k 1}+\frac{1}{2} \delta_{k 3}$.
- $P_{k}=a \delta_{k 1}+(1-a) \delta_{k 3}$, with $0 \leq a \leq 1$.
- $P_{k}=\frac{1}{2} \delta_{k 1}+\frac{1}{2} \delta_{k k^{\prime}}$ for some fixed $k^{\prime} \geq 2$.
- $P_{k}=a \delta_{k 1}+(1-a) \delta_{k k^{\prime}}$ for some fixed $k^{\prime} \geq 2$ with $0 \leq a \leq 1$.

$$
P_{k}=\frac{1}{2} \delta_{k 1}+\frac{1}{2} \delta_{k 3} .
$$

8. We find (two ways): $R_{k}=\frac{1}{4} \delta_{k 0}+\frac{3}{4} \delta_{k 2}$.
\& A giant component exists because:
$\langle k\rangle_{R}=0 \times 1 / 4+2 \times 3 / 4=3 / 2>1$.
Generating functions for P_{k} and R_{k} :

$$
F_{P}(x)=\frac{1}{2} x+\frac{1}{2} x^{3} \text { and } F_{R}(x)=\frac{1}{4} x^{0}+\frac{3}{4} x^{2}
$$

- Check for goodness:

$$
\begin{aligned}
& F_{R}(x)=F_{P}^{\prime}(x) / F_{P}^{\prime}(1) \text { and } F_{P}(1)=F_{R}(1)=1 . \\
& F_{P}^{\prime}(1)=\langle k\rangle_{P}=2 \text { and } F_{R}^{\prime}(1)=\langle k\rangle_{R}=\frac{3}{2} .
\end{aligned}
$$

Generating

Functions
Definitions
Basic Properties

Giant Component

Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Things to figure out: Component size generating functions for π_{n} and ρ_{n}, and the size of the giant component.

UNIVERSITY qVERMONT

Find $F_{\rho}(x)$ first:

We know:

$$
F_{\rho}(x)=x F_{R}\left(F_{\rho}(x)\right) .
$$

Generating

Definitions
Basic Properties
Giant Component
Condition
Component sizes Useful results
Size of the Giant Component
Average Component Size
References

| Zn |
| :--- | :--- |
| UNIVERSITY |
| UNERMONT |\(| \begin{aligned} \& 0

\& 0\end{aligned}\)
つa^ 39 of 55

Sticking things in things, we have:

$$
F_{\rho}(x)=x\left(\frac{1}{4}+\frac{3}{4}\left[F_{\rho}(x)\right]^{2}\right) .
$$

Generating

Definitions

Basic Properties
Giant Component
Condition
Component sizes
Useful results
Size of the Giant Component

Please and thank you:

$$
F_{\rho}(x)=\frac{2}{3 x}\left(1 \pm \sqrt{1-\frac{3}{4} x^{2}}\right)
$$

R Time for a Taylor series expansion.
The promise: non-negative powers of x with non-negative coefficients.
First: which sign do we take?

UNiversity L-s VERMONT

Because ρ_{n} is a probability distribution, we know $F_{\rho}(1) \leq 1$ and $F_{\rho}(x) \leq 1$ for $0 \leq x \leq 1$.
Thinking about the limit $x \rightarrow 0$ in

$$
F_{\rho}(x)=\frac{2}{3 x}\left(1 \pm \sqrt{1-\frac{3}{4} x^{2}}\right)
$$

we see that the positive sign solution blows to smithereens, and the negative one is okay.
So we must have:

$$
F_{\rho}(x)=\frac{2}{3 x}\left(1-\sqrt{1-\frac{3}{4} x^{2}}\right)
$$

We can now deploy the Taylor expansion:

$$
(1+z)^{\theta}=\binom{\theta}{0} z^{0}+\binom{\theta}{1} z^{1}+\binom{\theta}{2} z^{2}+\binom{\theta}{2} z^{3}+\ldots
$$

Generating

Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes

Let's define a binomial for arbitrary θ and $k=0,1,2, \ldots$:

$$
\binom{\theta}{k}=\frac{\Gamma(\theta+1)}{\Gamma(k+1) \Gamma(\theta-k+1)}
$$

For $\theta=\frac{1}{2}$, we have:

$$
\begin{gathered}
(1+z)^{\frac{1}{2}}=\binom{\frac{1}{2}}{0} z^{0}+\binom{\frac{1}{2}}{1} z^{1}+\binom{\frac{1}{2}}{2} z^{2}+\ldots \\
=\frac{\Gamma\left(\frac{3}{2}\right)}{\Gamma(1) \Gamma\left(\frac{3}{2}\right)} z^{0}+\frac{\Gamma\left(\frac{3}{2}\right)}{\Gamma(2) \Gamma\left(\frac{1}{2}\right)} z^{1}+\frac{\Gamma\left(\frac{3}{2}\right)}{\Gamma(3) \Gamma\left(-\frac{1}{2}\right)} z^{2}+\ldots \\
=1+\frac{1}{2} z-\frac{1}{8} z^{2}+\frac{1}{16} z^{3}-\ldots
\end{gathered}
$$

where we've used $\Gamma(x+1)=x \Gamma(x)$ and noted that $\Gamma\left(\frac{1}{2}\right)=\frac{\sqrt{\pi}}{2}$.
Note: $(1+z)^{\theta} \sim 1+\theta z$ always.

Generating
Functions
Definitions
Basic Properties
Giant Component
Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Totally psyched, we go back to here:

$$
F_{\rho}(x)=\frac{2}{3 x}\left(1-\sqrt{1-\frac{3}{4} x^{2}}\right) .
$$

Setting $z=-\frac{3}{4} x^{2}$ and expanding, we have:

$$
\begin{gathered}
F_{\rho}(x)= \\
\frac{2}{3 x}\left(1-\left[1+\frac{1}{2}\left(-\frac{3}{4} x^{2}\right)^{1}-\frac{1}{8}\left(-\frac{3}{4} x^{2}\right)^{2}+\frac{1}{16}\left(-\frac{3}{4} x^{2}\right)^{3}\right]+\ldots\right)
\end{gathered}
$$

Giving:

$$
F_{\rho}(x)=\sum_{n=0}^{\infty} \rho_{n} x^{n}=
$$

$$
\frac{1}{4} x+\frac{3}{64} x^{3}+\frac{9}{512} x^{5}+\ldots+\frac{2}{3}\left(\frac{3}{4}\right)^{k} \frac{(-1)^{k+1} \Gamma\left(\frac{3}{2}\right)}{\Gamma(k+1) \Gamma\left(\frac{3}{2}-k\right)} x^{2 k-1}+\ldots
$$

Do odd powers make sense?

We can now find $F_{\pi}(x)$ with:
Generating
Functions
Definitions
Basic Properties
Giant Component
Condition
Component sizes

$$
=x \frac{1}{2}\left(\left(F_{\rho}(x)\right)^{1}+\left(F_{\rho}(x)\right)^{3}\right)
$$

$=x \frac{1}{2}\left[\frac{2}{3 x}\left(1-\sqrt{1-\frac{3}{4} x^{2}}\right)+\frac{2^{3}}{(3 x)^{3}}\left(1-\sqrt{1-\frac{3}{4} x^{2}}\right)^{3}\right]$.
Delicious.
In principle, we can now extract all the π_{n}.
But let's just find the size of the giant component.

Useful results

Size of the Giant Component Average Component Size

References

(3irst, we need $F_{\rho}(1)$:

$$
\left.F_{\rho}(x)\right|_{x=1}=\frac{2}{3 \cdot 1}\left(1-\sqrt{1-\frac{3}{4} 1^{2}}\right)=\frac{1}{3}
$$

This is the probability that a random edge leads to a sub-component of finite size.
Next:

Generating

Functions
Deffinitions
Basic Properties
Giant Component
Condition
Component sizes
Useful results
Size of the Giant
component
Average Component Size
References
$F_{\pi}(1)=1 \cdot F_{P}\left(F_{\rho}(1)\right)=F_{P}\left(\frac{1}{3}\right)=\frac{1}{2} \cdot \frac{1}{3}+\frac{1}{2}\left(\frac{1}{3}\right)^{3}=\frac{5}{27}$.

This is the probability that a random chosen node belongs to a finite component.

Finally, we have

atizention eve

$$
\frac{1}{4}
$$

Average component size

Next: find average size of finite components $\langle n\rangle$.

Using standard G.F. result: $\langle n\rangle=F_{\pi}^{\prime}(1)$.
Try to avoid finding $F_{\pi}(x) \ldots$
Starting from $F_{\pi}(x)=x F_{P}\left(F_{\rho}(x)\right)$, we differentiate:

$$
F_{\pi}^{\prime}(x)=F_{P}\left(F_{\rho}(x)\right)+x F_{\rho}^{\prime}(x) F_{P}^{\prime}\left(F_{\rho}(x)\right)
$$

Generating
Functions
Deffitions
Basic Properties
Giant Component
Condition
Component sizes
Useful results
size of the Giant
Component
Average Component Size
References
While $F_{\rho}(x)=x F_{R}\left(F_{\rho}(x)\right)$ gives

$$
F_{\rho}^{\prime}(x)=F_{R}\left(F_{\rho}(x)\right)+x F_{\rho}^{\prime}(x) F_{R}^{\prime}\left(F_{\rho}(x)\right)
$$

R Now set $x=1$ in both equations.
We solve the second equation for $F_{\rho}^{\prime}(1)$ (we must already have $F_{\rho}(1)$).
Plug $F_{\rho}^{\prime}(1)$ and $F_{\rho}(1)$ into first equation to find $F_{\pi}^{\prime}(1)$.

Average component size

Example: Standard random graphs.
Use fact that $F_{P}=F_{R}$ and $F_{\pi}=F_{\rho}$.
Two differentiated equations reduce to only one:

$$
F_{\pi}^{\prime}(x)=F_{P}\left(F_{\pi}(x)\right)+x F_{\pi}^{\prime}(x) F_{P}^{\prime}\left(F_{\pi}(x)\right)
$$

Generating

Functions
Definitions
Basic Properties

$$
\text { Rearrange: } \quad F_{\pi}^{\prime}(x)=\frac{F_{P}\left(F_{\pi}(x)\right)}{1-x F_{P}^{\prime}\left(F_{\pi}(x)\right)}
$$

Simplify denominator using $F_{P}^{\prime}(x)=\langle k\rangle F_{P}(x)$
Replace $F_{P}\left(F_{\pi}(x)\right)$ using $F_{\pi}(x)=x F_{P}\left(F_{\pi}(x)\right)$.
Set $x=1$ and replace $F_{\pi}(1)$ with $1-S_{1}$.

$$
\text { End result: }\langle n\rangle=F_{\pi}^{\prime}(1)=\frac{\left(1-S_{1}\right)}{1-\langle k\rangle\left(1-S_{1}\right)}
$$

Average component size

Our result for standard random networks:

$$
\langle n\rangle=F_{\pi}^{\prime}(1)=\frac{\left(1-S_{1}\right)}{1-\langle k\rangle\left(1-S_{1}\right)}
$$

Recall that $\langle k\rangle=1$ is the critical value of average degree for standard random networks.
Look at what happens when we increase $\langle k\rangle$ to 1 from below.
8. We have $S_{1}=0$ for all $\langle k\rangle<1$ so

$$
\langle n\rangle=\frac{1}{1-\langle k\rangle}
$$

This blows up as $\langle k\rangle \rightarrow 1$.
Reason: we have a power law distribution of component sizes at $\langle k\rangle=1$.
R Typical critical point behavior ...

Average component size

8. Limits of $\langle k\rangle=0$ and ∞ make sense for

$$
\langle n\rangle=F_{\pi}^{\prime}(1)=\frac{\left(1-S_{1}\right)}{1-\langle k\rangle\left(1-S_{1}\right)}
$$

As $\langle k\rangle \rightarrow 0, S_{1}=0$, and $\langle n\rangle \rightarrow 1$.
All nodes are isolated.
As $\langle k\rangle \rightarrow \infty, S_{1} \rightarrow 1$ and $\langle n\rangle \rightarrow 0$.
No nodes are outside of the giant component.
Extra on largest component size:
For $\langle k\rangle=1, S_{1} \sim N^{2 / 3} / N$.

Generating
Functions
Deffinitions
Basic Properties
Giant Component
Condition
Component sizes
Useful results
size of the Giant
Component
Average Component Size
References

For $\langle k\rangle<1, S_{1} \sim(\log N) / N$.

Let's return to our example: $P_{k}=\frac{1}{2} \delta_{k 1}+\frac{1}{2} \delta_{k 3}$.
We're after:

$$
\langle n\rangle=F_{\pi}^{\prime}(1)=F_{P}\left(F_{\rho}(1)\right)+F_{\rho}^{\prime}(1) F_{P}^{\prime}\left(F_{\rho}(1)\right)
$$

where we first need to compute

$$
F_{\rho}^{\prime}(1)=F_{R}\left(F_{\rho}(1)\right)+F_{\rho}^{\prime}(1) F_{R}^{\prime}\left(F_{\rho}(1)\right) .
$$

Generating
Functions
Deffinitions
Basic Properties
Giant Component
Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size

References

Place stick between teeth, and recall that we have:

$$
F_{P}(x)=\frac{1}{2} x+\frac{1}{2} x^{3} \text { and } F_{R}(x)=\frac{1}{4} x^{0}+\frac{3}{4} x^{2}
$$

Differentiation gives us:

$$
F_{P}^{\prime}(x)=\frac{1}{2}+\frac{3}{2} x^{2} \text { and } F_{R}^{\prime}(x)=\frac{3}{2} x
$$

We bite harder and use $F_{\rho}(1)=\frac{1}{3}$ to find:

$$
\begin{aligned}
F_{\rho}^{\prime}(1) & =F_{R}\left(F_{\rho}(1)\right)+F_{\rho}^{\prime}(1) F_{R}^{\prime}\left(F_{\rho}(1)\right) \\
& =F_{R}\left(\frac{1}{3}\right)+F_{\rho}^{\prime}(1) F_{R}^{\prime}\left(\frac{1}{3}\right) \\
& =\frac{1}{4}+\frac{\not \partial}{4} \frac{1}{3 \not 2}+F_{\rho}^{\prime}(1) \frac{\not 2}{2} \frac{1}{\not \partial}
\end{aligned}
$$

Generating
Functions
Deffintions
Basic Properties
Giant Component
Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

After some reallocation of objects, we have $F_{\rho}^{\prime}(1)=\frac{13}{2}$.

$$
\begin{gathered}
\text { Finally: }\langle n\rangle=F_{\pi}^{\prime}(1)=F_{P}\left(\frac{1}{3}\right)+\frac{13}{2} F_{P}^{\prime}\left(\frac{1}{3}\right) \\
= \\
\frac{1}{2} \frac{1}{3}+\frac{1}{2} \frac{1}{3^{3}}+\frac{13}{2}\left(\frac{1}{2}+\frac{\not \partial}{2} \frac{1}{3^{\not 2}}\right)=\frac{5}{27}+\frac{13}{3}=\frac{122}{27} .
\end{gathered}
$$

-

So, kinda small.

Nutshell

Generating functions allow us to strangely calculate features of random networks.
. They're a bit scary and magical.
We'll find generating functions useful for contagion.
8
But we'll also see that more direct, physics-bearing calculations are possible.

Neural reboot (NR):

Elevation:

Generating

Functions
Definitions
Basic Properties
Giant Component
Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

のaく 54 of 55

References I

[1] H. S. Wilf.
Generatingfunctionology.
A K Peters, Natick, MA, 3rd edition, 2006. pdf[

