Benford’s Law: \((\text{있습니다})\)

\[
P(\text{first digit} = d) \propto \log_b \left(1 + \frac{1}{d}\right)
\]

for certain sets of ‘naturally’ occurring numbers in base \(b\)

- Around 30.1% of first digits are ‘1’, compared to only 4.6% for ‘9’.
- First observed by Simon Newcomb\(^\text{[2]}\) in 1881 “Note on the Frequency of Use of the Different Digits in Natural Numbers”
- Independently discovered in 1938 by Frank Benford (있습니다).
- Newcomb almost always noted but Benford gets the stamp.
The law of first digits

Benford’s Law: (_ATOMIC)

\[P(\text{first digit} = d) \propto \log_b \left(1 + \frac{1}{d} \right) \]

for certain sets of ‘naturally’ occurring numbers in base \(b \)

- Around 30.1% of first digits are ‘1’, compared to only 4.6% for ‘9’.

- Independently discovered in 1938 by Frank Benford (_ATOMIC).

- Newcomb almost always noted but Benford gets the stamp.

[^2]: Referenced in: [Benford’s Law](https://en.wikipedia.org/wiki/Benford%27s_law)
The law of first digits

Benford’s Law: (田)

\[
P(\text{first digit} = d) \propto \log_b \left(1 + \frac{1}{d}\right)
\]

for certain sets of ‘naturally’ occurring numbers in base \(b \)

- Around 30.1% of first digits are ‘1’, compared to only 4.6% for ‘9’.
- First observed by Simon Newcomb\(^2\) in 1881 “Note on the Frequency of Use of the Different Digits in Natural Numbers”
- Independently discovered in 1938 by Frank Benford (田).
- Newcomb almost always noted but Benford gets the stamp.
Benford's Law:

\[P(\text{first digit} = d) \propto \log_b \left(1 + \frac{1}{d} \right) \]

for certain sets of ‘naturally’ occurring numbers in base \(b \)

- Around 30.1% of first digits are ‘1’, compared to only 4.6% for ‘9’.
- First observed by Simon Newcomb\(^2\) in 1881
 “Note on the Frequency of Use of the Different Digits in Natural Numbers”
- Independently discovered in 1938 by Frank Benford (_perms).
- Newcomb almost always noted but Benford gets the stamp.
Benford’s Law: \(P(\text{first digit} = d) \propto \log_b \left(1 + \frac{1}{d} \right) \)

for certain sets of ‘naturally’ occurring numbers in base \(b \)

- Around 30.1% of first digits are ‘1’, compared to only 4.6% for ‘9’.
- First observed by Simon Newcomb \([2]\) in 1881. “Note on the Frequency of Use of the Different Digits in Natural Numbers”
- Independently discovered in 1938 by Frank Benford (\[\square\]).
- Newcomb almost always noted but Benford gets the stamp.
Benford’s Law—The Law of First Digits

Observed for

- Fundamental constants (electron mass, charge, etc.)
- Utility bills
- Numbers on tax returns (ha!)
- Death rates
- Street addresses
- Numbers in newspapers

- Cited as evidence of fraud in the 2009 Iranian elections.
Benford’s Law—The Law of First Digits

Observed for
- Fundamental constants (electron mass, charge, etc.)
- Utility bills
- Numbers on tax returns (ha!)
- Death rates
- Street addresses
- Numbers in newspapers

- Cited as evidence of fraud in the 2009 Iranian elections.
Benford’s Law

Real data:

Benford’s Law

Physical constants of the universe:

Taken from here.

References
Benford’s Law

Population of countries:

Taken from [here](#).
Essential story

- \[P(\text{first digit} = d) \propto \log_b \left(1 + \frac{1}{d} \right) \]

- Observe this distribution if numbers are distributed uniformly in log-space:
 \[P(\ln x) \, d(\ln x) \propto 1 \cdot d(\ln x) = x^{-1} \, dx \]

- Power law distributions at work again...
- Extreme case of \(\gamma \approx 1 \).
Benford's law

References

Essential story

$P(\text{first digit} = d) \propto \log_b \left(1 + \frac{1}{d} \right)
\propto \log_b \left(\frac{d + 1}{d} \right)

Observe this distribution if numbers are distributed uniformly in log-space:

$P(\ln x) \cdot d(\ln x) \propto 1 \cdot d(\ln x) = x^{-1} \, dx$

Power law distributions at work again...

Extreme case of $\gamma \approx 1$.
Benford's law

References

\[P(\text{first digit} = d) \propto \log_b \left(1 + \frac{1}{d} \right) \]

\[\propto \log_b \left(\frac{d + 1}{d} \right) \]

\[\propto \log_b (d + 1) - \log_b (d) \]

- Observe this distribution if numbers are distributed uniformly in log-space:

\[P(\ln x) \, d(\ln x) \propto 1 \cdot d(\ln x) = x^{-1} \, dx \]

- Power law distributions at work again...

- Extreme case of \(\gamma \approx 1 \).
Benford’s law

References

Essential story

- \[P(\text{first digit} = d) \propto \log_b \left(1 + \frac{1}{d} \right) \]
 \[\propto \log_b \left(\frac{d + 1}{d} \right) \]
 \[\propto \log_b (d + 1) - \log_b (d) \]

- Observe this distribution if numbers are distributed uniformly in log-space:
 \[P(\ln x) \, d(\ln x) \propto 1 \cdot d(\ln x) = x^{-1} \, dx \]

- Power law distributions at work again...
- Extreme case of \(\gamma \approx 1 \).
Essential story

\[P(\text{first digit} = d) \propto \log_b \left(1 + \frac{1}{d} \right) \]

\[\propto \log_b \left(\frac{d + 1}{d} \right) \]

\[\propto \log_b (d + 1) - \log_b (d) \]

- Observe this distribution if numbers are distributed uniformly in log-space:

\[P(\ln x) \cdot d(\ln x) \propto 1 \cdot d(\ln x) = x^{-1} \, dx \]

- Power law distributions at work again...
- Extreme case of \(\gamma \approx 1 \).
Essential story

$P(\text{first digit} = d) \propto \log_b \left(1 + \frac{1}{d} \right)$

$\propto \log_b \left(\frac{d + 1}{d} \right)$

$\propto \log_b (d + 1) - \log_b (d)$

- Observe this distribution if numbers are distributed uniformly in log-space:

$P(\ln x) \, d(\ln x) \propto 1 \cdot d(\ln x) = x^{-1} \, dx$

- Power law distributions at work again...

- Extreme case of $\gamma \approx 1$.
Benford’s law

Essential story

\[P(\text{first digit} = d) \propto \log_b \left(1 + \frac{1}{d} \right) \]

\[\propto \log_b \left(\frac{d + 1}{d} \right) \]

\[\propto \log_b (d + 1) - \log_b (d) \]

- Observe this distribution if numbers are distributed uniformly in log-space:

\[P(\ln x) \cdot d(\ln x) \propto 1 \cdot d(\ln x) = x^{-1} \, dx \]

- Power law distributions at work again...
- Extreme case of \(\gamma \approx 1 \).
Benford’s law

Taken from [here](#).
References
