Lognormals and friends

Principles of Complex Systems
CSYS/MATH 300, Spring, 2013 | #SpringPoCS2013

Prof. Peter Dodds
@peterdodds

Department of Mathematics & Statistics | Center for Complex Systems | Vermont Advanced Computing Center | University of Vermont

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.
Outline

Lognormals
- Empirical Confusability
- Random Multiplicative Growth Model
- Random Growth with Variable Lifespan

References
Alternative distributions

There are other ‘heavy-tailed’ distributions:

1. The Log-normal distribution (Lognormal)

 \[P(x) = \frac{1}{x\sqrt{2\pi\sigma}} \exp \left(-\frac{(\ln x - \mu)^2}{2\sigma^2} \right) \]

2. Weibull distributions (Weibull)

 \[P(x)dx = \frac{k}{\lambda} \left(\frac{x}{\lambda} \right)^{\mu-1} e^{-\left(\frac{x}{\lambda}\right)^\mu} \, dx \]

 CCDF = stretched exponential (CCDF).

3. Gamma distributions (Gamma), and more.
The lognormal distribution:

\[P(x) = \frac{1}{x\sqrt{2\pi\sigma}} \exp \left(-\frac{(\ln x - \mu)^2}{2\sigma^2} \right) \]

- \(\ln x \) is distributed according to a normal distribution with mean \(\mu \) and variance \(\sigma \).
- Appears in economics and biology where growth increments are distributed normally.
lognormals

- Standard form reveals the mean μ and variance σ^2 of the underlying normal distribution:

$$P(x) = \frac{1}{x\sqrt{2\pi}\sigma} \exp\left(-\frac{(\ln x - \mu)^2}{2\sigma^2}\right)$$

- For lognormals:

 $$\mu_{\text{lognormal}} = e^{\mu + \frac{1}{2}\sigma^2}, \quad \text{median}_{\text{lognormal}} = e^{\mu},$$

 $$\sigma_{\text{lognormal}} = (e^{\sigma^2} - 1)e^{2\mu + \sigma^2}, \quad \text{mode}_{\text{lognormal}} = e^{\mu - \sigma^2}.$$

- All moments of lognormals are finite.
Derivation from a normal distribution

Take Y as distributed normally:

$$P(y)dy = \frac{1}{\sqrt{2\pi\sigma}} dy \exp\left(-\frac{(y - \mu)^2}{2\sigma^2}\right)$$

Set $Y = \ln X$:

1. Transform according to $P(x)dx = P(y)dy$:
 $$\frac{dy}{dx} = \frac{1}{x} \Rightarrow dy = dx / x$$
 $$\Rightarrow P(x)dx = \frac{1}{x\sqrt{2\pi\sigma}} \exp\left(-\frac{(\ln x - \mu)^2}{2\sigma^2}\right) dx$$
Confusion between lognormals and pure power laws

Near agreement over four orders of magnitude!

- For lognormal (blue), $\mu = 0$ and $\sigma = 10$.
- For power law (red), $\gamma = 1$ and $c = 0.03$.
Confusion

What’s happening:

\[
\ln P(x) = \ln \left\{ \frac{1}{x\sqrt{2\pi}\sigma} \exp \left(- \frac{(\ln x - \mu)^2}{2\sigma^2} \right) \right\}
\]

\[
= - \ln x - \ln \sqrt{2\pi} - \frac{(\ln x - \mu)^2}{2\sigma^2}
\]

\[
= - \frac{1}{2\sigma^2} (\ln x)^2 + \left(\frac{\mu}{\sigma^2} - 1 \right) \ln x - \ln \sqrt{2\pi} - \frac{\mu^2}{2\sigma^2}.
\]

\[
\Rightarrow \text{If } \sigma^2 \gg 1 \text{ and } \mu,
\]

\[
\ln P(x) \sim - \ln x + \text{const}.
\]
Confusion

- Expect -1 scaling to hold until \((\ln x)^2\) term becomes significant compared to \((\ln x)\).
- This happens when (roughly)

\[
- \frac{1}{2\sigma^2} (\ln x)^2 \approx 0.05 \left(\frac{\mu}{\sigma^2} - 1 \right) \ln x
\]

\[
\Rightarrow \log_{10} x \lesssim 0.05 \times 2(\sigma^2 - \mu) \log_{10} e
\]

\[
\approx 0.05(\sigma^2 - \mu)
\]

- \(\Rightarrow\) If you find a -1 exponent, you may have a lognormal distribution...
Generating lognormals:

Random multiplicative growth:

\[x_{n+1} = rx_n \]

where \(r > 0 \) is a random growth variable

- (Shrinkage is allowed)

- In log space, growth is by addition:

\[\ln x_{n+1} = \ln r + \ln x_n \]

- \(\Rightarrow \) \(\ln x_n \) is normally distributed

- \(\Rightarrow \) \(x_n \) is lognormally distributed
Lognormals or power laws?

- Gibrat \(^2\) (1931) uses preceding argument to explain lognormal distribution of firm sizes \((\gamma \approx 1)\).
- But Robert Axtell \(^1\) (2001) shows a power law fits the data very well with \(\gamma = 2\), not \(\gamma = 1\) (!)
- Problem of data censusing (missing small firms).

\[
\text{Freq } \propto (\text{size})^{-\gamma} \\
\gamma \approx 2
\]

- One mechanistic piece in Gibrat’s model seems okay empirically: Growth rate \(r\) appears to be independent of firm size. \(^1\).
An explanation

- The set up: N entities with size $x_i(t)$
- Generally:
 \[
 x_i(t + 1) = rx_i(t)
 \]
 where r is drawn from some happy distribution
- Same as for lognormal but one extra piece.
- Each x_i cannot drop too low with respect to the other sizes:
 \[
 x_i(t + 1) = \max(rx_i(t), c\langle x_i \rangle)
 \]
An explanation

Some math later... Insert question from assignment 6 (￼)

Find \(P(x) \sim x^{-\gamma} \)

where \(\gamma \) is implicitly given by

\[
N = \frac{\gamma - 2}{\gamma - 1} \left[\frac{(c/N)^{-1} - 1}{(c/N)^{-1} - (c/N)} \right]
\]

\(N = \) total number of firms.

Now, if \(c/N \ll 1, \) \(N = \frac{\gamma - 2}{\gamma - 1} \left[\frac{-1}{-(c/N)} \right] \)

Which gives \(\gamma \sim 1 + \frac{1}{1 - c} \)

Groovy... \(c \) small \(\Rightarrow \gamma \sim 2 \)
The second tweak

Ages of firms/people/... may not be the same

- Allow the number of updates for each size x_i to vary
- Example: $P(t)dt = ae^{-at}dt$ where $t = \text{age}$.
- Back to no bottom limit: each x_i follows a lognormal
- Sizes are distributed as $[6]$

$$P(x) = \int_{t=0}^{\infty} ae^{-at} \frac{1}{x\sqrt{2\pi}t} \exp \left(-\frac{(\ln x - \mu)^2}{2t} \right) dt$$

(Assume for this example that $\sigma \sim t$ and $\mu = \ln m$)

- Now averaging different lognormal distributions.
Averaging lognormals

\[P(x) = \int_{t=0}^{\infty} ae^{-at} \frac{1}{x \sqrt{2\pi t}} \exp \left(- \frac{(\ln x/m)^2}{2t} \right) dt \]

- Insert question from assignment 6
- Some enjoyable suffering leads to:

\[P(x) \propto x^{-1} e^{-\sqrt{2\lambda (\ln x/m)^2}} \]
The second tweak

\[P(x) \propto x^{-1} e^{-\sqrt{2\lambda (\ln x/m)^2}} \]

- Depends on sign of \(\ln x/m \), i.e., whether \(x/m > 1 \) or \(x/m < 1 \).

\[P(x) \propto \begin{cases}
 x^{-1+\sqrt{2\lambda}} & \text{if } x/m < 1 \\
 x^{-1-\sqrt{2\lambda}} & \text{if } x/m > 1
\end{cases} \]

- ‘Break’ in scaling (not uncommon)
- Double-Pareto distribution (⊞)
- First noticed by Montroll and Shlesinger [7, 8]
- Later: Huberman and Adamic [3, 4]: Number of pages per website
Summary of these exciting developments:

- Lognormals and power laws can be awfully similar
- Random Multiplicative Growth leads to lognormal distributions
- Enforcing a minimum size leads to a power law tail
- With no minimum size but a distribution of lifetimes, the double Pareto distribution appears
- Take-home message: Be careful out there...
References I

References II

