Solving Linear Equations

Matrixology (Linear Algebra)—Lecture 2/25
MATH 124, Fall, 2011

Prof. Peter Dodds

Department of Mathematics & Statistics
Center for Complex Systems
Vermont Advanced Computing Center
University of Vermont

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.
Solving $A \vec{x} = \vec{b}$
Solving $A\vec{x} = \vec{b}$:

- We (people + computers) solve systems of linear equations by a systematic method of **Elimination** followed by **Back substitution**.
- Due to our man Gauss, hence Gaussian elimination.
- Our first example:

 \[-x_1 + 3x_2 = 1 \\
 2x_1 + x_2 = 5 \tag{1}\]

\[\rightsquigarrow \text{chalkage}\]
Solving $A\vec{x} = \vec{b}$:

- We (people + computers) solve systems of linear equations by a systematic method of **Elimination** followed by **Back substitution**.
- Due to our man Gauss, hence Gaussian elimination.
- Our first example:

\[
\begin{align*}
-x_1 + 3x_2 &= 1 \\
2x_1 + x_2 &= 5
\end{align*}
\]

\Rightarrow chalkage
Solving $A\vec{x} = \vec{b}$:

- We (people + computers) solve systems of linear equations by a systematic method of **Elimination** followed by **Back substitution**
- Due to our man Gauss, hence Gaussian elimination.
- Our first example:

\[
\begin{align*}
-x_1 + 3x_2 &= 1 \\
2x_1 + x_2 &= 5
\end{align*}
\]

(1)
Gaussian elimination:

Basic elimination rules (roughly):

1. Strategically, mechanically remove unwanted entries by subtracting a multiple of a row from another.

2. Swap rows if needed to create an ‘upper triangular form’
Gaussian elimination:

Basic elimination rules (roughly):

1. Strategically, mechanically remove unwanted entries by subtracting a multiple of a row from another.
2. Swap rows if needed to create an ‘upper triangular form’
Basic elimination rules (roughly):

1. Strategically, mechanically remove unwanted entries by subtracting a multiple of a row from another.
2. Swap rows if needed to create an ‘upper triangular form’

E.g.

\[\begin{align*}
2x_1 - x_2 &= -1 \\
x_2 &= 3
\end{align*} \rightarrow \begin{align*}
2x_1 - x_2 &= -1 \\
x_2 &= 3
\end{align*} \]
Solve:

\[2x_1 - 3x_2 = 3 \]
\[4x_1 - 5x_2 + x_3 = 7 \]
\[2x_1 - x_2 - 3x_3 = 5 \]
Summary:
Using **row operations**, we turned this problem:

\[
A\vec{x} = \vec{b} : \begin{bmatrix} 2 & -3 & 0 \\ 4 & -5 & 1 \\ 2 & -1 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 3 \\ 7 \\ 5 \end{bmatrix}
\]

into this problem:

\[
U\vec{x} = \vec{d} : \begin{bmatrix} 2 & -3 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & -5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \\ 0 \end{bmatrix}
\]

and the latter is **easy to solve using back substitution**.
Defn:
The entries along *U*'s main diagonal are the **pivots** of *A*.
(The pivots are hidden—elimination finds them.)

Defn:
A matrix with only zeros below the main diagonal is called **upper triangular**. A matrix with only zeros above the main diagonal is called **lower triangular**. We travel from *A* to *U* and the latter is always upper triangular.

Defn:
Singular means a system has no unique solution.
- It may have no solutions or infinitely many solutions.
- Singular = archaic way of saying ‘messed up.’

Truth:
If at least one pivot is zero, the matrix will be **singular**.
(but the reverse is not necessarily true).
Defn:
The entries along U's main diagonal are the pivots of A. (The pivots are hidden—elimination finds them.)

Defn:
A matrix with only zeros below the main diagonal is called upper triangular. A matrix with only zeros above the main diagonal is called lower triangular. We travel from A to U and the latter is always upper triangular.

Defn:
Singular means a system has no unique solution.
- It may have no solutions or infinitely many solutions.
- Singular = archaic way of saying ‘messed up.’

Truth:
If at least one pivot is zero, the matrix will be singular. (but the reverse is not necessarily true).
Defn:
The entries along U's main diagonal are the pivots of A. (The pivots are hidden—elimination finds them.)

Defn:
A matrix with only zeros below the main diagonal is called upper triangular. A matrix with only zeros above the main diagonal is called lower triangular. We travel from A to U and the latter is always upper triangular.

Defn:
Singular means a system has no unique solution.
- It may have no solutions or infinitely many solutions.
- Singular = archaic way of saying ‘messed up.’

Truth:
If at least one pivot is zero, the matrix will be singular. (but the reverse is not necessarily true).
Defn:
The entries along U’s main diagonal are the pivots of A. (The pivots are hidden—elimination finds them.)

Defn:
A matrix with only zeros below the main diagonal is called upper triangular. A matrix with only zeros above the main diagonal is called lower triangular. We travel from A to U and the latter is always upper triangular.

Defn:
Singular means a system has no unique solution. ▶ It may have no solutions or infinitely many solutions. ▶ Singular = archaic way of saying ‘messed up.’

Truth:
If at least one pivot is zero, the matrix will be singular. (but the reverse is not necessarily true).
Defn:
The entries along \(U \)'s main diagonal are the \textbf{pivots} of \(A \).
(The pivots are hidden—elimination finds them.)

Defn:
A matrix with only zeros below the main diagonal is called \textbf{upper triangular}.
A matrix with only zeros above the main diagonal is called \textbf{lower triangular}.
We travel from \(A \) to \(U \) and the latter is always upper triangular.

Defn:
\textbf{Singular} means a system has no unique solution.
- It may have no solutions or infinitely many solutions.
- \textbf{Singular} = archaic way of saying ‘messed up.’

Truth:
If at least one pivot is zero, the matrix will be \textbf{singular}.
(but the reverse is not necessarily true).
Defn:
The entries along U's main diagonal are the **pivots** of A.
(The pivots are hidden—elimination finds them.)

Defn:
A matrix with only zeros below the main diagonal is called **upper triangular**. A matrix with only zeros above the main diagonal is called **lower triangular**. We travel from A to U and the latter is always upper triangular.

Defn:
Singular means a system has no unique solution.
- It may have no solutions or infinitely many solutions.
- Singular = archaic way of saying ‘messed up.’

Truth:
If at least one pivot is zero, the matrix will be **singular**.
(but the reverse is not necessarily true).
Gaussian elimination:

The one true method:

- We simplify A using elimination in **the same way every time**.
- Eliminate entries one column at a time, moving left to right, and down each column.

\[
\begin{align*}
X + X + X + X &= X \\
1 &\downarrow + X + X + X &= X \\
2 &\downarrow + 4 &\downarrow + X + X &= X \\
3 &\uparrow + 5 &\rightarrow + 6 + X &= X
\end{align*}
\]
Gaussian elimination:

The one true method:

- We simplify A using elimination in the same way every time.
- Eliminate entries one column at a time, moving left to right, and down each column.

\[
\begin{align*}
X + X + X + X &= X \\
1 &\Downarrow + X + X + X &= X \\
2 &\Downarrow + 4 &\Downarrow + X + X &= X \\
3 &\nearrow + 5 &\rightarrow + 6 + X &= X
\end{align*}
\]
Gaussian elimination:

The one true method:

- We simplify A using elimination in the same way every time.
- Eliminate entries one column at a time, moving left to right, and down each column.

\[
\begin{align*}
X &+ X + X + X = X \\
1 &+ X + X + X = X \\
2 &+ 4 + X + X = X \\
3 &+ 5 + 6 + X = X
\end{align*}
\]
Gaussian elimination:

- To eliminate entry in row i of jth column, subtract a multiple ℓ_{ij} of the jth row from i.

- For example:

\[
\begin{align*}
2x_1 & + 3x_2 + -2x_3 + x_4 = 1 \\
x_1 & - 7x_2 + 3x_3 + x_4 = 1 \\
-x_1 & - 3x_2 - x_3 + 5x_4 = -2 \\
2x_1 & + x_2 - 2x_3 + 2x_4 = 0
\end{align*}
\]

$\ell_{21} = 1/2$, $\ell_{31} = -1/2$, $\ell_{41} = ?$.

- Note: we cannot find ℓ_{32} etc., until we are finished with row 1. Pivots are hidden!

- Note: the denominator of each ℓ_{ij} multiplier is the pivot in the jth column.
Gaussian elimination:

- To eliminate entry in row i of jth column, subtract a multiple ℓ_{ij} of the jth row from i.

- For example:

\[
\begin{align*}
2x_1 &+ 3x_2 + -2x_3 + x_4 = 1 \\
x_1 &- 7x_2 + 3x_3 + x_4 = 1 \\
-x_1 &- 3x_2 - x_3 + 5x_4 = -2 \\
2x_1 &+ x_2 - 2x_3 + 2x_4 = 0
\end{align*}
\]

$\ell_{21} = 1/2, \ell_{31} = -1/2, \ell_{41} = ?$.

- Note: we cannot find ℓ_{32} etc., until we are finished with row 1. Pivots are hidden!

- Note: the denominator of each ℓ_{ij} multiplier is the pivot in the jth column.
Gaussian elimination:

- To eliminate entry in row i of jth column, subtract a multiple ℓ_{ij} of the jth row from i.

- For example:

\[
\begin{align*}
2x_1 &+ 3x_2 + -2x_3 + x_4 = 1 \\
x_1 &- 7x_2 + 3x_3 + x_4 = 1 \\
-x_1 &- 3x_2 - x_3 + 5x_4 = -2 \\
2x_1 &+ x_2 - 2x_3 + 2x_4 = 0
\end{align*}
\]

$\ell_{21} = 1/2$, $\ell_{31} = -1/2$, $\ell_{41} = ?$.

- Note: we cannot find ℓ_{32} etc., until we are finished with row 1. Pivots are hidden!

- Note: the denominator of each ℓ_{ij} multiplier is the pivot in the jth column.
Gaussian elimination:

- To eliminate entry in row i of jth column, subtract a multiple ℓ_{ij} of the jth row from i.
- For example:

\[
\begin{align*}
2x_1 &+ 3x_2 + -2x_3 + x_4 = 1 \\
x_1 &- 7x_2 + 3x_3 + x_4 = 1 \\
-x_1 &- 3x_2 - x_3 + 5x_4 = -2 \\
2x_1 &+ x_2 - 2x_3 + 2x_4 = 0
\end{align*}
\]

$\ell_{21} = 1/2$, $\ell_{31} = -1/2$, $\ell_{41} =$?.

- Note: we cannot find ℓ_{32} etc., until we are finished with row 1. Pivots are hidden!
- Note: the denominator of each ℓ_{ij} multiplier is the pivot in the jth column.