Overview of Complex Networks

Principles of Complex Systems

CSYS/MATH 300, Spring, 2013 | #SpringPoCS2013

Prof. Peter Dodds
@peterdodds

Department of Mathematics & Statistics | Center for Complex Systems | Vermont Advanced Computing Center | University of Vermont

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.
Outline

Basic definitions

Examples of Complex Networks

Properties of Complex Networks

Nutshell

References
network |ˈnet,wørk|
noun
1 an arrangement of intersecting horizontal and vertical lines.
 • a complex system of roads, railroads, or other transportation routes: a network of railroads.
2 a group or system of interconnected people or things: a trade network.
 • a group of people who exchange information, contacts, and experience for professional or social purposes: a support network.
 • a group of broadcasting stations that connect for the simultaneous broadcast of a program: the introduction of a second TV network | [as adj.] network television.
 • a number of interconnected computers, machines, or operations: specialized computers that manage multiple outside connections to a network | a local cellular phone network.
 • a system of connected electrical conductors.

verb [trans.]
connect as or operate with a network: the stock exchanges have proven to be resourceful in networking these deals.
• link (machines, esp. computers) to operate interactively: [as adj.] (networked) networked workstations.
• [intrans.][often as n.](networking) interact with other people to exchange information and develop contacts, esp. to further one's career: the skills of networking, bargaining, and negotiation.
Thesaurus deliciousness:

network
noun
1 a network of arteries WEB, lattice, net, matrix, mesh, crisscross, grid, reticulum, reticulation; Anatomy plexus.
2 a network of lanes MAZE, labyrinth, warren, tangle.
3 a network of friends SYSTEM, complex, nexus, web, webwork.
Ancestry:

From Keith Briggs’s excellent etymological investigation: (◻)

- Opus reticulatum:
- A Latin origin?

Ancestry:

First known use: Geneva Bible, 1560

‘And thou shalt make unto it a grate like networke of brass (Exodus xxvii 4).’

From the OED via Briggs:

- 1658—: reticulate structures in animals
- 1839—: rivers and canals
- 1869—: railways
- 1883—: distribution network of electrical cables
- 1914—: wireless broadcasting networks
Net and Work are venerable old words:

- ‘Net’ first used to mean spider web (King Ælfréd, 888).
- ‘Work’ appear to have long meant purposeful action.

- ‘Network’ = something built based on the idea of natural, flexible lattice or web.
- c.f., ironwork, stonework, fretwork.
Key Observation:

- Many complex systems can be viewed as complex networks of physical or abstract interactions.
- Opens door to mathematical and numerical analysis.
- Dominant approach of last decade of a theoretical-physics/stat-mechish flavor.
- Mindboggling amount of work published on complex networks since 1998...
- ... largely due to your typical theoretical physicist:
 - Piranha physicus
 - Hunt in packs.
 - Feast on new and interesting ideas (see chaos, cellular automata, ...
“Collective dynamics of ‘small-world’ networks”[18]
- Watts and Strogatz
- Cited ≈ 18,450 times (as of March 18, 2013)

“Emergence of scaling in random networks”[2]
- Barabási and Albert
 Science, 1999
- Cited ≈ 16,050 times (as of March 18, 2013)
Review articles:

- S. Boccaletti et al.
 “Complex networks: structure and dynamics” [3]
 Times cited: 3,500 (as of March 18, 2013)

- M. Newman
 “The structure and function of complex networks” [13]
 Times cited: 9,100 (as of March 18, 2013)

- R. Albert and A.-L. Barabási
 “Statistical mechanics of complex networks” [1]
 Times cited: 11,600 (as of March 18, 2013)
Popularity according to textbooks:

Textbooks:

- Mark Newman (Physics, Michigan)
 “Networks: An Introduction”

- David Easley and Jon Kleinberg (Economics and Computer Science, Cornell)
 “Networks, Crowds, and Markets: Reasoning About a Highly Connected World”
Popularity according to books:

The Tipping Point: How Little Things can make a Big Difference—Malcolm Gladwell

Nexus: Small Worlds and the Groundbreaking Science of Networks—Mark Buchanan
Popularity according to books:

Linked: How Everything Is Connected to Everything Else and What It Means—Albert-Laszlo Barabási

Six Degrees: The Science of a Connected Age—Duncan Watts[17]
Numerous others . . .

- Complex Social Networks—F. Vega-Redondo [16]
- Fractal River Basins: Chance and Self-Organization—I. Rodríguez-Iturbe and A. Rinaldo [14]
- Random Graph Dynamics—R. Durette
- Scale-Free Networks—Guido Caldarelli
- Evolution and Structure of the Internet: A Statistical Physics Approach—Romu Pastor-Satorras and Alessandro Vespignani
- Complex Graphs and Networks—Fan Chung
- Social Network Analysis—Stanley Wasserman and Kathleen Faust
More observations

- But surely networks aren’t new...
- Graph theory is well established...
- Study of social networks started in the 1930’s...
- So why all this ‘new’ research on networks?
- **Answer:** Oodles of Easily Accessible Data.
- We can now inform (alas) our theories with a much more measurable reality.*
- A worthy goal: establish mechanistic explanations.

*If this is upsetting, maybe string theory is for you...
More observations

- **Web-scale** data sets can be overly *exciting*.

Witness:

- The End of Theory: The Data Deluge Makes the Scientific Theory Obsolete (Anderson, Wired) (⊞)
- “The Unreasonable Effectiveness of Data,” Halevy et al. [9].
- c.f. Wigner’s “The Unreasonable Effectiveness of Mathematics in the Natural Sciences” [19]

But:

- For scientists, description is only part of the battle.
- We still need to *understand*.
Super Basic definitions

Nodes = A collection of entities which have properties that are somehow related to each other
- e.g., people, forks in rivers, proteins, webpages, organisms,...

Links = Connections between nodes
- Links may be directed or undirected.
- Links may be binary or weighted.

Other spiffing words: vertices and edges.
Node degree = Number of links per node

- Notation: Node i’s degree = k_i.
- $k_i = 0, 1, 2, \ldots$
- Notation: the average degree of a network = $\langle k \rangle$ (and sometimes z)
- Connection between number of edges m and average degree:
 \[
 \langle k \rangle = \frac{2m}{N}.
 \]
- Defn: $\mathcal{N}_i = \text{the set of } i\text{'s } k_i \text{ neighbors}$
Super Basic definitions

Adjacency matrix:

- We represent a directed network by a matrix A with link weight a_{ij} for nodes i and j in entry (i, j).
- e.g.,

$$A = \begin{bmatrix}
0 & 1 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 \\
\end{bmatrix}$$

- (n.b., for numerical work, we always use sparse matrices.)
Examples

So what passes for a complex network?

- Complex networks are **large** (in node number)
- Complex networks are **sparse** (low edge to node ratio)
- Complex networks are usually **dynamic and evolving**
- Complex networks can be social, economic, natural, informational, abstract, ...
Examples

Physical networks

- River networks
- Neural networks
- Trees and leaves
- Blood networks
- The Internet
- Road networks
- Power grids

Distribution (branching) versus redistribution (cyclical)
Examples

Interaction networks
- The Blogosphere
- Biochemical networks
- Gene-protein networks
- Food webs: who eats whom
- The World Wide Web (?)
- Airline networks
- Call networks (AT&T)
- The Media

datamining.typepad.com (田)
Examples

Interaction networks: social networks

- Snogging
- Friendships
- Acquaintances
- Boards and directors
- Organizations
- facebook (⊞)
- twitter (⊞),

‘Remotely sensed’ by: email activity, instant messaging, phone logs (*cough*).

(Bearman et al., 2004)
Examples

The Structure of Romantic and Sexual Relations at "Jefferson High School"

Each circle represents a student and lines connecting students represent romantic relations occurring within the 6 months preceding the interview. Numbers under the figure count the number of times that pattern was observed (i.e. we found 63 pairs unconnected to anyone else).
Examples

Relational networks

- Consumer purchases
 (Wal-Mart: ≈ 1 petabyte = 10^{15} \text{ bytes})
- Thesauri: Networks of words generated by meanings
- Knowledge/Databases/Ideas
- Metadata—Tagging: bit.ly (🗂) flickr (🗂)

common tags cloud | list

community daily dictionary education encyclopedia
english free imported info information internet knowledge
learning news reference research resource
resources search tools useful web web2.0 wiki
wikipedia
Clickworthy Science: [4]; a higher resolution figure is here (InterruptedException)
A notable feature of large-scale networks:

- Graphical renderings are often just a big mess.

Typical hairball

- number of nodes $N = 500$
- number of edges $m = 1000$
- average degree $\langle k \rangle = 4$

- And even when renderings somehow look good: “That is a very graphic analogy which aids understanding wonderfully while being, strictly speaking, wrong in every possible way” said Ponder [Stibbons] — *Making Money*, T. Pratchett.

- We need to extract **digestible, meaningful aspects**.
Properties

Some key aspects of real complex networks:

- degree distribution*
- assortativity
- homophily
- clustering
- motifs
- modularity
- concurrency
- hierarchical scaling
- network distances
- centrality
- efficiency
- robustness

- Plus coevolution of network structure and processes on networks.

* Degree distribution is the elephant in the room that we are now all very aware of...
Properties

1. degree distribution P_k
 - P_k is the probability that a randomly selected node has degree k.
 - $k = \text{node degree} = \text{number of connections}$.
 - ex 1: Erdős-Rényi random networks have Poisson degree distributions:

 $P_k = e^{-\langle k \rangle} \frac{\langle k \rangle^k}{k!}$

 - ex 2: “Scale-free” networks: $P_k \propto k^{-\gamma} \Rightarrow \text{‘hubs’}$.
 - link cost controls skew.
 - hubs may facilitate or impede contagion.
Properties

Note:
- Erdős-Rényi random networks are a *mathematical construct*.
- ‘Scale-free’ networks are *growing networks* that form according to a *plausible mechanism*.
- Randomness is out there, just not to the degree of a completely random network.
Properties

2. Assortativity/3. Homophily:

- Social networks: Homophily \(\square \) = birds of a feather
- e.g., degree is standard property for sorting: measure degree-degree correlations.
- **Assortative** network: \(^{[12]}\) similar degree nodes connecting to each other.
 Often social: company directors, coauthors, actors.
- **Disassortative** network: high degree nodes connecting to low degree nodes.
 Often technological or biological: Internet, WWW, protein interactions, neural networks, food webs.
Local socialness:

4. Clustering:

- Your friends tend to know each other.
- Two measures (explained on following slides):
 1. Watts & Strogatz[18]
 \[
 C_1 = \left\langle \sum_{j_1,j_2 \in \mathcal{N}_i} \frac{a_{j_1,j_2}}{k_i(k_i - 1)/2} \right\rangle_i
 \]
 2. Newman[13]
 \[
 C_2 = \frac{3 \times \#\text{triangles}}{\#\text{triples}}
 \]
Example network:

- C_1 is the average fraction of pairs of neighbors who are connected.
- Fraction of pairs of neighbors who are connected is
 \[
 \frac{\sum_{j_1j_2 \in N_i} a_{j_1j_2}}{k_i(k_i - 1)/2}
 \]
 where k_i is node i's degree, and N_i is the set of i's neighbors.
- Averaging over all nodes, we have:
 \[
 C_1 = \frac{1}{n} \sum_{i=1}^{n} \frac{\sum_{j_1j_2 \in N_i} a_{j_1j_2}}{k_i(k_i - 1)/2} = \left\langle \frac{\sum_{j_1j_2 \in N_i} a_{j_1j_2}}{k_i(k_i - 1)/2} \right\rangle_i
 \]
Triples and triangles

Example network:

- Nodes i_1, i_2, and i_3 form a **triple** around i_1 if i_1 is connected to i_2 and i_3.
- Nodes i_1, i_2, and i_3 form a **triangle** if each pair of nodes is connected.
- The definition $C_2 = \frac{3 \times \#\text{triangles}}{\#\text{triples}}$ measures the fraction of **closed triples**.
- The ‘3’ appears because for each triangle, we have 3 closed triples.
- Social Network Analysis (SNA): fraction of **transitive triples**.
Clustering:

Sneaky counting for undirected, unweighted networks:

- If the path $i - j - \ell$ exists then $a_{ij} a_{j\ell} = 1$.
- Otherwise, $a_{ij} a_{j\ell} = 0$.
- We want $i \neq \ell$ for good triples.
- In general, a path of n edges between nodes i_1 and i_n travelling through nodes $i_2, i_3, \ldots i_{n-1}$ exists $\iff a_{i_1 i_2} a_{i_2 i_3} a_{i_3 i_4} \cdots a_{i_{n-2} i_{n-1}} a_{i_{n-1} i_n} = 1$.

\[
\text{#triples} = \frac{1}{2} \left(\sum_{i=1}^{N} \sum_{\ell=1}^{N} \left[A^2 \right]_{i\ell} - \text{Tr} A^2 \right)
\]

\[
\text{#triangles} = \frac{1}{6} \text{Tr} A^3
\]
Properties

- For sparse networks, C_1 tends to discount highly connected nodes.
- C_2 is a useful and often preferred variant.
- In general, $C_1 \neq C_2$.
- C_1 is a global average of a local ratio.
- C_2 is a ratio of two global quantities.
5. motifs:

- small, recurring functional subnetworks
- e.g., Feed Forward Loop:

Shen-Orr, Uri Alon, *et al.* [15]
Properties

6. modularity and structure/community detection:

Clauset et al., 2006 \cite{6}: NCAA football
7. concurrency:

- transmission of a contagious element only occurs during contact
- rather obvious but easily missed in a simple model
- dynamic property—static networks are not enough
- knowledge of previous contacts crucial
- beware cumulated network data
8. Horton-Strahler ratios:

- Metrics for branching networks:
 - Method for ordering streams hierarchically
 - Number: $R_n = \frac{N_\omega}{N_{\omega+1}}$
 - Segment length: $R_l = \frac{\langle l_{\omega+1} \rangle}{\langle l_\omega \rangle}$
 - Area/Volume: $R_a = \frac{\langle a_{\omega+1} \rangle}{\langle a_\omega \rangle}$

![Diagram showing Horton-Strahler ratios]

(a) (b) (c)
Properties

9. network distances:

(a) shortest path length \(d_{ij} \):
- Fewest number of steps between nodes \(i \) and \(j \).
- (Also called the chemical distance between \(i \) and \(j \).)

(b) average path length \(\langle d_{ij} \rangle \):
- Average shortest path length in whole network.
- Good algorithms exist for calculation.
- Weighted links can be accommodated.
Properties

9. network distances:

- **network diameter** d_{max}:
 Maximum shortest path length between any two nodes.

- **closeness** $d_{\text{cl}} = \left[\sum_{ij} d_{ij}^{-1} / \binom{n}{2} \right]^{-1}$:
 Average ‘distance’ between any two nodes.

- Closeness handles disconnected networks ($d_{ij} = \infty$)

- $d_{\text{cl}} = \infty$ only when all nodes are isolated.

- Closeness perhaps compresses too much into one number
10. centrality:

- Many such measures of a node’s ‘importance.’
- **ex 1:** Degree centrality: \(k_i \).
- **ex 2:** Node \(i \)'s betweenness
 \[\text{fraction of shortest paths that pass through } i. \]
- **ex 3:** Edge \(\ell \)'s betweenness
 \[\text{fraction of shortest paths that travel along } \ell. \]
- **ex 4:** Recursive centrality: Hubs and Authorities (Jon Kleinberg\(^{[10]}\))
Overview Key Points:

- The field of complex networks came into existence in the late 1990s.
- Explosion of papers and interest since 1998/99.
- Hardened up much thinking about complex systems.
- Specific focus on networks that are large-scale, sparse, natural or man-made, evolving and dynamic, and (crucially) measurable.
- Three main (blurred) categories:
 1. Physical (e.g., river networks),
 2. Interactional (e.g., social networks),
 3. Abstract (e.g., thesauri).
References I

References II

References III

Assortative mixing in networks.

The structure and function of complex networks.

Fractal River Basins: Chance and Self-Organization.

Network motifs in the transcriptional regulation network of Escherichia coli.
References V

