The structure and evolution of language
Principles of Complex Systems
CSYS/MATH 300, Spring, 2013 | #SpringPoCS2013

Prof. Peter Dodds
@peterdodds

Department of Mathematics & Statistics | Center for Complex Systems | Vermont Advanced Computing Center | University of Vermont

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.
Outline

Irregular verbs

Word lifespans

Meanings

References
Irregular verbs

Cleaning up English:

“Quantifying the evolutionary dynamics of language” [1]

- Exploration of how verbs with irregular conjugation gradually become regular over time.
- Comparison of verb behavior in Old, Middle, and Modern English.
Irregular verbs

- Universal tendency towards regular conjugation
- Rare verbs tend to be regular in the first place
Irregular verbs

Rates are relative.

The more common a verb is, the more resilient it is to change.
Irregular verbs

Table 1 | The 177 irregular verbs studied

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Verbs</th>
<th>Regularization (%)</th>
<th>Half-life (yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^{-1}–1</td>
<td>be, have</td>
<td>0</td>
<td>38,800</td>
</tr>
<tr>
<td>10^{-2}–10^{-1}</td>
<td>come, do, find, get, give, go, know, say, see, take, think</td>
<td>0</td>
<td>14,400</td>
</tr>
<tr>
<td>10^{-3}–10^{-2}</td>
<td>begin, break, bring, buy, choose, draw, drink, drive, eat, fall,</td>
<td>10</td>
<td>5,400</td>
</tr>
<tr>
<td></td>
<td>fight, forget, grow, hang, help, hold, leave, let, lie, lose, reach,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>rise, run, seek, set, shake, sit, sleep, speak, stand, teach, throw,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>understand, walk, win, work, write</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10^{-4}–10^{-3}</td>
<td>arise, bake, bear, beat, bind, bite, blow, bow, burn, burst, carve,</td>
<td>43</td>
<td>2,000</td>
</tr>
<tr>
<td></td>
<td>chew, climb, cling, creep, dare, dig, drag, flee, float, flow, fold,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>freeze, grind, leap, lend, lock, melt, reckon, ride, rush, shape,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>shine, shoot, shrink, sigh, sing, sink, slide, slip, smoke, spin,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>spring, starve, steal, step, stretch, strike, stroke, suck, swallow,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>swear, sweep, swim, swing, tear, wake, wash, weave, weep, weigh,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>wind, yel, yield</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10^{-5}–10^{-4}</td>
<td>bark, bellow, bid, blend, braed, brew, cleeve, cringe, crow, dive,</td>
<td>72</td>
<td>700</td>
</tr>
<tr>
<td></td>
<td>drip, fare, fret, glide, gnaw, grip, heave, knead, low, milk,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>mourn, mow, prescribe, redden, reek, row, scrape, seethe, shear,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>shed, shave, slay, slit, smite, sow, span, spurn, sting,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>stink, strew, stride, swell, tread, uproot, wade, warp, wax,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>wield, wring, writhen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10^{-6}–10^{-5}</td>
<td>bide, chide, delve, flay, hew, rue, shrive, slink, snip, spew,</td>
<td>91</td>
<td>300</td>
</tr>
<tr>
<td></td>
<td>sup, wrek</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

177 Old English irregular verbs were compiled for this study. These are arranged according to frequency bin, and in alphabetical order within each bin. Also shown is the percentage of verbs in each bin that have regularized. The half-life is shown in years. Verbs that have regularized are indicated in red. As we move down the list, an increasingly large fraction of the verbs are red; the frequency-dependent regularization of irregular verbs becomes immediately apparent.

- **Red** = regularized
- **Estimates of half-life for regularization** ($\propto f^{1/2}$)
Irregular verbs

- ‘Wed’ is next to go.
- -ed is the winning rule...

Channel with this timeline presents a graph (Fig. 2), showing the evolution of irregular verbs over time, with frequency on the x-axis and number of irregular verbs on the y-axis.
Irregular verbs

- Projecting back in time to proto-Zipf story of many tools.
Word meanings

Preliminary findings on word frequency and number of meanings

- Corpus: 10,000 most frequent words from Project Gutenberg
- # meanings for each word estimated using dictionary.com
- Friends: perl, regular expressions, wget.
Word meanings

A. Word frequency versus rank, slope $\alpha \sim -1.2$ corresponds to a frequency distribution with $\gamma \sim 1.8$.

B. Relationship between average number of meanings and average frequency (bins are by rank, with each circle representing 500 words). Slope of 1/3 lower than Zipf’s $1/2$ [4].
Word meanings

A. Meaning number as a function of word rank.
B. The three exponents combine within error:
\[1.2 \times \frac{1}{3} = 0.4 \approx 0.45. \]
Word meanings

A. Scaling collapse for meaning number distribution
B. Each curve corresponds to approximately 500 words group according to rank (1–500, 501–1000, ...).
C. With normalization

\[P(n_m) = f^{-1/3} G \left(f^{-1/3} n_m \right) \]
Further work:

- Check these scalings again
- Explore alternate data sources
- Think about why meaning number might scale with frequency.
- May be an information theoretic story.
- If we add context, we may be able to use a modified version of Simon’s approach \[^3\]
- The city story here would be that there may be many cities and towns with the same name (e.g., Springfield) with an uneven distribution in populations.
References

References II