1. Given N labelled nodes and allowing for all possible number of edges m, what’s the total number of undirected, unweighted networks we can construct? How does this number scale with N?

2. Given N labelled nodes and a variable number of m edges, for what value of m do we obtain the largest diversity of networks? And for this m, how does the number of networks scale with N?

3. We’ve seen that large random networks have essentially no clustering, meaning that locally, random networks are pure branching networks. Nevertheless, a finite, non-zero number of triangles will be present.

 For pure random networks, with connection probability $p = \langle k \rangle / (N - 1)$, what is the expected total number of triangles as $N \to \infty$?

4. Repeat the preceding calculation for cycles of length 4 and 5 (triangles are cycles of length 3).

5. We’ve figured out in class that for large enough N (and $\langle k \rangle$ fixed), a random network always has a Poisson degree distribution:

 $$P(k; \lambda) = \frac{\lambda^k}{k!} e^{-\lambda}$$
where \(\lambda = \langle k \rangle \). And as we’ve discussed, we don’t find these networks in the real world (they don’t arise due to simple mechanisms). Let’s investigate this oddness a little further.

Compute the expected size of the largest degree in an infinite random network given \(\langle k \rangle \) and as a function of increasing sample size \(N \). In other words, in selecting (with replacement) \(N \) degrees from a pure Poisson distribution with mean \(\langle k \rangle \), what’s the expected minimum value of the largest degree \(\min k_{\text{max}} \)?

A good way to compute \(k_{\text{max}} \) is to equate it to the value for which we expect \(1/N \) of our random selections to exceed. (We had a question in 300 along these lines for power-law size distributions.)

Hint—Of course we’ll be using Stirling’s Approximation.

Direct link: http://www.youtube.com/v/uK5yakuX59M?rel=0

6. Show that the second moment of the Poisson distribution is

\[
\langle k^2 \rangle = \langle k \rangle^2 + \langle k \rangle.
\]

and hence that the variance is \(\sigma^2 = \langle k \rangle \).