1. Use a scaling argument to show that maximal rowing speed V increases as the number of oarspeople n as $V \propto N^{1/9}$.

Assume the following:

(a) Rowing shells are geometrically similar (isometric). The table below taken from McMahon and Bonner [1] shows that shell width is roughly proportional to shell length ℓ.

(b) The resistance encountered by a shell is due largely to drag on its wetted surface.

(c) Drag is proportional to the product of the square of the shell’s speed (V^2) and the area of the wetted surface ($\propto \ell^2$ due to the shell isometry).

(d) Power \propto drag force \times speed (in symbols: $P \propto D_f \times V$).
(e) Volume displacement of water by a shell is proportional to the number of oarspeople N (i.e., the team’s combined weight).

(f) Assume the depth of water displacement by the shell grows isometrically with boat length ℓ.

(g) Power is proportional to the number of oarspeople N.

2. Find the modern day world record times for 2000 metre races and see if this scaling still holds up. Of course, our relationship is approximate as we have neglected numerous factors, the range is extremely small (1–8 oarspeople), and the scaling is very weak (1/9). But see what you can find. The figure below shows data from McMahon and Bonner.

3. (3+3)

Check current weight lifting records for the snatch, clean and jerk, and the total for scaling with body mass (three regressions).

For weight classes, take the upper limit for the mass of the lifter.

(a) Does 2/3 scaling hold up?

(b) Normalized by the appropriate scaling, who holds the overall, rescaled world record?

References