1. (3 + 3) The 1-d percolation problem:

Consider an infinite 1-d lattice forest with a tree present at any site with probability \(p \).

- Find the distribution of forest sizes as a function of \(p \). Do this by moving along the 1-d world and figuring out the probability that any forest you enter will extend for a total length \(\ell \).
- Find \(p_c \), the critical probability for which a giant component exists.

 \text{Hint: One way to find critical points is to determine when certain average quantities explode. Compute } \langle \ell \rangle \text{ and find } p \text{ such that this expression goes boom (if it does).}

2. Show analytically that the critical probability for site percolation on a triangular lattice is \(p_c = 1/2 \).

 \text{Hint—Real-space renormalization gets it done.:}
 \text{http://www.youtube.com/v/J1kbU5U7QqU?rel=0}

3. (3 + 3)

 Coding, it’s what’s for breakfast:

 (a) Percolation in two dimensions (2-d) provides a classic, nutritious example of a phase transition.
Your mission, whether or not you choose to accept it, is to code up and analyse the L by L square lattice percolation model for varying L.

Take $L = 20, 50, 100, 200, 500, \text{ and } 1000$.

(Go higher if you feel $L = 1000$ is for mere mortals.)

(Go lower if your code explodes.)

Let’s continue with the tree obsession. A site has a tree with probability p, and a sheep grazing on what’s left of a tree with probability $1 - p$.

Forests are defined as any connected component of trees bordered by sheep, where connections are possible with a site’s four nearest neighbors on a lattice.

Do not bagelize (or doughnutize) the landscape (no periodic boundary conditions—boundaries are boundaries).

(Note: this set up is called site percolation. Bond percolation is the alternate case when all links between neighboring sites exist with probability p.)

Steps:

i. For each L, run $N_{\text{tests}} = 100$ tests for occupation probability p moving from 0 to 1 in increments of 10^{-2}. (As for L, use a smaller increment if that’s just how you do things.)

ii. Determine the fractional size of the largest connected forest for each of the N_{tests}, and find the average of these, S_{avg}.

iii. On a single figure, for each L, plot the average S_{avg} as a function of p.

(b) Comment on how $S_{\text{avg}}(p; N)$ changes as a function of L and estimate the critical probability p_c (the percolation threshold).

Helpful reuse of code (intended for black and white image analysis): You can use Matlab’s bwconncomp to find the sizes of components. Very nice.

4. (3 + 3)

(a) Using your model from the previous question and your estimate of p_c, plot the distribution of forest sizes for $p \approx p_c$ for the largest L your code and psychological makeup can withstand. (You can average the distribution over separate simulations.)

Comment on what kind of distribution you find.

(b) Repeat the above for $p = p_c/2$ and $p = p_c + (1 - p_c)/2$, i.e., well below and well above p_c.

Produce plots for both cases, and again, comment on what you find.