Outline

Review for Exam 1
Basics:

Sections covered on first midterm:

- Chapter 1 and Chapter 2 (Sections 2.1–2.7)
- Chapter 2 is our focus
- Knowledge of Chapter 1 as needed for Chapter 2 = solving $A\vec{x} = \vec{b}$.
- Want ‘understanding’ and ‘doing’ abilities.
Stuff to know:

Row, Column, & Matrix Pictures of Linear Systems
\[(A\vec{x} = \vec{b})\]

- What dimensions of \(A\) mean:
 - \(m = \text{number of equations}\)
 - \(n = \text{number of unknowns (}x_1, x_2, ...\)\)
- How to draw the row and column pictures.
- Be able to identify row picture (e.g., as representing 2 planes in 3-d).
- How to convert between the three pictures.
Solving $A\vec{x} = \vec{b}$ by elimination

Solve four equivalent ways:

1. Simultaneous equations (snore)
2. Row operations on augmented matrix
 - Systematically transform $A\vec{x} = \vec{b}$ into $U\vec{x} = \vec{c}$
 - Solve by back substitution
3. Row operations with E_{ij} and P_{ij} matrices
4. Factor A as $A = LU$
 - Solve two triangular systems by forward and back substitution
 - First $L\vec{c} = \vec{b}$ then $U\vec{x} = \vec{c}$.
 - More generally, $PA = LU$.

Understand number of solutions business:

- 0, 1, or ∞: why, when, ...
Stuff to know:

More on $A = LU$:

- Be able to find the pivots of A (they live in U)
- Understand how elimination matrices (E_{ij}'s) are constructed from multipliers (l_{ij}'s)
- Understand how L is made up of inverses of elimination matrices
 - e.g.: $L = E_{21}^{-1} E_{31}^{-1} E_{32}^{-1} A$
- Understand how L is made up of the l_{ij} multipliers.
- Understand how inverses of elimination matrices are simply related to elimination matrices.
Stuff to know:

Matrix algebra
- Understand basic matrix algebra
- Understand matrix multiplication
- Understand multiplication order matters
- Understand $AB = BA$ is rarely true

Inverses
- Understand identity matrix I
- Understand $AA^{-1} = A^{-1}A = I$
- Find A^{-1} with Gauss-Jordan elimination
- Perform row reduction on augmented matrix $[A | I]$.
- Understand that finding A^{-1} solves $A\vec{x} = \vec{b}$ but is often prohibitively expensive to do.
- $(AB)^{-1} = B^{-1}A^{-1}$
Stuff to know:

Transposes

- Definition: flip entries across main diagonal
- $A = A^T$: A is symmetric
- Important property: $(AB)^T = B^T A^T$

Extra pieces:

- If $A\vec{x} = \vec{0}$ has a non-zero solution, A has no inverse
- If $A\vec{x} = \vec{0}$ has a non-zero solution, then $A\vec{x} = \vec{b}$ always has infinitely many solutions.
- $(A^{-1})^T = (A^T)^{-1}$