1. Generating functions and giant components: In this question, you will use
 generating functions to obtain a number of results we found in class for standard
 random networks.

 (a) For an infinite standard random network (Erdős-Rényi/ER network) with
 average degree $\langle k \rangle$, compute the generating function F_P for the degree
 distribution P_k.

 (Recall the degree distribution is Poisson: $P_k = e^{-\langle k \rangle} \langle k \rangle^k / k!$, $k \geq 0$.)

 (b) Show that $F_P'(1) = \langle k \rangle$ (as it should).

 (c) Using the joyous properties of generating functions, show that the second
 moment of the degree distribution is $\langle k^2 \rangle = \langle k \rangle^2 + \langle k \rangle$.

2. (a) Continuing on from Q1 for infinite standard random networks, find the
 generating function $F_R(x)$ for the $\{R_k\}$, where R_k is the probability that a
 node arrived at by following a random direction on a randomly chosen edge
 has k outgoing edges.

 (b) Now, using $F_R(x)$ determine the average number of outgoing edges from a
 randomly-arrived-at-long-a-random-edge node.

 (c) Given your findings above, what is the condition on $\langle k \rangle$ for a standard
 random network to have a giant component?
3. (a) Find the generating function for the degree distribution P_k of a finite random network with N nodes and an edge probability of p.

(b) Show that the generating function for the finite ER network tends to the generating function for the infinite one. Do this by taking the limit $N \to \infty$ and $p \to 0$ such that $p(N - 1) = \langle k \rangle$ remains constant.

4. (a) Prove that if random variables U and V are distributed over the non-negative integers then the generating function for the random variable $W = U + V$ is

$$F_W(x) = F_U(x)F_V(x).$$

Denote the specific distributions by $\Pr(U = i) = U_i$, $\Pr(V = i) = V_i$, and $\Pr(W = i) = W_i$.

(b) Using the your result in part (a), argue that if

$$W = \sum_{j=1}^{U} V^{(j)}$$

where $V^{(j)} \overset{d}{=} V$ then

$$F_W(x) = F_U(F_V(x)).$$

Hint: write down the generating function of probability distribution of $\sum_{j=1}^{k} V^{(j)}$ in terms of $F_V(x)$.

5. (a) Again, given

$$W = \sum_{i=1}^{U} V^{(i)} \text{ with each } V^{(i)} \overset{d}{=} V$$

where we know that

$$F_W(x) = F_U(F_V(x)),$$

determine the mean of W in terms of the means of U and V.

(b) For $W = U + V$, similarly find the mean of W in terms of U and V via generating functions. Your answer should make sense.