Outline

Review for Exam 2

Words

Pictures
Basics:

Sections covered on second midterm:

- Chapter 3 and Chapter 4 (Sections 4.1–4.3)

Main pieces:

1. Big Picture of $A\vec{x} = \vec{b}$

2. Projections and the normal equation

As always, want ‘doing’ and ‘understanding’ abilities.
Basics:

Sections covered on second midterm:

- Chapter 3 and Chapter 4 (Sections 4.1–4.3)
- **Main pieces:**
 1. Big Picture of $A\vec{x} = \vec{b}$
 2. Projections and the normal equation
- As always, want ‘doing’ and ‘understanding’ abilities.
Basics:

Sections covered on second midterm:

- Chapter 3 and Chapter 4 (Sections 4.1–4.3)
- Main pieces:
 1. Big Picture of $A\vec{x} = \vec{b}$
 2. Projections and the normal equation

As always, want ‘doing’ and ‘understanding’ abilities.
Basics:

Sections covered on second midterm:

- Chapter 3 and Chapter 4 (Sections 4.1–4.3)
- **Main pieces:**
 1. Big Picture of $\mathbf{A} \mathbf{x} = \mathbf{b}$
 2. Projections and the normal equation
- As always, want ‘doing’ and ‘understanding’ abilities.
Basics:

Sections covered on second midterm:

- Chapter 3 and Chapter 4 (Sections 4.1–4.3)
- **Main pieces:**
 1. Big Picture of $A\vec{x} = \vec{b}$
 2. Projections and the normal equation
- As always, want ‘doing’ and ‘understanding’ abilities.
Basics:

Sections covered on second midterm:

- Chapter 3 and Chapter 4 (Sections 4.1–4.3)
- **Main pieces:**
 1. Big Picture of $A\vec{x} = \vec{b}$
 - Must be able to draw the big picture!
 2. Projections and the normal equation
- **As always, want ‘doing’ and ‘understanding’ abilities.**
Stuff to know/understand

Vector Spaces:

- Vector space concept and definition.
- Subspace definition (three conditions).
- Concept of a spanning set of vectors.
- Concept of a basis.
- Basis = minimal spanning set.
- Concept of orthogonal complement.
- Various techniques for finding bases and orthogonal complements.
Stuff to know/understand

Vector Spaces:

- Vector space concept and definition.
- Subspace definition (three conditions).
- Concept of a spanning set of vectors.
- Concept of a basis.
- Basis = minimal spanning set.
- Concept of orthogonal complement.
- Various techniques for finding bases and orthogonal complements.
Stuff to know/understand

Vector Spaces:

- Vector space concept and definition.
- Subspace definition (three conditions).
- Concept of a spanning set of vectors.
- Concept of a basis.
- Basis = minimal spanning set.
- Concept of orthogonal complement.
- Various techniques for finding bases and orthogonal complements.
Stuff to know/understand

Vector Spaces:
- Vector space concept and definition.
- Subspace definition (three conditions).
- Concept of a **spanning set** of vectors.
- Concept of a **basis**.
- Basis = minimal spanning set.
- Concept of **orthogonal complement**.
- Various techniques for finding bases and orthogonal complements.
Vector Spaces:

- Vector space concept and definition.
- Subspace definition (three conditions).
- Concept of a spanning set of vectors.
- Concept of a basis.
- Basis = minimal spanning set.
- Concept of orthogonal complement.
- Various techniques for finding bases and orthogonal complements.
Stuff to know/understand

Vector Spaces:
- Vector space concept and definition.
- Subspace definition (three conditions).
- Concept of a spanning set of vectors.
- Concept of a basis.
- Basis = minimal spanning set.
- Concept of orthogonal complement.
- Various techniques for finding bases and orthogonal complements.
Stuff to know/understand

Vector Spaces:
- Vector space concept and definition.
- Subspace definition (three conditions).
- Concept of a spanning set of vectors.
- Concept of a basis.
- Basis = minimal spanning set.
- Concept of orthogonal complement.
- Various techniques for finding bases and orthogonal complements.
Stuff to know/understand:

Fundamental Theorem of Linear Algebra:

- Applies to any $m \times n$ matrix A.
- Symmetry of A and A^T.
- Column space $C(A) \subset \mathbb{R}^m$.
- Left Nullspace $N(A^T) \subset \mathbb{R}^m$.
- $\dim C(A) + \dim N(A^T) = r + (m - r) = m$
- Orthogonality: $C(A) \bigotimes N(A^T) = \mathbb{R}^m$
- Row space $C(A^T) \subset \mathbb{R}^n$.
- (Right) Nullspace $N(A) \subset \mathbb{R}^n$.
- $\dim C(A^T) + \dim N(A) = r + (n - r) = n$
- Orthogonality: $C(A^T) \bigotimes N(A) = \mathbb{R}^n$
Stuff to know/understand:

Fundamental Theorem of Linear Algebra:
- Applies to any $m \times n$ matrix A.
- Symmetry of A and A^T.
- Column space $C(A) \subset \mathbb{R}^m$.
- Left Nullspace $N(A^T) \subset \mathbb{R}^m$.
- $\dim C(A) + \dim N(A^T) = r + (m - r) = m$
- Orthogonality: $C(A) \perp N(A^T) = \mathbb{R}^m$
- Row space $C(A^T) \subset \mathbb{R}^n$.
- (Right) Nullspace $N(A) \subset \mathbb{R}^n$.
- $\dim C(A^T) + \dim N(A) = r + (n - r) = n$
- Orthogonality: $C(A^T) \perp N(A) = \mathbb{R}^n$
Stuff to know/understand:

Fundamental Theorem of Linear Algebra:

- Applies to any $m \times n$ matrix A.
- Symmetry of A and A^T.
- Column space $C(A) \subset \mathbb{R}^m$.
- Left Nullspace $N(A^T) \subset \mathbb{R}^m$.
- $\dim C(A) + \dim N(A^T) = r + (m - r) = m$.
- Orthogonality: $C(A) \bigotimes N(A^T) = \mathbb{R}^m$.

- Row space $C(A^T) \subset \mathbb{R}^n$.
- (Right) Nullspace $N(A) \subset \mathbb{R}^n$.
- $\dim C(A^T) + \dim N(A) = r + (n - r) = n$.
- Orthogonality: $C(A^T) \bigotimes N(A) = \mathbb{R}^n$.

Stuff to know/understand:

Fundamental Theorem of Linear Algebra:

- Applies to any $m \times n$ matrix A.
- Symmetry of A and A^T.
- Column space $C(A) \subset \mathbb{R}^m$.
- Left Nullspace $N(A^T) \subset \mathbb{R}^m$.
 - $\dim C(A) + \dim N(A^T) = r + (m - r) = m$
 - Orthogonality: $C(A) \bigotimes N(A^T) = \mathbb{R}^m$
- Row space $C(A^T) \subset \mathbb{R}^n$.
- (Right) Nullspace $N(A) \subset \mathbb{R}^n$.
 - $\dim C(A^T) + \dim N(A) = r + (n - r) = n$
 - Orthogonality: $C(A^T) \bigotimes N(A) = \mathbb{R}^n$
Stuff to know/understand:

Fundamental Theorem of Linear Algebra:

- Applies to any $m \times n$ matrix \mathbf{A}.
- Symmetry of \mathbf{A} and \mathbf{A}^T.

- Column space $C(\mathbf{A}) \subset \mathbb{R}^m$.
- Left Nullspace $N(\mathbf{A}^T) \subset \mathbb{R}^m$.
- $\dim C(\mathbf{A}) + \dim N(\mathbf{A}^T) = r + (m - r) = m$
- Orthogonality: $C(\mathbf{A}) \otimes N(\mathbf{A}^T) = \mathbb{R}^m$

- Row space $C(\mathbf{A}^T) \subset \mathbb{R}^n$.
- (Right) Nullspace $N(\mathbf{A}) \subset \mathbb{R}^n$.
- $\dim C(\mathbf{A}^T) + \dim N(\mathbf{A}) = r + (n - r) = n$
- Orthogonality: $C(\mathbf{A}^T) \otimes N(\mathbf{A}) = \mathbb{R}^n$
Stuff to know/understand:

Fundamental Theorem of Linear Algebra:

- Applies to any $m \times n$ matrix A.
- Symmetry of A and A^T.
- Column space $C(A) \subset R^m$.
- Left Nullspace $N(A^T) \subset R^m$.
- $\dim C(A) + \dim N(A^T) = r + (m - r) = m$
- Orthogonality: $C(A) \otimes N(A^T) = R^m$
- Row space $C(A^T) \subset R^n$.
- (Right) Nullspace $N(A) \subset R^n$.
- $\dim C(A^T) + \dim N(A) = r + (n - r) = n$
- Orthogonality: $C(A^T) \otimes N(A) = R^n$
Stuff to know/understand:

Fundamental Theorem of Linear Algebra:

- Applies to any $m \times n$ matrix A.
- Symmetry of A and A^T.
- Column space $C(A) \subset \mathbb{R}^m$.
- Left Nullspace $N(A^T) \subset \mathbb{R}^m$.
- $\dim C(A) + \dim N(A^T) = r + (m - r) = m$
- Orthogonality: $C(A) \bigotimes N(A^T) = \mathbb{R}^m$

- Row space $C(A^T) \subset \mathbb{R}^n$.
- (Right) Nullspace $N(A) \subset \mathbb{R}^n$.
- $\dim C(A^T) + \dim N(A) = r + (n - r) = n$
- Orthogonality: $C(A^T) \bigotimes N(A) = \mathbb{R}^n$
Stuff to know/understand:

Fundamental Theorem of Linear Algebra:

- Applies to any $m \times n$ matrix A.
- Symmetry of A and A^T.
- Column space $C(A) \subset \mathbb{R}^m$.
- Left Nullspace $N(A^T) \subset \mathbb{R}^m$.
- $\dim C(A) + \dim N(A^T) = r + (m - r) = m$
- Orthogonality: $C(A) \bigotimes N(A^T) = \mathbb{R}^m$
- Row space $C(A^T) \subset \mathbb{R}^n$.
- (Right) Nullspace $N(A) \subset \mathbb{R}^n$.
- $\dim C(A^T) + \dim N(A) = r + (n - r) = n$
- Orthogonality: $C(A^T) \bigotimes N(A) = \mathbb{R}^n$
Stuff to know/understand:

Finding four fundamental subspaces:

- Enough to find bases for subspaces.
- Be able to reduce A to \mathbb{R}_A and A^T to \mathbb{R}_{A^T}.
- Understand crucial nature of \mathbb{R}_A and \mathbb{R}_{A^T}.
- Identify pivot columns and free columns.
- Rank r of $A = \#$ pivot columns.
- Know that relationship between \mathbb{R}_A’s columns hold for A’s columns.
Stuff to know/understand:

Finding four fundamental subspaces:

- Enough to find bases for subspaces.
- Be able to reduce A to \mathbb{R}_A and A^T to \mathbb{R}_{A^T}.
- Understand crucial nature of \mathbb{R}_A and \mathbb{R}_{A^T}.
- Identify pivot columns and free columns.
- Rank r of $A = \#$ pivot columns.
- Know that relationship between \mathbb{R}_A’s columns hold for A’s columns.
Stuff to know/understand:

Finding four fundamental subspaces:

- Enough to find bases for subspaces.
- Be able to reduce A to R_A and A^T to R_{A^T}.
- Understand crucial nature of R_A and R_{A^T}.
- Identify pivot columns and free columns.
- Rank r of $A = \#$ pivot columns.
- Know that relationship between R_A’s columns hold for A’s columns.
Stuff to know/understand:

Finding four fundamental subspaces:

- Enough to find bases for subspaces.
- Be able to reduce A to \mathbb{R}_A and A^T to \mathbb{R}_{A^T}.
- Understand crucial nature of \mathbb{R}_A and \mathbb{R}_{A^T}.
- Identify pivot columns and free columns.
- Rank r of $A = \#$ pivot columns.
- Know that relationship between \mathbb{R}_A’s columns hold for A’s columns.
Stuff to know/understand:

Finding four fundamental subspaces:
- Enough to find bases for subspaces.
- Be able to reduce A to R_A and A^T to R_{A^T}.
- Understand crucial nature of R_A and R_{A^T}.
- Identify pivot columns and free columns.
- Rank r of $A = \#$ pivot columns.
- Know that relationship between R_A’s columns hold for A’s columns.
Stuff to know/understand:

Finding four fundamental subspaces:
- Enough to find bases for subspaces.
- Be able to reduce A to \mathbb{R}_A and A^T to \mathbb{R}_{A^T}.
- Understand crucial nature of \mathbb{R}_A and \mathbb{R}_{A^T}.
- Identify pivot columns and free columns.
- Rank r of $A = \#$ pivot columns.
- Know that relationship between \mathbb{R}_A‘s columns hold for A’s columns.
Stuff to know/understand:

Bases for column space—three ways:

1. Find when $A\vec{x} = \vec{b}$ has a solution:
 - Reduce $[A | \vec{b}]$ where \vec{b} is general.
 - Find conditions on \vec{b}'s elements for a solution to $A\vec{x} = \vec{b}$ to exist → obtain basis for $C(A)$.

2. Use R_A:
 - Find pivot columns in R_A—same columns in A form a basis for $C(A)$.
 - Warning: R_A's columns do not give a basis for $C(A)$

3. Use R_{AT}:
 - Best and easiest way: basis for column space = non-zero rows in R_{AT}, the reduced form of A^T.

Basis for row space:

- Take non-zero rows in R_A (easy!).
- Matches way 3 for column space.
Stuff to know/understand:

Bases for column space—three ways:

1. Find when $A\vec{x} = \vec{b}$ has a solution:
 - Reduce $[A | \vec{b}]$ where \vec{b} is general.
 - Find conditions on \vec{b}’s elements for a solution to $A\vec{x} = \vec{b}$ to exist → obtain basis for $C(A)$.

2. Use R_A:
 - Find pivot columns in R_A—same columns in A form a basis for $C(A)$.
 - Warning: R_A’s columns do not give a basis for $C(A)$

3. Use R_{AT}:
 - Best and easiest way: basis for column space = non-zero rows in R_{AT}, the reduced form of A^T.

Basis for row space:
- Take non-zero rows in R_A (easy!).
- Matches way 3 for column space.
Stuff to know/understand:

Bases for column space—three ways:

1. Find when \(A \tilde{x} = \tilde{b} \) has a solution:
 - Reduce \([A \mid \tilde{b}]\) where \(\tilde{b} \) is general.
 - Find conditions on \(\tilde{b}'s \) elements for a solution to \(A \tilde{x} = \tilde{b} \) to exist \(\rightarrow \) obtain basis for \(C(A) \).

2. Use \(R_A \):
 - Find pivot columns in \(R_A \)—same columns in \(A \) form a basis for \(C(A) \).
 - Warning: \(R_A \)'s columns do not give a basis for \(C(A) \).

3. Use \(R_{AT} \):
 - Best and easiest way: basis for column space = non-zero rows in \(R_{AT} \), the reduced form of \(A^T \).

Basis for row space:

- Take non-zero rows in \(R_A \) (easy!).
- Matches way 3 for column space.
Stuff to know/understand:

Bases for column space—three ways:

1. **Find when** $A\vec{x} = \vec{b}$ **has a solution:**
 - Reduce $[A \mid \vec{b}]$ where \vec{b} is general.
 - Find conditions on \vec{b}’s elements for a solution to $A\vec{x} = \vec{b}$ to exist \rightarrow obtain basis for $C(A)$.

2. **Use** R_A:
 - Find pivot columns in R_A—same columns in A form a basis for $C(A)$.
 - Warning: R_A’s columns do not give a basis for $C(A)$

3. **Use** R_{AT}:
 - Best and easiest way: basis for column space = non-zero rows in R_{AT}, the reduced form of A^T.

Basis for row space:

- Take non-zero rows in R_A (easy!).
- Matches way 3 for column space.
Stuff to know/understand:

Bases for column space—three ways:

1. **Find when \(A\vec{x} = \vec{b} \) has a solution:**
 - Reduce \([A | \vec{b}]\) where \(\vec{b} \) is general.
 - Find conditions on \(\vec{b} \)'s elements for a solution to \(A\vec{x} = \vec{b} \) to exist → obtain basis for \(C(A) \).

2. **Use \(R_A \):**
 - Find pivot columns in \(R_A \)—same columns in \(A \) form a basis for \(C(A) \).
 - **Warning:** \(R_A \)'s columns do not give a basis for \(C(A) \).

3. **Use \(R_{AT} \):**
 - Best and easiest way: basis for column space = non-zero rows in \(R_{AT} \), the reduced form of \(A^T \).

Basis for row space:

- Take non-zero rows in \(R_A \) (easy!).
- Matches way 3 for column space.
Stuff to know/understand:

Bases for column space—three ways:

1. Find when $\mathbf{Ax} = \mathbf{b}$ has a solution:
 - Reduce $[\mathbf{A} | \mathbf{b}]$ where \mathbf{b} is general.
 - Find conditions on \mathbf{b}’s elements for a solution to $\mathbf{Ax} = \mathbf{b}$ to exist \rightarrow obtain basis for $C(\mathbf{A})$.

2. Use $\mathbf{R}_\mathbf{A}$:
 - Find pivot columns in $\mathbf{R}_\mathbf{A}$—same columns in \mathbf{A} form a basis for $C(\mathbf{A})$.
 - Warning: $\mathbf{R}_\mathbf{A}$’s columns do not give a basis for $C(\mathbf{A})$.

3. Use $\mathbf{R}_{\mathbf{AT}}$:
 - Best and easiest way: basis for column space = non-zero rows in $\mathbf{R}_{\mathbf{AT}}$, the reduced form of \mathbf{A}^T.

Basis for row space:

- Take non-zero rows in $\mathbf{R}_\mathbf{A}$ (easy!).
- Matches way 3 for column space.
Stuff to know/understand:

Bases for column space—three ways:

1. Find when $\mathbf{A}\vec{x} = \vec{b}$ has a solution:
 - Reduce $[\mathbf{A} | \vec{b}]$ where \vec{b} is general.
 - Find conditions on \vec{b}’s elements for a solution to $\mathbf{A}\vec{x} = \vec{b}$ to exist → obtain basis for $C(\mathbf{A})$.

2. Use $\mathbf{R}_\mathbf{A}$:
 - Find pivot columns in $\mathbf{R}_\mathbf{A}$—same columns in \mathbf{A} form a basis for $C(\mathbf{A})$.
 - Warning: $\mathbf{R}_\mathbf{A}$’s columns do not give a basis for $C(\mathbf{A})$.

3. Use $\mathbf{R}_{\mathbf{A}^T}$:
 - Best and easiest way: basis for column space = non-zero rows in $\mathbf{R}_{\mathbf{A}^T}$, the reduced form of \mathbf{A}^T.

Basis for row space:

- Take non-zero rows in $\mathbf{R}_\mathbf{A}$ (easy!).
- Matches way 3 for column space.
Stuff to know/understand:

Bases for column space—three ways:

1. Find when $A\vec{x} = \vec{b}$ has a solution:
 - Reduce $[A | \vec{b}]$ where \vec{b} is general.
 - Find conditions on \vec{b}'s elements for a solution to $A\vec{x} = \vec{b}$ to exist \rightarrow obtain basis for $C(A)$.

2. Use R_A:
 - Find pivot columns in R_A—same columns in A form a basis for $C(A)$.
 - Warning: R_A's columns do not give a basis for $C(A)$.

3. Use R_{AT}:
 - Best and easiest way: basis for column space = non-zero rows in R_{AT}, the reduced form of A^T.

Basis for row space:

- Take non-zero rows in R_A (easy!).
- Matches way 3 for column space.
Stuff to know/understand:

Bases for column space—three ways:

1. **Find when** $Ax = b$ **has a solution:**
 - Reduce $[A \mid b]$ where b is general.
 - Find conditions on b’s elements for a solution to $Ax = b$ to exist \rightarrow obtain basis for $C(A)$.

2. **Use R_A:**
 - Find pivot columns in R_A—same columns in A form a basis for $C(A)$.
 - **Warning:** R_A’s columns do not give a basis for $C(A)$

3. **Use R_{AT}:**
 - **Best and easiest way:** basis for column space = non-zero rows in R_{AT}, the reduced form of A^T.

Basis for row space:

- Take non-zero rows in R_A (easy!).
- Matches way 3 for column space.
Stuff to know/understand:

Bases for column space—three ways:

1. Find when $\mathbf{A}\vec{x} = \vec{b}$ has a solution:
 - Reduce $[\mathbf{A} | \vec{b}]$ where \vec{b} is general.
 - Find conditions on \vec{b}’s elements for a solution to $\mathbf{A}\vec{x} = \vec{b}$ to exist \rightarrow obtain basis for $C(\mathbf{A})$.

2. Use $\mathbb{R}\mathbf{A}$:
 - Find pivot columns in $\mathbb{R}\mathbf{A}$—same columns in \mathbf{A} form a basis for $C(\mathbf{A})$.
 - Warning: $\mathbb{R}\mathbf{A}$’s columns do not give a basis for $C(\mathbf{A})$.

3. Use $\mathbb{R}\mathbf{A}^T$:
 - Best and easiest way: basis for column space = non-zero rows in $\mathbb{R}\mathbf{A}^T$, the reduced form of \mathbf{A}^T.

Basis for row space:

- Take non-zero rows in $\mathbb{R}\mathbf{A}$ (easy!).
- Matches way 3 for column space.
Stuff to know/understand:

Bases for column space—three ways:

1. Find when $A\vec{x} = \vec{b}$ has a solution:
 - Reduce $[A | \vec{b}]$ where \vec{b} is general.
 - Find conditions on \vec{b}’s elements for a solution to $A\vec{x} = \vec{b}$ to exist → obtain basis for $C(A)$.

2. Use R_A:
 - Find pivot columns in R_A—same columns in A form a basis for $C(A)$.
 - **Warning:** R_A’s columns do not give a basis for $C(A)$

3. Use R_{AT}:
 - **Best and easiest way:** basis for column space = non-zero rows in R_{AT}, the reduced form of A^T.

Basis for row space:

- Take non-zero rows in R_A (easy!).
- Matches way 3 for column space.
Stuff to know/understand:

Bases for column space—three ways:

1. Find when $A\vec{x} = \vec{b}$ has a solution:
 - Reduce $[A \mid \vec{b}]$ where \vec{b} is general.
 - Find conditions on \vec{b}’s elements for a solution to $A\vec{x} = \vec{b}$ to exist \rightarrow obtain basis for $C(A)$.

2. Use R_A:
 - Find pivot columns in R_A—same columns in A form a basis for $C(A)$.
 - Warning: R_A’s columns do not give a basis for $C(A)$

3. Use R_{A^T}:
 - Best and easiest way: basis for column space = non-zero rows in R_{A^T}, the reduced form of A^T.

Basis for row space:

- Take non-zero rows in R_A (easy!).
- Matches way 3 for column space.
Stuff to know/understand:

Bases for nullspaces, left and right:

- Basis for nullspace obtained by solving \(A \vec{x} = \vec{0} \)
- Always express pivot variables in terms of free variables.
- Free variables are unconstrained (can be any real number)
- \# free variables = \(n - \# \) pivot variables = \(n - r = \text{dim } N(A) \).
- Similarly find basis for \(N(A^T) \) by solving \(A^T \vec{y} = \vec{0} \).
- \(\text{dim } N(A^T) = m - r \).
- Key: Find bases for both nullspaces directly from \(\mathbb{R}_A \) and \(\mathbb{R}_{A^T} \).
Stuff to know/understand:

Bases for nullspaces, left and right:

- Basis for nullspace obtained by solving $\mathbf{A}\vec{x} = \vec{0}$
- Always express pivot variables in terms of free variables.
- Free variables are unconstrained (can be any real number)
- $\# \text{ free variables} = n - \# \text{ pivot variables} = n - r = \dim N(\mathbf{A})$.
- Similarly find basis for $N(\mathbf{A}^T)$ by solving $\mathbf{A}^T\vec{y} = \vec{0}$.
- $\dim N(\mathbf{A}^T) = m - r$.
- Key: Find bases for both nullspaces directly from $\mathbb{R}_\mathbf{A}$ and $\mathbb{R}_{\mathbf{A}^T}$.
Stuff to know/understand:

Bases for nullspaces, left and right:

- Basis for nullspace obtained by solving $\mathbf{A} \vec{x} = \vec{0}$
- Always express pivot variables in terms of free variables.
- Free variables are unconstrained (can be any real number)
 - # free variables = $n -$ # pivot variables = $n - r$ = dim $N(\mathbf{A})$.
- Similarly find basis for $N(\mathbf{A}^T)$ by solving $\mathbf{A}^T \vec{y} = \vec{0}$.
- dim $N(\mathbf{A}^T) = m - r$.
- Key: Find bases for both nullspaces directly from $\mathbb{R}_\mathbf{A}$ and $\mathbb{R}_{\mathbf{A}^T}$.
Stuff to know/understand:

Bases for nullspaces, left and right:

- Basis for nullspace obtained by solving $A\vec{x} = \vec{0}$
- Always express pivot variables in terms of free variables.
- Free variables are unconstrained (can be any real number)
- $\#$ free variables = $n - \#$ pivot variables = $n - r = \dim N(A)$.
- Similarly find basis for $N(A^T)$ by solving $A^T\vec{y} = \vec{0}$.
- $\dim N(A^T) = m - r$.
- Key: Find bases for both nullspaces directly from R_A and R_{A^T}.
Stuff to know/understand:

Bases for nullspaces, left and right:

- Basis for nullspace obtained by solving $A\vec{x} = \vec{0}$
- Always express pivot variables in terms of free variables.
- Free variables are unconstrained (can be any real number)
- # free variables = $n - #$ pivot variables = $n - r = \dim N(A)$.
- Similarly find basis for $N(A^T)$ by solving $A^T\vec{y} = \vec{0}$.
- $\dim N(A^T) = m - r$.
- Key: Find bases for both nullspaces directly from R_A and R_{A^T}.
Stuff to know/understand:

Bases for nullspaces, left and right:

- Basis for nullspace obtained by solving $A\vec{x} = \vec{0}$
- Always express pivot variables in terms of free variables.
- Free variables are unconstrained (can be any real number)
- # free variables = $n - \#$ pivot variables = $n - r = \dim N(A)$.
- Similarly find basis for $N(A^T)$ by solving $A^T\vec{y} = \vec{0}$.
- $\dim N(A^T) = m - r$.
- Key: Find bases for both nullspaces directly from \mathbb{R}_A and \mathbb{R}_{A^T}.
Stuff to know/understand:

Bases for nullspaces, left and right:

- Basis for nullspace obtained by solving $\mathbf{A} \vec{x} = \vec{0}$
- Always express pivot variables in terms of free variables.
- Free variables are unconstrained (can be any real number)
- $\#$ free variables = $n - \#$ pivot variables = $n - r = \dim N(\mathbf{A})$.
- Similarly find basis for $N(\mathbf{A}^T)$ by solving $\mathbf{A}^T \vec{y} = \vec{0}$.
- $\dim N(\mathbf{A}^T) = m - r$.
- **Key:** Find bases for both nullspaces directly from $\mathbb{R}_\mathbf{A}$ and $\mathbb{R}_{\mathbf{A}^T}$.

Stuff to know/understand:

Number of solutions to $A\vec{x} = \vec{b}$:

1. If $\vec{b} \notin C(A)$, there are no solutions.
2. If $\vec{b} \in C(A)$, there is either one unique solution or infinitely many solutions.
 - Number of solutions now depends entirely on $N(A)$.
 - If $\dim N(A) = n - r > 0$, then there are infinitely many solutions.
 - If $\dim N(A) = n - r = 0$, then there is one solution.
Stuff to know/understand:

Number of solutions to $\mathbf{A}\mathbf{x} = \mathbf{b}$:

1. If $\mathbf{b} \notin C(\mathbf{A})$, there are no solutions.

2. If $\mathbf{b} \in C(\mathbf{A})$ there is either one unique solution or infinitely many solutions.
 - Number of solutions now depends entirely on $N(\mathbf{A})$.
 - If $\dim N(\mathbf{A}) = n - r > 0$, then there are infinitely many solutions.
 - If $\dim N(\mathbf{A}) = n - r = 0$, then there is one solution.
Stuff to know/understand:

Number of solutions to $A\vec{x} = \vec{b}$:

1. If $\vec{b} \notin C(A)$, there are no solutions.

2. If $\vec{b} \in C(A)$ there is either one unique solution or infinitely many solutions.
 - Number of solutions now depends entirely on $N(A)$.
 - If dim $N(A) = n - r > 0$, then there are infinitely many solutions.
 - If dim $N(A) = n - r = 0$, then there is one solution.
Stuff to know/understand:

Number of solutions to $\mathbf{A}\vec{x} = \vec{b}$:

1. If $\vec{b} \notin C(\mathbf{A})$, there are **no solutions**.

2. If $\vec{b} \in C(\mathbf{A})$ there is either one unique solution or infinitely many solutions.
 - Number of solutions now depends entirely on $N(\mathbf{A})$.
 - If $\dim N(\mathbf{A}) = n - r > 0$, then there are **infinitely many solutions**.
 - If $\dim N(\mathbf{A}) = n - r = 0$, then there is one solution.
Stuff to know/understand:

Number of solutions to $A\vec{x} = \vec{b}$:

1. If $\vec{b} \notin C(A)$, there are **no solutions**.
2. If $\vec{b} \in C(A)$ there is either one unique solution or infinitely many solutions.
 - Number of solutions now depends entirely on $N(A)$.
 - If $\text{dim } N(A) = n - r > 0$, then there are **infinitely many solutions**.
 - If $\text{dim } N(A) = n - r = 0$, then there is one solution.
Stuff to know/understand:

Number of solutions to $\mathbf{A}\vec{x} = \vec{b}$:

1. If $\vec{b} \notin C(\mathbf{A})$, there are no solutions.

2. If $\vec{b} \in C(\mathbf{A})$ there is either one unique solution or infinitely many solutions.
 - Number of solutions now depends entirely on $N(\mathbf{A})$.
 - If $\dim N(\mathbf{A}) = n - r > 0$, then there are infinitely many solutions.
 - If $\dim N(\mathbf{A}) = n - r = 0$, then there is one solution.
Projections:

- Understand how to project a vector \vec{b} onto a line in direction of \vec{a}.
- $\vec{b} = \vec{p} + \vec{e}$
- \vec{p} = that part of \vec{b} that lies in the line:

$$\vec{p} = \frac{\vec{a}^T \vec{b}}{\vec{a}^T \vec{a}} \vec{a} \left(= \frac{\vec{a} \vec{a}^T}{\vec{a}^T \vec{a}} \vec{b} \right)$$

- \vec{e} = that part of \vec{b} that is orthogonal to the line.
- Understand generalization to projection onto subspaces.
- Understand construction and use of subspace projection operator \mathbb{P}:

$$\mathbb{P} = \mathbf{A}(\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T,$$

where \mathbf{A}’s columns form a subspace basis.
Projections:

- Understand how to project a vector \vec{b} onto a line in direction of \vec{a}.

 $\vec{b} = \vec{p} + \vec{e}$

- \vec{p} = that part of \vec{b} that lies in the line:

 $$\vec{p} = \frac{\vec{a}^T \vec{b}}{\vec{a}^T \vec{a}} \vec{a} = \frac{\vec{a} \vec{a}^T}{\vec{a}^T \vec{a}} \vec{b}$$

- \vec{e} = that part of \vec{b} that is orthogonal to the line.

- Understand generalization to projection onto subspaces.

- Understand construction and use of subspace projection operator \mathbb{P}:

 $$\mathbb{P} = \mathbb{A} (\mathbb{A}^T \mathbb{A})^{-1} \mathbb{A}^T,$$

where \mathbb{A}’s columns form a subspace basis.
Projections:

► Understand how to project a vector \vec{b} onto a line in direction of \vec{a}.

$\vec{b} = \vec{p} + \vec{e}$

► \vec{p} = that part of \vec{b} that lies in the line:

$$\vec{p} = \frac{\vec{a}^T \vec{b}}{\vec{a}^T \vec{a}} \vec{a} = \frac{\vec{a} \vec{a}^T}{\vec{a}^T \vec{a}} \vec{b}$$

► \vec{e} = that part of \vec{b} that is orthogonal to the line.

► Understand generalization to projection onto subspaces.

► Understand construction and use of subspace projection operator \mathbb{P}:

$$\mathbb{P} = \mathbb{A}(\mathbb{A}^T \mathbb{A})^{-1} \mathbb{A}^T,$$

where \mathbb{A}’s columns form a subspace basis.
Projections:

- Understand how to project a vector \(\vec{b} \) onto a line in direction of \(\vec{a} \).
- \(\vec{b} = \vec{p} + \vec{e} \)
- \(\vec{p} = \) that part of \(\vec{b} \) that lies in the line:
 \[
 \vec{p} = \frac{\vec{a}^T \vec{b}}{\vec{a}^T \vec{a}} \vec{a} = \frac{\vec{a} \vec{a}^T}{\vec{a}^T \vec{a}} \vec{b}
 \]
- \(\vec{e} = \) that part of \(\vec{b} \) that is orthogonal to the line.
- Understand generalization to projection onto subspaces.
- Understand construction and use of subspace projection operator \(\mathbb{P} \):
 \[
 \mathbb{P} = \mathbb{A}(\mathbb{A}^T \mathbb{A})^{-1} \mathbb{A}^T,
 \]
 where \(\mathbb{A} \)'s columns form a subspace basis.
Projections:

- Understand how to project a vector \vec{b} onto a line in direction of \vec{a}.
- $\vec{b} = \vec{p} + \vec{e}$
- \vec{p} = that part of \vec{b} that lies in the line:
 $$\vec{p} = \frac{\vec{a}^T \vec{b}}{\vec{a}^T \vec{a}} \vec{a} = \frac{\vec{a} \vec{a}^T}{\vec{a}^T \vec{a}} \vec{b}$$
- \vec{e} = that part of \vec{b} that is orthogonal to the line.
- Understand generalization to projection onto subspaces.
- Understand construction and use of subspace projection operator \mathbb{P}:
 $$\mathbb{P} = \mathbb{A} (\mathbb{A}^T \mathbb{A})^{-1} \mathbb{A}^T,$$
where \mathbb{A}’s columns form a subspace basis.
Projections:

- Understand how to project a vector \vec{b} onto a line in direction of \vec{a}.
 - $\vec{b} = \vec{p} + \vec{e}$
 - $\vec{p} = \text{that part of } \vec{b} \text{ that lies in the line}$:
 $$\vec{p} = \frac{\vec{a}^T \vec{b}}{\vec{a}^T \vec{a}} \vec{a} \left(= \frac{\vec{a} \vec{a}^T}{\vec{a}^T \vec{a}} \vec{b} \right)$$
 - $\vec{e} = \text{that part of } \vec{b} \text{ that is orthogonal to the line}.$
- Understand generalization to projection onto subspaces.
 - Understand construction and use of subspace projection operator \mathbb{P}:
 $$\mathbb{P} = A (A^T A)^{-1} A^T,$$
 where A’s columns form a subspace basis.
Projections:

- Understand how to project a vector \vec{b} onto a line in direction of \vec{a}.
- $\vec{b} = \vec{p} + \vec{e}$
- \vec{p} = that part of \vec{b} that lies in the line:
 $$\vec{p} = \frac{\vec{a}^T \vec{b}}{\vec{a}^T \vec{a}} \vec{a}$$
- \vec{e} = that part of \vec{b} that is orthogonal to the line.
- Understand generalization to projection onto subspaces.
- Understand construction and use of subspace projection operator \mathbb{P}:
 $$\mathbb{P} = \mathbb{A} (\mathbb{A}^T \mathbb{A})^{-1} \mathbb{A}^T,$$
 where \mathbb{A}’s columns form a subspace basis.
Stuff to know/understand

Normal equation for $\mathbf{A}\mathbf{x} = \mathbf{b}$:

- If $\mathbf{b} \not\in C(\mathbf{A})$, project \mathbf{b} onto $C(\mathbf{A})$.
- Write projection of \mathbf{b} as \mathbf{p}.
- Know $\mathbf{p} \in C(\mathbf{A})$ so $\exists \mathbf{x}_*$ such that $\mathbf{A}\mathbf{x}_* = \mathbf{p}$.
- Error vector must be orthogonal to column space so $\mathbf{A}^T\mathbf{e} = \mathbf{A}^T(\mathbf{b} - \mathbf{p}) = \mathbf{0}$.
- Rearrange: $\mathbf{A}^T\mathbf{p} = \mathbf{A}^T\mathbf{b}$.
- Since $\mathbf{A}\mathbf{x}_* = \mathbf{p}$, we end up with $\mathbf{A}^T\mathbf{A}\mathbf{x}_* = \mathbf{A}^T\mathbf{b}$.
- This is linear algebra’s normal equation; \mathbf{x}_* is our best solution to $\mathbf{A}\mathbf{x} = \mathbf{b}$.
Stuff to know/understand

Normal equation for $\mathbf{A}\mathbf{x} = \mathbf{b}$:

- If $\mathbf{b} \notin C(\mathbf{A})$, project \mathbf{b} onto $C(\mathbf{A})$.
 - Write projection of \mathbf{b} as \mathbf{p}.
 - Know $\mathbf{p} \in C(\mathbf{A})$ so $\exists \mathbf{x}_\ast$ such that $\mathbf{A}\mathbf{x}_\ast = \mathbf{p}$.
 - Error vector must be orthogonal to column space so $\mathbf{A}^T\mathbf{e} = \mathbf{A}^T(\mathbf{b} - \mathbf{p}) = \mathbf{0}$.
 - Rearrange: $\mathbf{A}^T\mathbf{p} = \mathbf{A}^T\mathbf{b}$.

- Since $\mathbf{A}\mathbf{x}_\ast = \mathbf{p}$, we end up with
 $$\mathbf{A}^T\mathbf{A}\mathbf{x}_\ast = \mathbf{A}^T\mathbf{b}.$$

- This is linear algebra’s normal equation; \mathbf{x}_\ast is our best solution to $\mathbf{A}\mathbf{x} = \mathbf{b}$.
Stuff to know/understand

Normal equation for $A\vec{x} = \vec{b}$:

- If $\vec{b} \notin C(A)$, project \vec{b} onto $C(A)$.
- Write projection of \vec{b} as \vec{p}.
 - Know $\vec{p} \in C(A)$ so $\exists \vec{x}_*$ such that $A\vec{x}_* = \vec{p}$.
 - Error vector must be orthogonal to column space so $A^T\vec{e} = A^T(\vec{b} - \vec{p}) = \vec{0}$.
 - Rearrange: $A^T\vec{p} = A^T\vec{b}$.
- Since $A\vec{x}_* = \vec{p}$, we end up with $A^TA\vec{x}_* = A^T\vec{b}$.
- This is linear algebra's normal equation; \vec{x}_* is our best solution to $A\vec{x} = \vec{b}$.
Stuff to know/understand

Normal equation for $\mathbf{A}\vec{x} = \vec{b}$:

- If $\vec{b} \not\in C(\mathbf{A})$, project \vec{b} onto $C(\mathbf{A})$.
- Write projection of \vec{b} as \vec{p}.
- Know $\vec{p} \in C(\mathbf{A})$ so $\exists \vec{x}_* \text{ such that } \mathbf{A}\vec{x}_* = \vec{p}$.
- Error vector must be orthogonal to column space so $\mathbf{A}^T\vec{e} = \mathbf{A}^T(\vec{b} - \vec{p}) = \vec{0}$.
- Rearrange: $\mathbf{A}^T\vec{p} = \mathbf{A}^T\vec{b}$.
- Since $\mathbf{A}\vec{x}_* = \vec{p}$, we end up with $\mathbf{A}^T\mathbf{A}\vec{x}_* = \mathbf{A}^T\vec{b}$.
- This is linear algebra’s normal equation; \vec{x}_* is our best solution to $\mathbf{A}\vec{x} = \vec{b}$.
Stuff to know/understand

Normal equation for $\mathbf{A}\vec{x} = \vec{b}$:

- If $\vec{b} \not\in \text{C}(\mathbf{A})$, project \vec{b} onto $\text{C}(\mathbf{A})$.
- Write projection of \vec{b} as \vec{p}.
- Know $\vec{p} \in \text{C}(\mathbf{A})$ so $\exists \vec{x}_\ast$ such that $\mathbf{A}\vec{x}_\ast = \vec{p}$.
- Error vector must be orthogonal to column space so $\mathbf{A}^T\vec{e} = \mathbf{A}^T(\vec{b} - \vec{p}) = \vec{0}$.

 - Rearrange: $\mathbf{A}^T\vec{p} = \mathbf{A}^T\vec{b}$.

 - Since $\mathbf{A}\vec{x}_\ast = \vec{p}$, we end up with $\mathbf{A}^T\mathbf{A}\vec{x}_\ast = \mathbf{A}^T\vec{b}$.

 - This is linear algebra’s **normal equation**; \vec{x}_\ast is our best solution to $\mathbf{A}\vec{x} = \vec{b}$.
Stuff to know/understand

Normal equation for $\mathbf{A} \vec{x} = \vec{b}$:

- If $\vec{b} \notin C(\mathbf{A})$, project \vec{b} onto $C(\mathbf{A})$.
- Write projection of \vec{b} as \vec{p}.
- Know $\vec{p} \in C(\mathbf{A})$ so $\exists \vec{x}_*$ such that $\mathbf{A} \vec{x}_* = \vec{p}$.
- Error vector must be orthogonal to column space so $\mathbf{A}^T \vec{e} = \mathbf{A}^T (\vec{b} - \vec{p}) = \vec{0}$.
- Rearrange:
 \[\mathbf{A}^T \vec{p} = \mathbf{A}^T \vec{b} \]
- Since $\mathbf{A} \vec{x}_* = \vec{p}$, we end up with
 \[\mathbf{A}^T \mathbf{A} \vec{x}_* = \mathbf{A}^T \vec{b}. \]
- This is linear algebra's normal equation; \vec{x}_* is our best solution to $\mathbf{A} \vec{x} = \vec{b}$.
Stuff to know/understand

Normal equation for $A\vec{x} = \vec{b}$:

- If $\vec{b} \not\in C(A)$, project \vec{b} onto $C(A)$.
- Write projection of \vec{b} as \vec{p}.
- Know $\vec{p} \in C(A)$ so $\exists \vec{x}_*$ such that $A\vec{x}_* = \vec{p}$.
- Error vector must be orthogonal to column space so $A^T\vec{e} = A^T(\vec{b} - \vec{p}) = \vec{0}$.
- Rearrange:
 $$A^T\vec{p} = A^T\vec{b}$$
- Since $A\vec{x}_* = \vec{p}$, we end up with
 $$A^TA\vec{x}_* = A^T\vec{b}.$$
Stuff to know/understand

Normal equation for $A\vec{x} = \vec{b}$:

- If $\vec{b} \not\in C(A)$, project \vec{b} onto $C(A)$.
- Write projection of \vec{b} as \vec{p}.
- Know $\vec{p} \in C(A)$ so $\exists \vec{x}_*$ such that $A\vec{x}_* = \vec{p}$.
- Error vector must be orthogonal to column space so $A^T\vec{e} = A^T(\vec{b} - \vec{p}) = \vec{0}$.
- Rearrange:
 $$A^T\vec{p} = A^T\vec{b}.$$
- Since $A\vec{x}_* = \vec{p}$, we end up with
 $$A^TA\vec{x}_* = A^T\vec{b}.$$
- This is linear algebra’s normal equation; \vec{x}_* is our best solution to $A\vec{x} = \vec{b}$.
The symmetry of $A\vec{x} = \vec{b}$ and $A^T\vec{y} = \vec{c}$:

- **Null Space**
 - $A\vec{x}_r = \vec{b}$
 - $A^T\vec{y}_r = \vec{c}$
 - $A\vec{x}_n = \vec{0}$
 - $A^T\vec{y}_n = \vec{0}$

- **Column Space**
 - $C(A)$
 - $C(A^T)$

- **Row Space**
 - R^n
 - R^m

- **Left Null Space**
 - $N(A)$
 - $N(A^T)$

- Dimensions:
 - $d = r$
 - $d = n - r$
 - $d = m - r$
How $A\vec{x} = \vec{b}$ works:

- **Row Space** $A\vec{x}_r = \vec{b}$
- **Column Space** $A\vec{x} = \vec{b}$
- **Left Null Space** $A\vec{x}_n = \vec{0}$

$d = r$
$d = n - r$
$d = m - r$
Best solution \vec{x}_* when $\vec{b} = \vec{p} + \vec{e}$:

- \vec{p} is in the column space of A.
- \vec{e} is in the null space of A.
- $\vec{x}_* = \vec{x}_r + \vec{x}_n$.

$A\vec{x}_r = \vec{p}$

$A\vec{x}_n = \vec{0}$

$d = r$

$d = m - r$

$d = n - r$
The fourfold ways of $\mathbf{Ax} = \mathbf{b}$:

<table>
<thead>
<tr>
<th>case</th>
<th>example R</th>
<th>big picture</th>
<th># solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>$m = r$</td>
<td>$n = r$</td>
<td></td>
<td>1 always</td>
</tr>
<tr>
<td></td>
<td>$\begin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$m = r$,</td>
<td>$n > r$</td>
<td>∞</td>
<td>∞ always</td>
</tr>
<tr>
<td></td>
<td>$\begin{bmatrix} 1 & 0 & 1 \ 0 & 1 & 2 \end{bmatrix}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$m > r$,</td>
<td>$n = r$</td>
<td></td>
<td>0 or 1</td>
</tr>
<tr>
<td></td>
<td>$\begin{bmatrix} 1 & 0 \ 0 & 1 \ 0 & 0 \end{bmatrix}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$m > r$,</td>
<td>$n > r$</td>
<td></td>
<td>0 or ∞</td>
</tr>
<tr>
<td></td>
<td>$\begin{bmatrix} 1 & 0 & 1 \ 0 & 1 & 2 \ 0 & 0 & 0 \ 0 & 0 & 0 \end{bmatrix}$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>