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Generatingfunctionology [1]

 Idea: Given a sequence �0, �1, �2, … , associate
each element with a distinct function or other
mathematical object.

 Well-chosen functions allow us to manipulate
sequences and retrieve sequence elements.

.
Definition:..

.

 The generating function (g.f.) for a sequence {��}
is �(�� = ∞∑�=0 ����.

 Roughly: transforms a vector in �∞ into a
function defined on �1.

 Related to Fourier, Laplace, Mellin, …

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Simple examples:
.
Rolling dice and flipping coins:
..

.

 �( � = ��(throwing a � = 1/6 where = 1, 2, … , 6.� ( �(�� = 6∑=1 �( )� = 16(���2 ��3 ��4 ��5 ��6�.
 �(coin)0 = ��(head� = 1/2, �(coin)1 = ��(tail� = 1/2.� (coin)(�� = �(coin)0 �0 � �(coin)1 �1 = 12(1 � ��.
 A generating function for a probability distribution

is called a Probability Generating Function (p.g.f.).
 We’ll come back to these simple examples as we

derive various delicious properties of generating
functions.

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Example
 Take a degree distribution with exponential decay:� = ��−�

where geometricsumfully, we have � = 1 − �−�
 The generating function for this distribution is�(�� = ∞∑=0 � � = ∞∑=0 ��−� � = �1 − ��−� .
 Notice that �(1� = �/(1 − �−�� = 1.
 For probability distributions, we must always have�(1� = 1 since�(1� = ∞∑=0 � 1 = ∞∑=0 � = 1.
 Check die and coin p.g.f.’s.

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Properties:
 Average degree:⟨�⟩ = ∞∑=0 �� = ∞∑=0 �� � −1∣�=1= d

d��(��∣�=1 = � ′(1�
 In general, many calculations become simple, if a little

abstract.
 For our exponential example:� ′(�� = (1 − �−���−�(1 − ��−��2 .


So: ⟨�⟩ = � ′(1� = �−�(1 − �−�� .
 Check for die and coin p.g.f.’s.

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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.
Useful pieces for probability distributions:
..

.

 Normalization: �(1� = 1
 First moment: ⟨�⟩ = � ′(1�
 Higher moments:⟨��⟩ = (� d

d�)� �(��∣�=1
 �th element of sequence (general):� = 1�! d

d� �(��∣�=0

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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.
A beautiful, fundamental thing:
..

.

 The generating function for the sum of two
random variables = �
is � (�� = � (��� (��.

 Convolve yourself with Convolutions:
Insert question from assignment 5 .

 Try with die and coin p.g.f.’s.
1. Add two coins (tail=0, head=1).
2. Add two dice.
3. Add a coin flip to one die roll.

http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.uvm.edu/~pdodds/teaching/courses/2016-01UVM-303/docs/{2016-01UVM-303}assignment5.pdf
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Edge-degree distribution

 Recall our condition for a giant component:⟨ ⟩� = ⟨ 2⟩ − ⟨ ⟩⟨ ⟩ > 1.
 Let’s re-express our condition in terms of

generating functions.
 We first need the g.f. for � .
 We’ll now use this notation:�� (�� is the g.f. for � .��(�� is the g.f. for � .

 Giant component condition in terms of g.f. is:⟨ ⟩� = � ′�(1� > 1.
 Now find how �� is related to �� …

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Edge-degree distribution
 We have��(�� = ∞∑=0 � � = ∞∑=0 ( � 1�� �1⟨ ⟩ � .

Shift index to = � 1 and pull out 1⟨ ⟩ :��(�� = 1⟨ ⟩ ∞∑=1 � � −1 = 1⟨ ⟩ ∞∑=1 � d
d��

= 1⟨ ⟩ d
d� ∞∑=1 � � = 1⟨ ⟩ d

d� (�� (�� − �0� = 1⟨ ⟩� ′� (��.
Finally, since ⟨ ⟩ = � ′� (1�,��(�� = � ′� (��� ′� (1�

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Edge-degree distribution

 Recall giant component condition is⟨ ⟩� = � ′�(1� > 1.
 Since we have ��(�� = � ′� (��/� ′� (1�,� ′�(�� = � ″� (��� ′� (1�.
 Setting � = 1, our condition becomes� ″� (1�� ′� (1� > 1

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Size distributions

To figure out the size of the largest component (�1),
we need more resolution on component sizes.
.
Definitions:..

.

 �� = probability that a random node belongs to a
finite component of size � < ∞.

 �� = probability that a random end of a random
link leads to a finite subcomponent of size � < ∞.

.
Local-global connection:
..

.

� , � ⇔ ��, ��
neighbors ⇔ components

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Connecting probabilities:

 Markov property of random networks connects��, ��, and � .

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Connecting probabilities:

 Markov property of random networks connects ��
and � .

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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.
G.f.’s for component size distributions:
..

.

 ��(�� = ∞∑�=0 ���� and ��(�� = ∞∑�=0 ����
.
The largest component:
..

.

 Subtle key: ��(1� is the probability that a node
belongs to a finite component.

 Therefore: �1 = 1 − ��(1�.
.
Our mission, which we accept:
..

.

 Determine and connect the four generating
functions �� , ��, ��, and ��.

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Useful results we’ll need for g.f.’s

.
Sneaky Result 1:
..

.

 Consider two random variables and whose
values may be 0, 1, 2, …

 Write probability distributions as and and
g.f.’s as � and � .

 SR1: If a third random variable is defined as= ∑=1 ( � with each ( � �=
then � (�� = � (� (���

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Proof of SR1:
Write probability that variable has value as .= ∞∑=0 × Pr(sum of draws of variable = )

= ∞∑=0 ∑{ 1, 2,…, }|1� 2�…� = 1 2 ⋯
∴� (�� = ∞∑=0 � = ∞∑=0 ∞∑=0 ∑{ 1, 2,…, }|1� 2�…� = 1 2 ⋯ �

= ∞∑=0 ∞∑=0 ∑{ 1, 2,…, }|1� 2�…� = 1� 1 2� 2 ⋯ �

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Proof of SR1:
With some concentration, observe:

� (�� = ∞∑=0 ∞∑=0 ∑{ 1, 2,…, }|1� 2�…� = 1� 1 2� 2 ⋯ �⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟� piece of (∑∞′=0 ′� ′)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟(∑∞′=0 ′� ′) = (� (���= ∞∑=0 (� (���= � (� (��� 
 Alternate, groovier proof in the accompanying

assignment.

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Useful results we’ll need for g.f.’s
.
Sneaky Result 2:
..

.

 Start with a random variable with distribution
( = 0, 1, 2, … )

 SR2: If a second random variable is defined as= � 1 then � (�� = �� (��
 Reason: = −1 for ≥ 1 and 0 = 0.
 ∴� (�� = ∞∑=0 � = ∞∑=1 −1�

= � ∞∑=0 � = �� (��.

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Useful results we’ll need for g.f.’s

.
Generalization of SR2:..

.

 (1) If = � then� (�� = � � (��.
 (2) If = − then� (�� = �− � (��

= �− ∞∑=0 �

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Connecting generating functions:
 Goal: figure out forms of the component

generating functions, �� and ��.

 Relate �� to � and �� through one step of
recursion.

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Connecting generating functions:

 �� = probability that a random node belongs to a
finite component of size �= ∞∑=0 � ×Pr( sum of sizes of subcomponents

at end of random links = � − 1 )


Therefore: ��(�� = �⏟
.SR2

�� (��(��)⏟⏟⏟⏟⏟
.SR1

 Extra factor of � accounts for random node itself.

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Connecting generating functions:

 Relate �� to � and �� through one step of
recursion.

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Connecting generating functions:

 �� = probability that a random link leads to a finite
subcomponent of size �.

 Invoke one step of recursion:�� = probability that in following a random edge,
the outgoing edges of the node reached lead to
finite subcomponents of combined size � − 1,= ∞∑=0 � ×Pr( sum of sizes of subcomponents

at end of random links = � − 1 )


Therefore: ��(�� = �⏟
.SR2

�� (��(��)⏟⏟⏟⏟⏟
.SR1

 Again, extra factor of � accounts for random node
itself.

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Connecting generating functions:

 We now have two functional equations connecting
our generating functions:��(�� = ��� (��(��) and ��(�� = ��� (��(��)

 Taking stock: We know �� (�� and��(�� = � ′� (��/� ′� (1�.
 We first untangle the second equation to find ��
 We can do this because it only involves �� and ��.
 The first equation then immediately gives us �� in

terms of �� and ��.

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Component sizes

 Remembering vaguely what we are doing:

Finding �� to obtain the fractional size of the
largest component �1 = 1 − ��(1�.

 Set � = 1 in our two equations:��(1� = �� (��(1�) and ��(1� = �� (��(1�)
 Solve second equation numerically for ��(1�.
 Plug ��(1� into first equation to obtain ��(1�.

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Component sizes
Example: Standard random graphs.
 We can show �� (�� = �−⟨ ⟩(1−��⇒ ��(�� = � ′� (��/� ′� (1�

= ⟨ ⟩�−⟨ ⟩(1−��/⟨ ⟩�−⟨ ⟩(1−�′�|�′=1= �−⟨ ⟩(1−�� = �� (�� …aha!

 RHS’s of our two equations are the same.
 So ��(�� = ��(�� = ���(��(��� = ���(��(���
 Consistent with how our dirty (but wrong) trick

worked earlier …
 �� = �� just as � = � .

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Component sizes
 We are down to��(�� = ���(��(��� and ��(�� = �−⟨ ⟩(1−��.
 ∴��(�� = ��−⟨ ⟩(1−��(���
 We’re first after �1 = 1 − ��(1� so set � = 1 and

replace ��(1� by 1 − �1:
1 − �1 = �−⟨ ⟩�1

Or: ⟨ ⟩ = 1�1 ln
11 − �1

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

〈 k 〉

S
1

 Just as we found with our dirty trick …
 Again, we (usually) have to resort to numerics …

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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.
A few simple random networks to contemplate
and play around with:
..

.

 Notation: The Kronecker delta function � = 1
if = and 0 otherwise.

 � = � 1.
 � = � 2.
 � = � 3.
 � = � ′ for some fixed ′ ≥ 0.
 � = 12� 1 � 12� 3.
 � = �� 1 � (1 − ��� 3, with 0 ≤ � ≤ 1.
 � = 12� 1 � 12� ′ for some fixed ′ ≥ 2.
 � = �� 1 � (1 − ��� ′ for some fixed ′ ≥ 2 with0 ≤ � ≤ 1.

http://www.uvm.edu
http://www.uvm.edu/~pdodds
https://en.wikipedia.org/wiki/Kronecker_delta
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.
A joyful example :
..

.

� = 12� 1 � 12� 3.
 We find (two ways): � = 14� 0 � 34� 2.
 A giant component exists because:⟨ ⟩� = 0 × 1/4 � 2 × 3/4 = 3/2 > 1.
 Generating functions for � and � :�� (�� = 12� � 12�3 and ��(�� = 14�0 � 34�2
 Check for goodness:

 ��(�� = � ′� (��/� ′� (1� and �� (1� = ��(1� = 1.
 � ′� (1� = ⟨�⟩� = 2 and � ′�(1� = ⟨�⟩� = 32 .

 Things to figure out: Component size generating
functions for �� and ��, and the size of the giant
component.

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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.
Find ��(�� first:
..

.

 We know: ��(�� = ��� (��(��) .

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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.

.

 Sticking things in things, we have:��(�� = � (14 � 34 [��(��]2) .
 Rearranging:3� [��(��]2 − 4��(�� � � = 0.
 Please and thank you:��(�� = 23� (1 ± √1 − 34�2)
 Time for a Taylor series expansion.
 The promise: non-negative powers of � with

non-negative coefficients.
 First: which sign do we take?

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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.

.

 Because �� is a probability distribution, we know��(1� ≤ 1 and ��(�� ≤ 1 for 0 ≤ � ≤ 1.
 Thinking about the limit � → 0 in��(�� = 23� (1 ± √1 − 34�2) ,

we see that the positive sign solution blows to
smithereens, and the negative one is okay.

 So we must have:��(�� = 23� (1 − √1 − 34�2) ,
 We can now deploy the Taylor expansion:(1 � ��� = (�0)�0 � (�1)�1 � (�2)�2 � (�2)�3 � …

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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.

.

 Let’s define a binomial for arbitrary � and � = 0, 1, 2, …:(��) = Γ(� � 1�Γ(� � 1�Γ(� − � � 1�
 For � = 12 , we have:(1 � �� 12 = ( 120)�0 � ( 121)�1 � ( 122)�2 � …

= Γ( 32 �Γ(1�Γ( 32 ��0 � Γ( 32 �Γ(2�Γ( 12 ��1 � Γ( 32 �Γ(3�Γ(− 12 ��2 � …= 1 � 12� − 18�2 � 116�3 − …
where we’ve used Γ(� � 1� = �Γ(�� and noted thatΓ( 12 � = √�2 .

 Note: (1 � ��� ∼ 1 � �� always.

http://www.uvm.edu
http://www.uvm.edu/~pdodds


.

.

 Totally psyched, we go back to here:��(�� = 23� (1 − √1 − 34�2) .
 Setting � = − 34 �2 and expanding, we have:��(�� =23� (1 − [1 � 12 (−34�2)1 − 18 (−34�2)2 � 116 (−34�2)3] � …)
 Giving: ��(�� = ∞∑�=0 ���� =14�� 364�3� 9512�5�…�23 (34) (−1� �1Γ( 32 �Γ(� � 1�Γ( 32 − ���2 −1�…
 Do odd powers make sense?
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.

 We can now find ��(�� with:��(�� = ��� (��(���
= �12 ((��(��)1 � (��(��)3)

= �12 ⎡⎢⎣ 23� (1 − √1 − 34�2) � 23(3��3 (1 − √1 − 34�2)3⎤⎥⎦ .
 Delicious.

 In principle, we can now extract all the ��.
 But let’s just find the size of the giant component.

http://www.uvm.edu
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.

.

 First, we need ��(1�:��(��∣�=1 = 23 ⋅ 1 (1 − √1 − 3412) = 13.
 This is the probability that a random edge leads to a

sub-component of finite size.

 Next:��(1� = 1⋅�� (��(1�) = �� (13) = 12⋅13�12 (13)3 = 527.
 This is the probability that a random chosen node

belongs to a finite component.

 Finally, we have�1 = 1 − ��(1� = 1 − 527 = 2227.

http://www.uvm.edu
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Average component size
 Next: find average size of finite components ⟨�⟩.
 Using standard G.F. result: ⟨�⟩ = � ′�(1�.
 Try to avoid finding ��(�� …
 Starting from ��(�� = ��� (��(��), we

differentiate:� ′�(�� = �� (��(��) � �� ′�(��� ′� (��(��)
 While ��(�� = ��� (��(��) gives� ′�(�� = �� (��(��) � �� ′�(��� ′� (��(��)
 Now set � = 1 in both equations.
 We solve the second equation for � ′�(1� (we must

already have ��(1�).
 Plug � ′�(1� and ��(1� into first equation to find� ′�(1�.

http://www.uvm.edu
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Average component size
Example: Standard random graphs.
 Use fact that �� = �� and �� = ��.
 Two differentiated equations reduce to only one:� ′�(�� = �� (��(��� � �� ′�(��� ′� (��(���

Rearrange: � ′�(�� = �� (��(���1 − �� ′� (��(���
 Simplify denominator using � ′� (�� = ⟨ ⟩�� (��
 Replace �� (��(��� using ��(�� = ��� (��(���.
 Set � = 1 and replace ��(1� with 1 − �1.

End result: ⟨�⟩ = � ′�(1� = (1 − �1�1 − ⟨ ⟩(1 − �1�

http://www.uvm.edu
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Average component size
 Our result for standard random networks:⟨�⟩ = � ′�(1� = (1 − �1�1 − ⟨ ⟩(1 − �1�
 Recall that ⟨ ⟩ = 1 is the critical value of average

degree for standard random networks.
 Look at what happens when we increase ⟨ ⟩ to 1

from below.
 We have �1 = 0 for all ⟨ ⟩ < 1 so⟨�⟩ = 11 − ⟨ ⟩
 This blows up as ⟨ ⟩ → 1.
 Reason: we have a power law distribution of

component sizes at ⟨ ⟩ = 1.
 Typical critical point behavior …

http://www.uvm.edu
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Average component size

 Limits of ⟨ ⟩ = 0 and ∞ make sense for⟨�⟩ = � ′�(1� = (1 − �1�1 − ⟨ ⟩(1 − �1�
 As ⟨ ⟩ → 0, �1 = 0, and ⟨�⟩ → 1.
 All nodes are isolated.
 As ⟨ ⟩ → ∞, �1 → 1 and ⟨�⟩ → 0.
 No nodes are outside of the giant component.

.
Extra on largest component size:
..

.

 For ⟨ ⟩ = 1, �1 ∼ �2/3/� .
 For ⟨ ⟩ < 1, �1 ∼ (log��/� .

http://www.uvm.edu
http://www.uvm.edu/~pdodds


COcoNuTS

Generating
Functions
Definitions

Basic Properties

Giant Component
Condition

Component sizes

Useful results

Size of the Giant
Component

Average Component Size

References

.....
.
....
.
....
.
51 of 55

.

.

 Let’s return to our example: � = 12 � 1 � 12 � 3.
 We’re after:⟨�⟩ = � ′�(1� = �� (��(1�) � � ′�(1�� ′� (��(1�)

where we first need to compute� ′�(1� = �� (��(1�) � � ′�(1�� ′� (��(1�) .
 Place stick between teeth, and recall that we have:�� (�� = 12� � 12�3 and ��(�� = 14�0 � 34�2.
 Differentiation gives us:� ′� (�� = 12 � 32�2 and � ′�(�� = 32�.

http://www.uvm.edu
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.

 We bite harder and use ��(1� = 13 to find:� ′�(1� = �� (��(1�) � � ′�(1�� ′� (��(1�)
= �� (13) � � ′�(1�� ′� (13)

= 14 � ✁34 13✁2 � � ′�(1� ✁32 1
✁3.

 After some reallocation of objects, we have � ′�(1� = 132 .


Finally: ⟨�⟩ = � ′�(1� = �� (13) � 132 � ′� (13)= 12 13 � 12 133 � 132 (12 � ✁32 13✁2 ) = 527 � 133 = 12227 .
 So, kinda small.

http://www.uvm.edu
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Nutshell

.

.

 Generating functions allow us to strangely
calculate features of random networks.

 They’re a bit scary and magical.
 We’ll find generating functions useful for

contagion.
 But we’ll also see that more direct, physics-bearing

calculations are possible.
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Neural reboot (NR):

.
Elevation:..

.
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