Outline

Universality

Symmetry Breaking

The Big Theory

Final words

For your consideration

References
Limits to what’s possible:

Universality (◻):
- The property that the macroscopic aspects of a system do not depend sensitively on the system’s details.
- Key figure: Leo Kadanoff (◻).

Examples:
- The Central Limit Theorem:
 \[P(x; \mu, \sigma)\ dx = \frac{1}{\sqrt{2\pi\sigma}} e^{-(x-\mu)^2/2\sigma^2} \ dx . \]
- Navier Stokes equation for fluids.
- Nature of phase transitions in statistical mechanics.
Limits to what’s possible:

Universality (⊞):

▶ The property that the macroscopic aspects of a system do not depend sensitively on the system’s details.

▶ Key figure: Leo Kadanoff (⊞).

Examples:

▶ The Central Limit Theorem:

\[
P(x; \mu, \sigma)dx = \frac{1}{\sqrt{2\pi\sigma}} e^{-(x-\mu)^2/2\sigma^2} dx.
\]

▶ Navier Stokes equation for fluids.

▶ Nature of phase transitions in statistical mechanics.
Limits to what’s possible:

Universality (⊞):

- The property that the macroscopic aspects of a system do not depend sensitively on the system’s details.
- Key figure: Leo Kadanoff (⊞).

Examples:

- The Central Limit Theorem:
 \[P(x; \mu, \sigma) \, dx = \frac{1}{\sqrt{2\pi\sigma}} \, e^{-\frac{(x-\mu)^2}{2\sigma^2}} \, dx. \]
- Navier Stokes equation for fluids.
- Nature of phase transitions in statistical mechanics.
Limits to what’s possible:

Universality (⊞):
- The property that the macroscopic aspects of a system do not depend sensitively on the system’s details.
- Key figure: Leo Kadanoff (⊞).

Examples:
- The Central Limit Theorem:
 \[
P(x; \mu, \sigma) \, dx = \frac{1}{\sqrt{2\pi\sigma}} \, e^{-\frac{(x-\mu)^2}{2\sigma^2}} \, dx.
\]
- Navier Stokes equation for fluids.
- Nature of phase transitions in statistical mechanics.
Limits to what’s possible:

Universality (⊞):
- The property that the macroscopic aspects of a system do not depend sensitively on the system’s details.
- Key figure: Leo Kadanoff (⊞).

Examples:
- The Central Limit Theorem:
 \[P(x; \mu, \sigma)dx = \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-\mu)^2/2\sigma^2} dx. \]
- Navier Stokes equation for fluids.
- Nature of phase transitions in statistical mechanics.
Universality

- Sometimes **details don’t matter too much**.
- Many-to-one mapping from micro to macro
- Suggests not all possible behaviors are available at higher levels of complexity.

Large questions:
- How universal is universality?
- What are the possible of long-time states (attractors) for a universe?
Universality

- Sometimes **details don’t matter too much.**
- **Many-to-one mapping** from micro to macro
- Suggests not all possible behaviors are available at higher levels of complexity.

Large questions:
- How universal is universality?
- What are the possible long-time states (attractors) for a universe?
Universality

- Sometimes **details don’t matter too much.**
- **Many-to-one mapping** from micro to macro
- Suggests not all possible behaviors are available at higher levels of complexity.

Large questions:
- How universal is universality?
- What are the possible of long-time states (attractors) for a universe?
Universality

- Sometimes **details don’t matter too much**.
- **Many-to-one mapping** from micro to macro
- Suggests not all possible behaviors are available at higher levels of complexity.

Large questions:

- How universal is universality?
- What are the possible of long-time states (attractors) for a universe?
Universality

- Sometimes **details don’t matter too much.**
- **Many-to-one mapping** from micro to macro
- Suggests not all possible behaviors are available at higher levels of complexity.

Large questions:

- How universal is universality?
- What are the possible of long-time states (attractors) for a universe?
Why Complexify?

Universality

- Sometimes **details don’t matter too much.**
- **Many-to-one mapping** from micro to macro
- Suggests not all possible behaviors are available at higher levels of complexity.

Large questions:
- How universal is universality?
- What are the possible of long-time states (attractors) for a universe?
Fluids mechanics

- Fluid mechanics = One of the great successes of understanding complex systems.
- Navier-Stokes equations: micro-macro system evolution.
- The big three: Experiment + Theory + Simulations.
- Works for many very different ‘fluids’:
 - the atmosphere,
 - oceans,
 - blood,
 - galaxies,
 - the earth’s mantle...
 - and ball bearings on lattices...?
Fluids mechanics

- Fluid mechanics = One of the great successes of understanding complex systems.
- Navier-Stokes equations: micro-macro system evolution.
- The big three: Experiment + Theory + Simulations.
- Works for many very different ‘fluids’: the atmosphere, oceans, blood, galaxies, the earth’s mantle...
- and ball bearings on lattices...?
Fluids mechanics

- Fluid mechanics = One of the great successes of understanding complex systems.
- Navier-Stokes equations: micro-macro system evolution.
- The big three: Experiment + Theory + Simulations.
- Works for many very different ‘fluids’:
 - the atmosphere,
 - oceans,
 - blood,
 - galaxies,
 - the earth’s mantle...
 - and ball bearings on lattices...?
Fluids mechanics

- Fluid mechanics = One of the great successes of understanding complex systems.
- Navier-Stokes equations: micro-macro system evolution.
- The big three: Experiment + Theory + Simulations.
- Works for many very different ‘fluids’:
 - the atmosphere,
 - oceans,
 - blood,
 - galaxies,
 - the earth’s mantle...
- and ball bearings on lattices...?
Fluids mechanics

- Fluid mechanics = One of the great successes of understanding complex systems.
- Navier-Stokes equations: micro-macro system evolution.
- The big three: Experiment + Theory + Simulations.
- Works for many very different ‘fluids’:
 - the atmosphere,
 - oceans,
 - blood,
 - galaxies,
 - the earth’s mantle...
- and ball bearings on lattices...?
Lattice gas models

Collision rules in 2-d on a hexagonal lattice:

- Lattice matters...
- No ‘good’ lattice in 3-d.
- Upshot: play with ‘particles’ of a system to obtain new or specific macro behaviours.
Lattice gas models

Collision rules in 2-d on a hexagonal lattice:

- Lattice matters...
 - No ‘good’ lattice in 3-d.
 - Upshot: play with ‘particles’ of a system to obtain new or specific macro behaviours.
Lattice gas models

Collision rules in 2-d on a hexagonal lattice:

▶ Lattice matters...
▶ No ‘good’ lattice in 3-d.
▶ Upshot: play with ‘particles’ of a system to obtain new or specific macro behaviours.
Lattice gas models

Collision rules in 2-d on a hexagonal lattice:

- Lattice matters...
- No ‘good’ lattice in 3-d.
- Upshot: play with ‘particles’ of a system to obtain new or specific macro behaviours.
Hexagons—Honeycomb: (亻)

- Orchestrated? Or an accident of bees working hard?
- See “On Growth and Form” by D’Arcy Wentworth Thompson (亻) [4, 5]
Hexagons—Honeycomb: 🧐

- Orchestrated? Or an accident of bees working hard?
- See “On Growth and Form” by D’Arcy Wentworth Thompson 🧐. [4, 5]
Hexagons—Giant’s Causeway: (田)
Hexagons—Giant’s Causeway: (田)

http://www.physics.utoronto.ca/
Hexagons run amok:

- **Graphene**: single layer of carbon molecules in a perfect hexagonal lattice (super strong).
- **Chicken wire**...
Why Complexify?

Universality
Symmetry
Breaking
The Big Theory
Final words
For your consideration
References

Whimsical but great example of real science:

“How Cats Lap: Water Uptake by *Felis catus*” (⊞)

Amusing interview [here](#) (⊞)

A Study of Cat Lapping

Adult cats and dogs are unable to create suction in their mouths and must use their tongues to drink. A dog will scoop up liquid with the back of its tongue, but a cat will only touch the surface with the smooth tip of its tongue and pull a column of liquid into its mouth.

1. Liquid sticks to smooth tip.
2. A single lap is about \(\frac{3}{100} \) tsp.

Source: *Science*

THE NEW YORK TIMES; IMAGES FROM VIDEO BY ROMAN STOCKER, SUNGHWAN JUNG, JEFFREY M. ARISTOFF AND PEDRO M. REIS
Symmetry Breaking

Philip Anderson (—you) — “More is Different,” Science, 1972 \[1\]

Argues against idea that the only real scientists are those working on the fundamental laws.

Symmetry breaking → different laws/rules at different scales...
Symmetry Breaking

Philip Anderson (■) — “More is Different,” Science, 1972 [1]

- Argues against idea that the only real scientists are those working on the fundamental laws.
- Symmetry breaking → different laws/rules at different scales...
Symmetry Breaking

Philip Anderson (_hdl)—“More is Different,” Science, 1972 [1]

- Argues against idea that the only real scientists are those working on the fundamental laws.
- Symmetry breaking → different laws/rules at different scales...
Symmetry Breaking

- Argues against idea that the only real scientists are those working on the fundamental laws.
- Symmetry breaking → different laws/rules at different scales...

2006 study → “most creative physicist in the world”
Symmetry Breaking

“Elementary entities of science X obey the laws of science Y”

- X
 - solid state or many-body physics
 - chemistry
 - molecular biology
 - cell biology
 - psychology
 - social sciences
- Y
 - elementary particle physics
 - solid state many-body physics
 - chemistry
 - molecular biology
 - physiology
 - psychology
Symmetry Breaking

Anderson:

- [the more we know about] “fundamental laws, the less relevance they seem to have to the very real problems of the rest of science.”
- Scale and complexity thwart the constructionist hypothesis.
- Accidents of history and path dependence matter.
Symmetry Breaking

Anderson:

- [the more we know about] “fundamental laws, the less relevance they seem to have to the very real problems of the rest of science.”
- **Scale** and **complexity** thwart the constructionist hypothesis.
- Accidents of history and path dependence matter.
Symmetry Breaking

Anderson:

- [the more we know about] “fundamental laws, the less relevance they seem to have to the very real problems of the rest of science.”
- **Scale** and **complexity** thwart the constructionist hypothesis.
- Accidents of history and **path dependence** matter.
Page 291–292 of Sornette[^3]:

Renormalization \equiv Anderson’s hierarchy.

But Anderson’s hierarchy is not a simple one: the rules change.

Crucial dichotomy between evolving systems following stochastic paths that lead to
(a) inevitable or (b) particular destinations (states).
Symmetry Breaking

Page 291–292 of Sornette[3]: Renormalization \equiv Anderson’s hierarchy.

But Anderson’s hierarchy is not a simple one: the rules change.

Crucial dichotomy between evolving systems following stochastic paths that lead to (a) inevitable or (b) particular destinations (states).
Page 291–292 of Sornette[^3]:
Renormalization ≡ Anderson’s hierarchy.

But Anderson’s hierarchy is not a simple one: the rules change.

Crucial dichotomy between evolving systems following stochastic paths that lead to
(a) inevitable or (b) particular destinations (states).
A real science of complexity:

A real theory of everything anything:
1. Is not just about the ridiculously small stuff...
2. It’s about the increase of complexity

<table>
<thead>
<tr>
<th>Symmetry breaking/</th>
<th>vs.</th>
<th>Universality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accidents of history</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Second law of thermodynamics: we’re toast in the long run.
- So how likely is the local complexification of structure we enjoy?
- How likely are the Big Transitions?
A real science of complexity:

A real theory of everything anything:

1. Is not just about the ridiculously small stuff...
2. It’s about the increase of complexity

Symmetry breaking/ Accidents of history vs. Universality

- Second law of thermodynamics: we’re toast in the long run.
- So how likely is the local complexification of structure we enjoy?
- How likely are the Big Transitions?
A real science of complexity:

A real theory of everything anything:

1. Is not just about the ridiculously small stuff...
2. It’s about the increase of complexity

Symmetry breaking/ Accidents of history vs. Universality

- Second law of thermodynamics: we’re toast in the long run.
- So how likely is the local complexification of structure we enjoy?
- How likely are the Big Transitions?
A real science of complexity:

A real theory of everything anything:
1. Is not just about the ridiculously small stuff...
2. It’s about the increase of complexity

Symmetry breaking/Accidents of history vs. Universality

➤ Second law of thermodynamics: we’re toast in the long run.
➤ So how likely is the local complexification of structure we enjoy?
➤ How likely are the Big Transitions?
A real science of complexity:

A real theory of everything anything:
1. Is not just about the ridiculously small stuff...
2. It’s about the increase of complexity

Symmetry breaking/ Accidents of history vs. Universality

- Second law of thermodynamics: we’re toast in the long run.
- So how likely is the local complexification of structure we enjoy?
- How likely are the Big Transitions?
A real science of complexity:

A real theory of everything anything:

1. Is not just about the ridiculously small stuff...
2. It’s about the increase of complexity

Symmetry breaking/ Accidents of history vs. Universality

- Second law of thermodynamics: we’re toast in the long run.
- So how likely is the local complexification of structure we enjoy?
- How likely are the Big Transitions?
A real science of complexity:

A real theory of everything anything:
1. Is not just about the ridiculously small stuff...
2. It’s about the increase of complexity

Symmetry breaking/ Accidents of history vs. Universality

- Second law of thermodynamics: we’re toast in the long run.
- So how likely is the local complexification of structure we enjoy?
- How likely are the Big Transitions?
Complexification—the Big Transitions:

- Big Bang.
- Big Randomness.
- Big Replicate.
- Big Life.
- Big Evolve.
- Big Word.
- Big Story.
- Big Number.
- Big God.
- Big Make.

- Big Science.
- Big Data.
- Big Information.
- Big Algorithm.
- Big Connection.
- Big Social.
- Big Awareness.
Why complexify?

▶ “Why do things become more complex?” [2]
Brian Arthur
▶ Complexification \equiv evolution of algorithms?
▶ Differential equations and stories \subset Algorithms.
▶ Life is a loaded word: The Search for Extraterrestrial Algorithms (SETA)?
Driving complexity’s trajectory:

- Big Bang
- Randomness leads to replicating structures;
- Biological evolution;
- Sociocultural evolution;
- Technological evolution;
- Sociotechnological evolution.
3 Frames for Complexity:

1. Why Complexify? "Theory of anything"
 - "Hard" sciences
 - "Soft" & squishy sciences
 - Randomness stories and evolution stories
 - Emergence

2. Universality
 - Framing of systems conceptually-qualitative
 - Visualizing micro-macro stories
 - Differences & algorithms

3. Symmetry
 - Breaking

For your consideration

References
Homo narrativus—What's the Story?:

- **Mechanisms =** Evolution equations, algorithms, stories, ...
- **Rollover zing:** “Also, all financial analysis. And, more directly, D&D.”

Homo narrativus—What’s the Story?:

- Mechanisms = Evolution equations, algorithms, stories, ...
- Rollover zing: “Also, all financial analysis. And, more directly, D&D.”

http://xkcd.com/904/ (⊞)
(Sir Terry) Pratchett’s Narrativium:

- “The most common element on the disc, although not included in the list of the standard five: earth, fire, air, water and surprise. It ensures that everything runs properly as a story.”

- “A little narrativium goes a long way: the simpler the story, the better you understand it. Storytelling is the opposite of reductionism: 26 letters and some rules of grammar are no story at all.”

- “Heroes only win when outnumbered, and things which have a one-in-a-million chance of succeeding often do so.”
(Sir Terry) Pratchett’s Narrativium:

- “The most common element on the disc, although not included in the list of the standard five: earth, fire, air, water and surprise. It ensures that everything runs properly as a story.”

- “A little narrativium goes a long way: the simpler the story, the better you understand it. Storytelling is the opposite of reductionism: 26 letters and some rules of grammar are no story at all.”

- “Heroes only win when outnumbered, and things which have a one-in-a-million chance of succeeding often do so.”
(Sir Terry) Pratchett’s Narrativium:

- “The most common element on the disc, although not included in the list of the standard five: earth, fire, air, water and surprise. It ensures that everything runs properly as a story.”

- “A little narrativium goes a long way: the simpler the story, the better you understand it. Storytelling is the opposite of reductionism: 26 letters and some rules of grammar are no story at all.”

- “Heroes only win when outnumbered, and things which have a one-in-a-million chance of succeeding often do so.”
(Sir Terry) Pratchett’s (propriétaire) Narrativium (propriétaire):

- “The most common element on the disc, although not included in the list of the standard five: earth, fire, air, water and surprise. It ensures that everything runs properly as a story.”
- “A little narrativium goes a long way: the simpler the story, the better you understand it. Storytelling is the opposite of reductionism: 26 letters and some rules of grammar are no story at all.”
- “Heroes only win when outnumbered, and things which have a one-in-a-million chance of succeeding often do so.”
The absolute basics:

Science in three steps:

1. Find interesting/meaningful/important phenomena involving spectacular amounts of data.
2. Describe what you see.
3. Explain it.

Beware your assumptions:
Don’t use tools/models because they’re there, or because everyone else does...
The absolute basics:

Science in three steps:

1. Find interesting/meaningful/important phenomena involving spectacular amounts of data.
2. Describe what you see.
3. Explain it.

Beware your assumptions:
Don’t use tools/models because they’re there, or because everyone else does...
The absolute basics:

Science in three steps:

1. Find interesting/meaningful/important phenomena involving spectacular amounts of data.
2. Describe what you see.
3. Explain it.

Beware your assumptions:
Don’t use tools/models because they’re there, or because everyone else does...
The absolute basics:

Science in three steps:

1. Find interesting/meaningful/important phenomena involving spectacular amounts of data.
2. Describe what you see.
3. Explain it.

Beware your assumptions:

Don’t use tools/models because they’re there, or because everyone else does...
Next:

Spring 2013: Complex Networks (CSYS/MATH 303)

- Branching networks (rivers, cardiovascular systems)
- Redistribution networks (airlines, post)
- Structure detection for complex systems
- Contagion
- Random networks-aroma
- Distributed Search
- Organizational networks
- Deeper investigations of scale-free networks
- and more...
Spring 2013: Complex Networks (CSYS/MATH 303)

- Branching networks (rivers, cardiovascular systems)
- Redistribution networks (airlines, post)
- Structure detection for complex systems
- Contagion
- Random networks
- Distributed Search
- Organizational networks
- Deeper investigations of scale-free networks
- and more...
Next:

Spring 2013: Complex Networks (CSYS/MATH 303)

- Branching networks (rivers, cardiovascular systems)
- Redistribution networks (airlines, post)
- Structure detection for complex systems
- Contagion
- Random networks-arama
- Distributed Search
- Organizational networks
- Deeper investigations of scale-free networks
- and more...
References I

More is different.

Why do things become more complex?
Scientific American, 268:92, 1993. [pdf](#)

Critical Phenomena in Natural Sciences.

On Growth and From.
References II