Class Admin

► Office hours:
 ► 1:00 pm to 3:00 pm, Wednesday;
 Farrell Hall, second floor, Trinity Campus.
 ► Appointments by email (peter.dodds@uvm.edu).

► Course outline
► Projects
► Assignments (about 8)
► Assignment 1 appears today and involves:
 ► dolphins
 ► a Karate club
 ► political blogs
 ► a worm’s brain
 ► the Internet
 ► jazz musicians
Class Admin

- Office hours:
 - 1:00 pm to 3:00 pm, Wednesday;
 - Farrell Hall, second floor, Trinity Campus.
 - Appointments by email (peter.dodds@uvm.edu).

- Course outline
 - Projects
 - Assignments (about 8)
 - Assignment 1 appears today and involves:
 - dolphins
 - a Karate club
 - political blogs
 - a worm’s brain
 - the Internet
 - jazz musicians
Office hours:
1:00 pm to 3:00 pm, Wednesday;
Farrell Hall, second floor, Trinity Campus.
Appointments by email (peter.dodds@uvm.edu).

Course outline

Projects

Assignments (about 8)

Assignment 1 appears today and involves:
dolphins
da Karate club
political blogs
a worm's brain
the Internet
jazz musicians
Class Admin

- Office hours:
 - 1:00 pm to 3:00 pm, Wednesday;
 Farrell Hall, second floor, Trinity Campus.
 - Appointments by email (peter.dodds@uvm.edu).

- Course outline

- Projects

- Assignments (about 8)
 - Assignment 1 appears today and involves:
 - dolphins
 - a Karate club
 - political blogs
 - a worm's brain
 - the Internet
 - jazz musicians
Class Admin

- Office hours:
 - 1:00 pm to 3:00 pm, Wednesday; Farrell Hall, second floor, Trinity Campus.
 - Appointments by email (peter.dodds@uvm.edu).
- Course outline
- Projects
- Assignments (about 8)
- Assignment 1 appears today and involves:
 - dolphins
 - a Karate club
 - political blogs
 - a worm’s brain
 - the Internet
 - jazz musicians
Exciting details regarding these slides:

- Three versions (all in pdf):
 1. Presentation,
 2. Flat Presentation,
 3. Handout (2x2).

- Presentation versions are navigable and hyperlinks are clickable.

- Web links look like this (⊞).

- References in slides link to full citation at end. [2]

- Citations contain links to papers in pdf (if available).

- Brought to you by a troubling concoction of \LaTeX, Beamer, and perl.
Exciting details regarding these slides:

- Three versions (all in pdf):
 1. Presentation,
 2. Flat Presentation,
 3. Handout (2x2).
- Presentation versions are **navigable** and hyperlinks are **clickable**.
- Web links look like this (⊞).
- References in slides link to full citation at end. [2]
- Citations contain links to papers in pdf (if available).
- Brought to you by a troubling concoction of \LaTeX{}, Beamer, and perl.
Exciting details regarding these slides:

- Three versions (all in pdf):
 1. Presentation,
 2. Flat Presentation,
 3. Handout (2x2).
- Presentation versions are *navigable* and hyperlinks are *clickable*.
- Web links look like this (⊞).
- References in slides link to full citation at end. [2]
- Citations contain links to papers in pdf (if available).
- Brought to you by a troubling concoction of \LaTeX, Beamer, and perl.
Exciting details regarding these slides:

- Three versions (all in pdf):
 1. Presentation,
 2. Flat Presentation,
 3. Handout (2x2).

- Presentation versions are **navigable** and hyperlinks are **clickable**.

- Web links look **like this** (⊞).

- References in slides link to full citation at end. [2]

- Citations contain links to papers in pdf (if available).

- Brought to you by a troubling concoction of \LaTeX, Beamer, and perl.
Exciting details regarding these slides:

- Three versions (all in pdf):
 1. Presentation,
 2. Flat Presentation,
 3. Handout (2x2).
- Presentation versions are **navigable** and hyperlinks are **clickable**.
- Web links look like this (⊞).
- References in slides link to full citation at end. [2]
- Citations contain links to papers in pdf (if available).
- Brought to you by a troubling concoction of LaTeX, Beamer, and perl.
Exciting details regarding these slides:

- Three versions (all in pdf):
 1. Presentation,
 2. Flat Presentation,
 3. Handout (2x2).

- Presentation versions are **Navigable** and hyperlinks are **Clickable**.

- Web links look **like this (⊞)**.

- References in slides link to full citation at end. [2]

- Citations contain links to papers in pdf (if available).

- Brought to you by a troubling concoction of \LaTeX, Beamer, and perl.
Bonus materials:

Textbooks:

- Mark Newman (Physics, Michigan)
 “Networks: An Introduction” (荐)

- David Easley and Jon Kleinberg (Economics and Computer Science, Cornell)
 “Networks, Crowds, and Markets: Reasoning About a Highly Connected World” (荐)
Bonus materials:

Review articles:

- S. Boccaletti et al.
 "Complex networks: structure and dynamics" [5]
 Times cited: 1,028 (as of June 7, 2010)

- M. Newman
 "The structure and function of complex networks" [16]
 Times cited: 2,559 (as of June 7, 2010)

- R. Albert and A.-L. Barabási
 "Statistical mechanics of complex networks" [1]
 Times cited: 3,995 (as of June 7, 2010)
Basic definitions:

Complex: (Latin = with + fold/weave (com + plex))

Adjective

► Made up of multiple parts; intricate or detailed.
► Not simple or straightforward.
Basic definitions: Complex System—Some ingredients:

- Distributed system of many interrelated parts
- No centralized control
- Nonlinear relationships
- Existence of feedback loops
- Complex systems are open (out of equilibrium)
- Presence of Memory
- Modular (nested)/multiscale structure
- Opaque boundaries
- Emergence—‘More is Different’[^2]
- Many phenomena can be complex: social, technical, informational, geophysical, meteorological, fluidic, ...
Basic definitions:

Complex System—Some ingredients:

- Distributed system of many interrelated parts
- No centralized control
- Nonlinear relationships
- Existence of feedback loops
- Complex systems are open (out of equilibrium)
- Presence of Memory
- Modular (nested)/multiscale structure
- Opaque boundaries
- Emergence—“More is Different”[^2]
- Many phenomena can be complex: social, technical, informational, geophysical, meteorological, fluidic, ...
Basic definitions:

Complex System—Some ingredients:

- Distributed system of many interrelated parts
- No centralized control
- Nonlinear relationships
- Existence of feedback loops
- Complex systems are open (out of equilibrium)
- Presence of Memory
- Modular (nested)/multiscale structure
- Opaque boundaries
- Emergence—“More is Different”\(^2\)
- Many phenomena can be complex: social, technical, informational, geophysical, meteorological, fluidic, ...
Basic definitions:

Complex System—Some ingredients:

- Distributed system of many interrelated parts
- No centralized control
- Nonlinear relationships
- Existence of feedback loops
- Complex systems are open (out of equilibrium)
- Presence of Memory
- Modular (nested)/multiscale structure
- Opaque boundaries
- Emergence—“More is Different”\(^2\)
- Many phenomena can be complex: social, technical, informational, geophysical, meteorological, fluidic, ...
Basic definitions:

Complex System—Some ingredients:

- Distributed system of many interrelated parts
- No centralized control
- Nonlinear relationships
- Existence of feedback loops
- Complex systems are open (out of equilibrium)
- Presence of Memory
- Modular (nested)/ multiscale structure
- Opaque boundaries
- Emergence—‘More is Different’ [2]
- Many phenomena can be complex: social, technical, informational, geophysical, meteorological, fluidic, ...
Basic definitions:

Complex System—Some ingredients:

- Distributed system of many interrelated parts
- No centralized control
- Nonlinear relationships
- Existence of feedback loops
- Complex systems are open (out of equilibrium)
- Presence of Memory
- Modular (nested)/multiscale structure
- Opaque boundaries
- Emergence—‘More is Different’ [2]
- Many phenomena can be complex: social, technical, informational, geophysical, meteorological, fluidic, ...
Basic definitions:

Complex System—Some ingredients:

- Distributed system of many interrelated parts
- No centralized control
- Nonlinear relationships
- Existence of feedback loops
- Complex systems are open (out of equilibrium)
- Presence of Memory
- Modular (nested)/multiscale structure
- Opaque boundaries
- Emergence—"More is Different"\(^2\)
- Many phenomena can be complex: social, technical, informational, geophysical, meteorological, fluidic, ...
Basic definitions:

Complex System—Some ingredients:

- Distributed system of many interrelated parts
- No centralized control
- Nonlinear relationships
- Existence of feedback loops
- Complex systems are open (out of equilibrium)
- Presence of Memory
- Modular (nested)/multiscale structure
- Opaque boundaries
- Emergence—“More is Different”\(^2\)
- Many phenomena can be complex: social, technical, informational, geophysical, meteorological, fluidic, ...
Basic definitions:

Complex System—Some ingredients:

- Distributed system of many interrelated parts
- No centralized control
- Nonlinear relationships
- Existence of feedback loops
- Complex systems are open (out of equilibrium)
- Presence of Memory
- Modular (nested)/multiscale structure
- Opaque boundaries
- Emergence—‘More is Different’ [2]
- Many phenomena can be complex: social, technical, informational, geophysical, meteorological, fluidic, ...
Basic definitions:

Complex System—Some ingredients:

- Distributed system of many interrelated parts
- No centralized control
- Nonlinear relationships
- Existence of feedback loops
- Complex systems are open (out of equilibrium)
- Presence of Memory
- Modular (nested)/multiscale structure
- Opaque boundaries
- Emergence—‘More is Different’ [2]

Many phenomena can be complex: social, technical, informational, geophysical, meteorological, fluidic, ...
Basic definitions:

Complex System—Some ingredients:

- Distributed system of many interrelated parts
- No centralized control
- Nonlinear relationships
- Existence of feedback loops
- Complex systems are open (out of equilibrium)
- Presence of Memory
- Modular (nested)/multiscale structure
- Opaque boundaries
- Emergence—‘More is Different’ [2]
- Many phenomena can be complex: social, technical, informational, geophysical, meteorological, fluidic, ...
net•work

noun

1 an arrangement of intersecting horizontal and vertical lines.
 • a complex system of roads, railroads, or other transportation routes: a network of railroads.

2 a group or system of interconnected people or things: a trade network.
 • a group of people who exchange information, contacts, and experience for professional or social purposes: a support network.
 • a group of broadcasting stations that connect for the simultaneous broadcast of a program: the introduction of a second TV network | [as adj.] network television.
 • a number of interconnected computers, machines, or operations: specialized computers that manage multiple outside connections to a network | a local cellular phone network.
 • a system of connected electrical conductors.

verb [trans.]
connect as or operate with a network: the stock exchanges have proven to be resourceful in networking these deals.
• link (machines, esp. computers) to operate interactively: [as adj.] (networked) networked workstations.
• [intrans.] [often as n.] (networking) interact with other people to exchange information and develop contacts, esp. to further one's career: the skills of networking, bargaining, and negotiation.
network
noun
1 *a network of arteries* WEB, lattice, net, matrix, mesh, crisscross, grid, reticulum, reticulation; Anatomy plexus.
2 *a network of lanes* MAZE, labyrinth, warren, tangle.
3 *a network of friends* SYSTEM, complex, nexus, web, webwork.
Ancestry:

From Keith Briggs’s excellent etymological investigation: (⊞)

- Opus reticulatum:
- A Latin origin?

Ancestry:

First known use: Geneva Bible, 1560
‘And thou shalt make unto it a grate like networke of brass (Exodus xxvii 4).’

From the OED via Briggs:
► 1658—: reticulate structures in animals
► 1839—: rivers and canals
► 1869—: railways
► 1883—: distribution network of electrical cables
► 1914—: wireless broadcasting networks
Ancestry:

First known use: Geneva Bible, 1560
‘And thou shalt make unto it a grate like networke of brass (Exodus xxvii 4).’

From the OED via Briggs:

- 1658—: reticulate structures in animals
- 1839—: rivers and canals
- 1869—: railways
- 1883—: distribution network of electrical cables
- 1914—: wireless broadcasting networks
Ancestry:

First known use: Geneva Bible, 1560
‘And thou shalt make unto it a grate like networke of brass (Exodus xxvii 4).’

From the OED via Briggs:

- 1658—: reticulate structures in animals
- 1839—: rivers and canals
- 1869—: railways
- 1883—: distribution network of electrical cables
- 1914—: wireless broadcasting networks
Ancestry:

First known use: Geneva Bible, 1560
‘And thou shalt make unto it a grate like networke of brass (Exodus xxvii 4).’

From the OED via Briggs:

- 1658—: reticulate structures in animals
- 1839—: rivers and canals
- 1869—: railways
- 1883—: distribution network of electrical cables
- 1914—: wireless broadcasting networks
Ancestry:

First known use: Geneva Bible, 1560
‘And thou shalt make unto it a grate like networke of brass (Exodus xxvii 4).’

From the OED via Briggs:
- 1658—: reticulate structures in animals
- 1839—: rivers and canals
- 1869—: railways
- 1883—: distribution network of electrical cables
- 1914—: wireless broadcasting networks
Ancestry:

First known use: Geneva Bible, 1560
‘And thou shalt make unto it a grate like networke of brass (Exodus xxvii 4).’

From the OED via Briggs:

- 1658—: reticulate structures in animals
- 1839—: rivers and canals
- 1869—: railways
- 1883—: distribution network of electrical cables
- 1914—: wireless broadcasting networks
Ancestry:

Net and Work are venerable old words:

- ‘Net’ first used to mean spider web (King Ælfréd, 888).
- ‘Work’ appears to have long meant purposeful action.

- ‘Network’ = something built based on the idea of natural, flexible lattice or web.
- c.f., ironwork, stonework, fretwork.
Ancestry:

Net and Work are venerable old words:

- ‘Net’ first used to mean spider web (King Ælfréd, 888).
- ‘Work’ appears to have long meant purposeful action.

- ‘Network’ = something built based on the idea of natural, flexible lattice or web.
- c.f., ironwork, stonework, fretwork.
Ancestry:

Net and Work are venerable old words:

- ‘Net’ first used to mean spider web (King Ælfréd, 888).
- ‘Work’ appears to have long meant purposeful action.

- ‘Network’ = something built based on the idea of natural, flexible lattice or web.
- c.f., ironwork, stonework, fretwork.
Key Observation:

- Many complex systems can be viewed as complex networks of physical or abstract interactions.
- Opens door to mathematical and numerical analysis.
- Dominant approach of last decade of a theoretical-physics/stat-mechish flavor.
- Mindboggling amount of work published on complex networks since 1998...
- ... largely due to your typical theoretical physicist:
Key Observation:

- Many complex systems can be viewed as complex networks of physical or abstract interactions.
- Opens door to mathematical and numerical analysis.
- Dominant approach of last decade of a theoretical-physics/stat-mechish flavor.
- Mindboggling amount of work published on complex networks since 1998...
- ... largely due to your typical theoretical physicist:
Key Observation:

- Many complex systems can be viewed as complex networks of physical or abstract interactions.
- Opens door to mathematical and numerical analysis.
- Dominant approach of last decade of a theoretical-physics/stat-mechish flavor.
- Mindboggling amount of work published on complex networks since 1998...
- ... largely due to your typical theoretical physicist:
Key Observation:

- Many **complex systems** can be viewed as **complex networks** of physical or abstract interactions.
- Opens door to mathematical and numerical analysis.
- Dominant approach of last decade of a **theoretical-physics/stat-mechish** flavor.
- Mindboggling amount of work published on complex networks since 1998...
- ... largely due to your typical theoretical physicist:
Key Observation:

- Many complex systems can be viewed as complex networks of physical or abstract interactions.
- Opens door to mathematical and numerical analysis.
- Dominant approach of last decade of a theoretical-physics/stat-mechish flavor.
- Mindboggling amount of work published on complex networks since 1998...
- ... largely due to your typical theoretical physicist:
Key Observation:

- Many complex systems can be viewed as complex networks of physical or abstract interactions.
- Opens door to mathematical and numerical analysis.
- Dominant approach of last decade of a theoretical-physics/stat-mechish flavor.
- Mindboggling amount of work published on complex networks since 1998...
- ... largely due to your typical theoretical physicist:
 - *Piranha physicus*
 - Hunt in packs.
 - Feast on new and interesting ideas (see chaos, cellular automata, ...).
Key Observation:

- Many complex systems can be viewed as complex networks of physical or abstract interactions.
- Opens door to mathematical and numerical analysis.
- Dominant approach of last decade of a theoretical-physics/stat-mechish flavor.
- Mindboggling amount of work published on complex networks since 1998...
- ... largely due to your typical theoretical physicist:
 - Piranha physicus
 - Hunt in packs.
 - Feast on new and interesting ideas (see chaos, cellular automata, ...).
Key Observation:

- Many **complex systems** can be viewed as **complex networks** of physical or abstract interactions.
- Opens door to mathematical and numerical analysis.
- Dominant approach of last decade of a **theoretical-physics/stat-mechish** flavor.
- Mindboggling amount of work published on complex networks since 1998...
- ... largely due to your typical theoretical physicist:
 - **Piranha physicus**
 - Hunt in packs.
 - Feast on new and interesting ideas (see chaos, cellular automata, ...)

... largely due to your typical theoretical physicist:
Popularity (according to ISI)

“Collective dynamics of ‘small-world’ networks” [23]
► Watts and Strogatz
► ≈ 4677 citations (as of January 18, 2011)
► Over 1100 citations in 2008 alone.

“Emergence of scaling in random networks” [3]
► Barabási and Albert
 Science, 1999
► ≈ 5270 citations (as of January 18, 2011)
► Over 1100 citations in 2008 alone.
Popularity according to books:

The Tipping Point: How Little Things can make a Big Difference—Malcolm Gladwell

Nexus: Small Worlds and the Groundbreaking Science of Networks—Mark Buchanan
Popularity according to books:

Linked: How Everything Is Connected to Everything Else and What It Means—Albert-Laszlo Barabási

Six Degrees: The Science of a Connected Age—Duncan Watts
Numerous others:

- Complex Social Networks—F. Vega-Redondo [20]
- Fractal River Basins: Chance and Self-Organization—I. Rodríguez-Iturbe and A. Rinaldo [17]
- Random Graph Dynamics—R. Durette
- Scale-Free Networks—Guido Caldarelli
- Evolution and Structure of the Internet: A Statistical Physics Approach—Romu Pastor-Satorras and Alessandro Vespignani
- Complex Graphs and Networks—Fan Chung
- Social Network Analysis—Stanley Wasserman and Kathleen Faust
- Evolution of Networks—S. N. Dorogovtsev and J. F. F. Mendes [10]
More observations

- But surely **networks aren’t new**...
- Graph theory is well established...
- Study of social networks started in the 1930’s...
- So why all this ‘new’ research on networks?
- **Answer:** Oodles of Easily Accessible Data.
- We can now inform (alas) our theories with a much more measurable reality.*
- Real networks occupy a tiny, low entropy part of all network space and require specific attention.
- A worthy goal: establish mechanistic explanations.
- What kinds of dynamics lead to these real networks?

* If this is upsetting, maybe string theory is for you...
More observations

- But surely networks aren’t new...
- Graph theory is well established...
- Study of social networks started in the 1930’s...
- So why all this ‘new’ research on networks?
- **Answer:** Oodles of Easily Accessible Data.
- We can now inform (alas) our theories with a much more measurable reality.
- Real networks occupy a tiny, low entropy part of all network space and require specific attention.
- A worthy goal: establish mechanistic explanations.
- What kinds of dynamics lead to these real networks?
More observations

▶ But surely networks aren’t new...
▶ Graph theory is well established...
▶ Study of social networks started in the 1930’s...
▶ So why all this ‘new’ research on networks?
▶ **Answer:** Oodles of Easily Accessible Data.
▶ We can now inform (alas) our theories with a much more measurable reality.
▶ Real networks occupy a tiny, low entropy part of all network space and require specific attention.
▶ A worthy goal: establish mechanistic explanations.
▶ What kinds of dynamics lead to these real networks?
More observations

► But surely networks aren’t new...
► Graph theory is well established...
► Study of social networks started in the 1930’s...
► So why all this ‘new’ research on networks?
► **Answer:** Oodles of Easily Accessible Data.
► We can now inform (alas) our theories with a much more measurable reality.*
► Real networks occupy a tiny, low entropy part of all network space and require specific attention.
► A worthy goal: establish mechanistic explanations.
► What kinds of dynamics lead to these real networks?
More observations

- But surely **networks aren’t new**...
- Graph theory is well established...
- Study of social networks started in the 1930’s...
- So why all this ‘new’ research on networks?
 - **Answer:** Oodles of Easily Accessible Data.
 - We can now inform (alas) our theories with a much more measurable reality.
 - Real networks occupy a tiny, low entropy part of all network space and require specific attention.
 - A worthy goal: establish mechanistic explanations.
 - What kinds of dynamics lead to these real networks?
More observations

- But surely networks aren’t new...
- Graph theory is well established...
- Study of social networks started in the 1930’s...
- So why all this ‘new’ research on networks?
- **Answer:** Oodles of Easily Accessible Data.
- We can now inform (alas) our theories with a much more measurable reality.
 - Real networks occupy a tiny, low entropy part of all network space and require specific attention.
 - A worthy goal: establish mechanistic explanations.
 - What kinds of dynamics lead to these real networks?
More observations

► But surely networks aren’t new...
► Graph theory is well established...
► Study of social networks started in the 1930’s...
► So why all this ‘new’ research on networks?
► **Answer:** Oodles of Easily Accessible Data.
► We can now inform (alas) our theories with a much more measurable reality.
► Real networks occupy a tiny, low entropy part of all network space and require specific attention.
► A worthy goal: establish mechanistic explanations.
► What kinds of dynamics lead to these real networks?

*If this is upsetting, maybe string theory is for you...
More observations

- But surely **networks aren’t new**...
- Graph theory is well established...
- Study of social networks started in the 1930’s...
- So why all this ‘new’ research on networks?
- **Answer:** Oodles of Easily Accessible Data.
- We can now inform (alas) our theories with a much more measurable reality.*
- Real networks occupy a tiny, low entropy part of all network space and require specific attention.
- A worthy goal: establish **mechanistic explanations**.
- What kinds of dynamics lead to these real networks?
More observations

- But surely networks aren’t new...
- Graph theory is well established...
- Study of social networks started in the 1930’s...
- So why all this ‘new’ research on networks?
- **Answer:** Oodles of Easily Accessible Data.
- We can now inform (alas) our theories with a much more measurable reality.*
- Real networks occupy a tiny, low entropy part of all network space and require specific attention.
- A worthy goal: establish **mechanistic explanations**.
- What kinds of dynamics lead to these real networks?
More observations

► But surely networks aren’t new...
► Graph theory is well established...
► Study of social networks started in the 1930’s...
► So why all this ‘new’ research on networks?
► Answer: Oodles of Easily Accessible Data.
► We can now inform (alas) our theories with a much more measurable reality.*
► Real networks occupy a tiny, low entropy part of all network space and require specific attention.
► A worthy goal: establish mechanistic explanations.
► What kinds of dynamics lead to these real networks?
 *If this is upsetting, maybe string theory is for you...
More observations

- **Web-scale** data sets can be overly *exciting*.

Witness:

- The End of Theory: The Data Deluge Makes the Scientific Theory Obsolete (Anderson, Wired)
- “The Unreasonable Effectiveness of Data,” Halevy et al. [12]
- c.f. Wigner’s “The Unreasonable Effectiveness of Mathematics in the Natural Sciences” [24]

But:

- For scientists, description is only part of the battle.
- We still need to understand.
More observations

- **Web-scale** data sets can be overly **exciting**.

Witness:

- The End of Theory: The Data Deluge Makes the Scientific Theory Obsolete (Anderson, Wired) (⊞)

- “The Unreasonable Effectiveness of Data,” Halevy et al. [12]

- c.f. Wigner’s “The Unreasonable Effectiveness of Mathematics in the Natural Sciences” [24]

But:

- For scientists, description is only part of the battle.
- We still need to understand.
More observations

- **Web-scale** data sets can be overly exciting.

Witness:

- The End of Theory: The Data Deluge Makes the Scientific Theory Obsolete (Anderson, Wired) \(^{[1]}\)
- “The Unreasonable Effectiveness of Data,” Halevy et al. \(^{[12]}\)
- c.f. Wigner’s “The Unreasonable Effectiveness of Mathematics in the Natural Sciences” \(^{[24]}\)

But:

- For scientists, description is only part of the battle.
- We still need to understand.
More observations

- **Web-scale** data sets can be overly exciting.

Witness:

- The End of Theory: The Data Deluge Makes the Scientific Theory Obsolete (Anderson, Wired) [10]
- “The Unreasonable Effectiveness of Data,” Halevy et al. [12]
- c.f. Wigner’s “The Unreasonable Effectiveness of Mathematics in the Natural Sciences” [24]

But:

- For scientists, description is only part of the battle.
- We still need to understand.
More observations

- Web-scale data sets can be overly exciting.

Witness:

- The End of Theory: The Data Deluge Makes the Scientific Theory Obsolete (Anderson, Wired) [12]
- “The Unreasonable Effectiveness of Data,” Halevy et al. [12]
- c.f. Wigner’s “The Unreasonable Effectiveness of Mathematics in the Natural Sciences” [24]

But:

- For scientists, description is only part of the battle.
- We still need to understand.
Super basic definitions

Nodes = A collection of entities which have properties that are somehow related to each other

- e.g., people, forks in rivers, proteins, webpages, organisms,...
Super basic definitions

Nodes = A collection of entities which have properties that are somehow related to each other

- e.g., people, forks in rivers, proteins, webpages, organisms,...
Basic definitions:

Links = Connections between nodes

- **links**
 - may be real and fixed (rivers),
 - real and dynamic (airline routes),
 - abstract with physical impact (hyperlinks),
 - or purely abstract (semantic connections between concepts).

- **Links** may be directed or undirected.
- **Links** may be binary or weighted.
Basic definitions:

Links = Connections between nodes

- links
 - may be real and fixed (rivers),
 - real and dynamic (airline routes),
 - abstract with physical impact (hyperlinks),
 - or purely abstract (semantic connections between concepts).

- Links may be directed or undirected.
- Links may be binary or weighted.
Basic definitions:

Links = Connections between nodes

- links
 - may be real and fixed (rivers),
 - real and dynamic (airline routes),
 - abstract with physical impact (hyperlinks),
 - or purely abstract (semantic connections between concepts).
- Links may be directed or undirected.
- Links may be binary or weighted.
Basic definitions:

Links = Connections between nodes

- links
 - may be real and fixed (rivers),
 - real and dynamic (airline routes),
 - abstract with physical impact (hyperlinks),
 - or purely abstract (semantic connections between concepts).
 - Links may be directed or undirected.
 - Links may be binary or weighted.
Links = Connections between nodes

- links
 - may be real and fixed (rivers),
 - real and dynamic (airline routes),
 - abstract with physical impact (hyperlinks),
 - or purely abstract (semantic connections between concepts).

- Links may be directed or undirected.
- Links may be binary or weighted.
Basic definitions:

Links = Connections between nodes

- **links**
 - may be real and fixed (rivers),
 - real and dynamic (airline routes),
 - abstract with physical impact (hyperlinks),
 - or purely abstract (semantic connections between concepts).

- Links may be directed or undirected.
- Links may be binary or weighted.
Basic definitions:

Links = Connections between nodes

- links
 - may be real and fixed (rivers),
 - real and dynamic (airline routes),
 - abstract with physical impact (hyperlinks),
 - or purely abstract (semantic connections between concepts).

- Links may be directed or undirected.

- Links may be binary or weighted.
Basic definitions:

Links = Connections between nodes

- **links**
 - may be real and fixed (rivers),
 - real and dynamic (airline routes),
 - abstract with physical impact (hyperlinks),
 - or purely abstract (semantic connections between concepts).

- **Links** may be directed or undirected.
- **Links** may be binary or weighted.
Basic definitions:

Node degree = Number of links per node

- Notation: Node i’s degree = k_i.
- $k_i = 0, 1, 2, \ldots$.
- Notation: the average degree of a network = $\langle k \rangle$.

For undirected networks, connection between number of edges m and average degree:

$$\langle k \rangle = \frac{2m}{N}$$

For directed networks,

$$\langle k_{\text{out}} \rangle = \langle k_{\text{in}} \rangle = \frac{m}{N}$$

- Defn: \mathcal{N}_i = the set of i’s k_i neighbors
Basic definitions:

Node degree = Number of links per node

- Notation: Node i's degree = k_i.
 - $k_i = 0, 1, 2, \ldots$
- Notation: the average degree of a network = $\langle k \rangle$
- For undirected networks, connection between number of edges m and average degree:
 \[\langle k \rangle = \frac{2m}{N} \]
- For directed networks,
 \[\langle k_{\text{out}} \rangle = \langle k_{\text{in}} \rangle = \frac{m}{N} \]
- Defn: \mathcal{N}_i = the set of i's k_i neighbors
Basic definitions:

Node degree = Number of links per node

- Notation: Node i’s degree $= k_i$.
- $k_i = 0, 1, 2, \ldots$
- Notation: the average degree of a network $= \langle k \rangle$

- For undirected networks, connection between number of edges m and average degree:

 $$\langle k \rangle = \frac{2m}{N}$$

- For directed networks,

 $$\langle k_{\text{out}} \rangle = \langle k_{\text{in}} \rangle = \frac{m}{N}$$

- Defn: \mathcal{N}_i = the set of i’s k_i neighbors
Basic definitions:

Node degree = Number of links per node

- Notation: Node i’s degree = k_i.
- $k_i = 0, 1, 2, \ldots$
- Notation: the average degree of a network = $\langle k \rangle$

- For undirected networks, connection between number of edges m and average degree:

$$\langle k \rangle = \frac{2m}{N}$$

- For directed networks,

$$\langle k_{\text{out}} \rangle = \langle k_{\text{in}} \rangle = \frac{m}{N}$$

- Defn: N_i is the set of i’s k_i neighbors
Basic definitions:

Node degree = Number of links per node

- Notation: Node i’s degree = k_i.
- $k_i = 0, 1, 2, \ldots$
- Notation: the average degree of a network = $\langle k \rangle$ (and sometimes as z)
- For undirected networks, connection between number of edges m and average degree:
 $$\langle k \rangle = \frac{2m}{N}$$
- For directed networks,
 $$\langle k_{\text{out}} \rangle = \langle k_{\text{in}} \rangle = \frac{m}{N}$$
- Defn: \mathcal{N}_i = the set of i’s k_i neighbors
Basic definitions:

Node degree = Number of links per node

- Notation: Node i’s degree $= k_i$.
- $k_i = 0, 1, 2, \ldots$
- Notation: the average degree of a network $= \langle k \rangle$ (and sometimes as z)
- For undirected networks, connection between number of edges m and average degree:

$$\langle k \rangle = \frac{2m}{N}$$

- For directed networks,

$$\langle k_{\text{out}} \rangle = \langle k_{\text{in}} \rangle = \frac{m}{N}$$

- Defn: \mathcal{N}_i = the set of i’s k_i neighbors
Basic definitions:

Node degree = Number of links per node

- Notation: Node i’s degree = k_i
- $k_i = 0, 1, 2, \ldots$
- Notation: the average degree of a network = $\langle k \rangle$
 (and sometimes as z)
- For undirected networks, connection between number of edges m and average degree:

\[
\langle k \rangle = \frac{2m}{N}
\]

- For directed networks,

\[
\langle k_{\text{out}} \rangle = \langle k_{\text{in}} \rangle = \frac{m}{N}
\]
- Defn: \mathcal{N}_i = the set of i’s k_i neighbors
Basic definitions:

Node degree = Number of links per node

- Notation: Node i’s degree $= k_i$.
- $k_i = 0, 1, 2, \ldots$
- Notation: the average degree of a network $= \langle k \rangle$
 (and sometimes as z)
- For undirected networks, connection between number of edges m and average degree:

$$\langle k \rangle = \frac{2m}{N}$$

- For directed networks,

$$\langle k_{\text{out}} \rangle = \langle k_{\text{in}} \rangle = \frac{m}{N}$$

- **Defn:** \mathcal{N}_i = the set of i’s k_i neighbors
Basic definitions:

Adjacency matrix:

- We represent a graph or network by a matrix A with link weight a_{ij} for nodes i and j in entry (i, j).

 - e.g.,

 $$ A = \begin{bmatrix} 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \end{bmatrix} $$

- (n.b., for numerical work, we always use sparse matrices.)
Basic definitions:

Adjacency matrix:

- We represent a graph or network by a matrix A with link weight a_{ij} for nodes i and j in entry (i, j).
- e.g.,

$$A = \begin{bmatrix}
0 & 1 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 & 0
\end{bmatrix}$$

- (n.b., for numerical work, we always use sparse matrices.)
Basic definitions:

Adjacency matrix:

We represent a graph or network by a matrix A with link weight a_{ij} for nodes i and j in entry (i, j).

e.g.,

$$A = \begin{bmatrix}
0 & 1 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 & 0
\end{bmatrix}$$

(n.b., for numerical work, we always use sparse matrices.)
Examples

What passes for a complex network?

- Complex networks are large (in node number)
- Complex networks are sparse (low edge to node ratio)
- Complex networks are usually dynamic and evolving
- Complex networks can be social, economic, natural, informational, abstract, ...
Examples

What passes for a complex network?

- Complex networks are large (in node number)
- Complex networks are sparse (low edge to node ratio)
- Complex networks are usually dynamic and evolving
- Complex networks can be social, economic, natural, informational, abstract, ...
Examples

What passes for a complex network?

- Complex networks are large (in node number)
- Complex networks are sparse (low edge to node ratio)
- Complex networks are usually dynamic and evolving
- Complex networks can be social, economic, natural, informational, abstract, ...
Examples

What passes for a complex network?

- Complex networks are **large** (in node number)
- Complex networks are **sparse** (low edge to node ratio)
- Complex networks are usually **dynamic** and **evolving**
- Complex networks can be social, economic, natural, informational, abstract, ...
Examples

What passes for a complex network?

- Complex networks are **large** (in node number)
- Complex networks are **sparse** (low edge to node ratio)
- Complex networks are usually **dynamic** and **evolving**
- Complex networks can be social, economic, natural, informational, abstract, ...
Examples

Physical networks

- River networks
- Neural networks
- Trees and leaves
- Blood networks
- The Internet
- Road networks
- Power grids

- Distribution (branching) versus redistribution (cyclical)
Examples

Physical networks

- River networks
- Neural networks
- Trees and leaves
- Blood networks
- The Internet
- Road networks
- Power grids
- Distribution (branching) versus redistribution (cyclical)
Examples

Physical networks
- River networks
- Neural networks
- Trees and leaves
- Blood networks

- The Internet
- Road networks
- Power grids

- Distribution (branching) versus redistribution (cyclical)
Examples

Physical networks

- River networks
- Neural networks
- Trees and leaves
- Blood networks

The Internet

Road networks

Power grids

Distribution (branching) versus redistribution (cyclical)
Examples

Physical networks
- River networks
- Neural networks
- Trees and leaves
- Blood networks

- The Internet
- Road networks
- Power grids

Distribution (branching) versus redistribution (cyclical)
Examples

Physical networks

- River networks
- Neural networks
- Trees and leaves
- Blood networks

- The Internet
- Road networks
- Power grids

Distribution (branching) versus redistribution (cyclical)
Examples

Physical networks
- River networks
- Neural networks
- Trees and leaves
- Blood networks

Distribution (branching) versus redistribution (cyclical)

The Internet
- Road networks
- Power grids

Physical networks
- River networks
- Neural networks
- Trees and leaves
- Blood networks
Examples

Physical networks
- River networks
- Neural networks
- Trees and leaves
- Blood networks

The Internet
- Road networks
- Power grids

Distribution (branching) versus redistribution (cyclical)
Examples

Interaction networks

- The Blogosphere
- Biochemical networks
- Gene-protein networks
- Food webs: who eats whom
- The World Wide Web (?)
- Airline networks
- Call networks (AT&T)
- The Media

Examples of Complex Networks

Properties of Complex Networks

Modelling Complex Networks

Nutshell

References
Examples

Interaction networks

- The Blogosphere
- Biochemical networks
- Gene-protein networks
- Food webs: who eats whom
- The World Wide Web (WWW)
- Airline networks
- Call networks (AT&T)
- The Media

datamining.typepad.com
Examples

Interaction networks

- The Blogosphere
- Biochemical networks
- Gene-protein networks
- Food webs: who eats whom
- The World Wide Web (?)
- Airline networks
- Call networks (AT&T)
- The Media

(https://datamining.typepad.com/)
Examples

Interaction networks

- The Blogosphere
- Biochemical networks
- Gene-protein networks
- Food webs: who eats whom
- The World Wide Web (WWW)
- Airline networks
- Call networks (AT&T)
- The Media

More examples can be found at datamining.typepad.com
Examples

Interaction networks

- The Blogosphere
- Biochemical networks
- Gene-protein networks
- Food webs: who eats whom
- The World Wide Web (?)
- Airline networks
- Call networks (AT&T)
- The Media

[Link to data mining example](datamining.typepad.com)
Examples

Interaction networks

- The Blogosphere
- Biochemical networks
- Gene-protein networks
- Food webs: who eats whom
- The World Wide Web (?)
- Airline networks
 - Call networks (AT&T)
 - The Media

References

data mining.typepad.com
Examples

Interaction networks

- The Blogosphere
- Biochemical networks
- Gene-protein networks
- Food webs: who eats whom
- The World Wide Web (?)
- Airline networks
- Call networks (AT&T)
- The Media
Examples

Interaction networks

- The Blogosphere
- Biochemical networks
- Gene-protein networks
- Food webs: who eats whom
- The World Wide Web (?)
- Airline networks
- Call networks (AT&T)
- The Media

datamining.typepad.com (田)
Examples

Interaction networks: social networks

► Snogging
► Friendships
► Acquaintances
► Boards and directors
► Organizations

► twitter.com (⊞)
► facebook.com (⊞)

► ‘Remotely sensed’ by: tweets (open), instant messaging, Facebook posts, emails, phone logs (*cough*)

(Bearman et al., 2004)
Examples

Interaction networks: social networks

- Snogging
- Friendships
- Acquaintances
- Boards and directors
- Organizations
- twitter.com
- facebook.com

‘Remotely sensed’ by: tweets (open), instant messaging, Facebook posts, emails, phone logs (*cough*)

(Bearman et al., 2004)
Examples

Interaction networks: social networks

- Snogging
- Friendships
- Acquaintances
- Boards and directors
- Organizations
- twitter.com
- facebook.com

- ‘Remotely sensed’ by: tweets (open), instant messaging, Facebook posts, emails, phone logs (*cough*)

(Bearman et al., 2004)
Examples

Interaction networks: social networks

- Snogging
- Friendships
- Acquaintances
- Boards and directors
- Organizations
- twitter.com (⊞)
- facebook.com (⊞)
- 'Remotely sensed' by: tweets (open), instant messaging, Facebook posts, emails, phone logs (*cough*)

(Bearman et al., 2004)
Examples

Interaction networks: social networks

- Snogging
- Friendships
- Acquaintances
- Boards and directors
- Organizations

twitter.com (⊞)
facebook.com (⊞)

‘Remotely sensed’ by: tweets (open), instant messaging, Facebook posts, emails, phone logs (*cough*)
Examples

Interaction networks: social networks

- Snogging
- Friendships
- Acquaintances
- Boards and directors
- Organizations

- twitter.com, facebook.com,

'Remotely sensed' by: tweets (open), instant messaging, Facebook posts, emails, phone logs (*cough*)

(Bearman et al., 2004)
Examples

Interaction networks: social networks

- Snogging
- Friendships
- Acquaintances
- Boards and directors
- Organizations
- twitter.com, facebook.com,

‘Remotely sensed’ by: tweets (open), instant messaging, Facebook posts, emails, phone logs (*cough*).
Examples

Interaction networks: social networks

- Snogging
- Friendships
- Acquaintances
- Boards and directors
- Organizations

- twitter.com
- facebook.com

‘Remotely sensed’ by: tweets (open), instant messaging, Facebook posts, emails, phone logs (*cough*).

(Bearman et al., 2004)
Examples

Relational networks

- Consumer purchases
- Thesauri: Networks of words generated by meanings
- Knowledge/Databases/Ideas
- Metadata—Tagging: delicious, flickr
Examples

Relational networks

- Consumer purchases (Wal-Mart: ≈ 2.5 petabyte $= 2.5 \times 10^{15}$ bytes)
- Thesauri: Networks of words generated by meanings
- Knowledge/Databases/Ideas
- Metadata—Tagging: delicious, flickr
Examples

Relational networks

- Consumer purchases
 (Wal-Mart: \(\approx 2.5 \) petabyte \(= 2.5 \times 10^{15} \) bytes) ((fileName)
- Thesauri: Networks of words generated by meanings
- Knowledge/Databases/Ideas
- Metadata—Tagging: delicious ((fileName), flickr (fileName)
Examples

Relational networks

▶ Consumer purchases
 (Wal-Mart: ≈ 2.5 petabyte $= 2.5 \times 10^{15}$ bytes)

▶ Thesauri: Networks of words generated by meanings

▶ Knowledge/Databases/Ideas

▶ Metadata—Tagging: delicious, flickr
Examples

Relational networks

- Consumer purchases
 (Wal-Mart: \(\approx 2.5 \text{ petabyte} = 2.5 \times 10^{15} \text{ bytes} \))
- Thesauri: Networks of words generated by meanings
- Knowledge/Databases/Ideas
- Metadata—Tagging: delicious, flickr
Bollen et al. [6]; a higher resolution figure is [here](#)
A notable feature of large-scale networks:

- Graphical renderings are often just a big mess.

- And even when renderings somehow look good:

- We need to extract digestible, meaningful aspects.
A notable feature of large-scale networks:

- Graphical renderings are often just a big mess.

And even when renderings somehow look good:

- We need to extract digestible, meaningful aspects.
A notable feature of large-scale networks:

- Graphical renderings are often just a big mess.

 ▶ Typical hairball
 - number of nodes $N = 500$
 - number of edges $m = 1000$
 - average degree $\langle k \rangle = 4$

- And even when renderings somehow look good:

 - We need to extract digestible, meaningful aspects.
A notable feature of large-scale networks:

- Graphical renderings are often just a big mess.

- Typical hairball
 - number of nodes $N = 500$
 - number of edges $m = 1000$
 - average degree $\langle k \rangle = 4$

- And even when renderings somehow look good:

- We need to extract digestible, meaningful aspects.
A notable feature of large-scale networks:

- Graphical renderings are often just a big mess.

- Typical hairball
 - number of nodes $N = 500$
 - number of edges $m = 1000$
 - average degree $\langle k \rangle = 4$

- And even when renderings somehow look good:
 “That is a very graphic analogy which aids understanding wonderfully while being, strictly speaking, wrong in every possible way” said Ponder [Stibbons] — *Making Money*, T. Pratchett.

- We need to extract digestible, meaningful aspects.
A notable feature of large-scale networks:

- Graphical renderings are often just a big mess.

\[
\begin{align*}
\text{Typical hairball} & \quad \text{number of nodes } N = 500 \\
& \quad \text{number of edges } m = 1000 \\
& \quad \text{average degree } \langle k \rangle = 4
\end{align*}
\]

- And even when renderings somehow look good: “That is a very graphic analogy which aids understanding wonderfully while being, strictly speaking, wrong in every possible way” said Ponder [Stibbons] — *Making Money*, T. Pratchett.

- We need to extract digestible, meaningful aspects.
Properties

Some key aspects of real complex networks:

- degree distribution*
- assortativity
- homophily
- clustering
- motifs
- modularity
- concurrency
- hierarchical scaling
- network distances
- centrality
- efficiency
- robustness

* Plus coevolution of network structure and processes on networks.

* Degree distribution is the elephant in the room that we are now all very aware of...
1. degree distribution P_k

- P_k is the probability that a randomly selected node has degree k
- $k = \text{node degree} = \text{number of connections}$
- ex 1: Erdős–Rényi random networks:

$$P_k = e^{-\langle k \rangle} \frac{\langle k \rangle^k}{k!}$$

- Distribution is Poisson
Properties

1. degree distribution P_k

- P_k is the probability that a randomly selected node has degree k
- k = node degree = number of connections
- ex 1: Erdős–Rényi random networks:
 \[
 P_k = e^{-(\langle k \rangle)}(\langle k \rangle^k/k!)
 \]
 Distribution is Poisson
Properties

1. degree distribution P_k

- P_k is the probability that a randomly selected node has degree k
- $k = \text{node degree} = \text{number of connections}$
- ex 1: Erdős-Rényi random networks:

$$P_k = e^{-\langle k \rangle} \langle k \rangle^k / k!$$

- Distribution is Poisson
Properties

1. **degree distribution** P_k
 - P_k is the probability that a randomly selected node has degree k
 - $k = \text{node degree} = \text{number of connections}$
 - **ex 1:** Erdős-Rényi random networks:
 $$P_k = e^{-\langle k \rangle} \langle k \rangle^k / k!$$
 - Distribution is Poisson
1. degree distribution P_k

- P_k is the probability that a randomly selected node has degree k
- $k =$ node degree = number of connections
- ex 1: Erdős-Rényi random networks:

$$P_k = e^{-\langle k \rangle} \langle k \rangle^k / k!$$

- Distribution is Poisson
Properties

1. degree distribution P_k

► ex 2: “Scale-free” networks: $P_k \propto k^{-\gamma} \Rightarrow \text{‘hubs’}$

► link cost controls skew
► hubs may facilitate or impede contagion
Properties

1. degree distribution P_k

- ex 2: “Scale-free” networks: $P_k \propto k^{-\gamma} \Rightarrow \text{‘hubs’}$
- link cost controls skew
- hubs may facilitate or impede contagion
Properties

1. degree distribution P_k

- ex 2: “Scale-free” networks: $P_k \propto k^{-\gamma} \Rightarrow ‘hubs’$
- link cost controls skew
- hubs may facilitate or impede contagion
Properties

Note:

- Erdős-Rényi random networks are a *mathematical construct*.
- ‘Scale-free’ networks are growing networks that form according to a plausible mechanism.
- Randomness is out there, just not to the degree of a completely random network.
Properties

Note:

- Erdős-Rényi random networks are a *mathematical construct*.
- ‘Scale-free’ networks are growing networks that form according to a *plausible mechanism*.
- Randomness is out there, just not to the degree of a completely random network.
Properties

Note:

▶ Erdős-Rényi random networks are a *mathematical construct*.
▶ ‘Scale-free’ networks are *growing networks* that form according to a *plausible mechanism*.
▶ Randomness is out there, just not to the degree of a completely random network.
2. Assortativity/3. Homophily:

- Social networks: Homophily (знак) = birds of a feather
- e.g., degree is standard property for sorting: measure degree-degree correlations.
- Assortative network: similar degree nodes connecting to each other.
- Disassortative network: high degree nodes connecting to low degree nodes.
2. Assortativity/3. Homophily:

- Social networks: Homophily (≡) = birds of a feather
- e.g., degree is standard property for sorting: measure degree-degree correlations.
- Assortative network: similar degree nodes connecting to each other.
- Disassortative network: high degree nodes connecting to low degree nodes.
2. Assortativity/3. Homophily:

- Social networks: **Homophily** (⊞) = birds of a feather
- e.g., degree is standard property for sorting: measure degree-degree correlations.
- **Assortative network:** [15] similar degree nodes connecting to each other.

- **Disassortative network:** high degree nodes connecting to low degree nodes.
2. Assortativity/3. Homophily:

- Social networks: Homophily (✈) = birds of a feather
- e.g., degree is standard property for sorting: measure degree-degree correlations.
- **Assortative** network: similar degree nodes connecting to each other.

- **Disassortative** network: high degree nodes connecting to low degree nodes.
2. Assortativity/3. Homophily:

- Social networks: Homophily (_social_ = birds of a feather
- e.g., degree is standard property for sorting: measure degree-degree correlations.
- ** assortative network:** similar degree nodes connecting to each other.
 - _Often social:_ company directors, coauthors, actors.
- ** disassortative network:** high degree nodes connecting to low degree nodes.
2. Assortativity/3. Homophily:

- Social networks: Homophily \((\text{n}) \) = birds of a feather
- e.g., degree is standard property for sorting: measure degree-degree correlations.
- **Assortative** network: similar degree nodes connecting to each other. *Often social: company directors, coauthors, actors.*
- **Disassortative** network: high degree nodes connecting to low degree nodes. *Often technological or biological: Internet, WWW, protein interactions, neural networks, food webs.*
Local socialness:

4. Clustering:

- Your friends tend to know each other.
- Two measures (explained on following slides):
 1. Watts & Strogatz\(^{[23]}\)
 \[
 C_1 = \left\langle \frac{\sum_{j \in \mathcal{N}_i} a_{ij}a_{jk}}{k_i(k_i - 1)/2} \right\rangle_i
 \]
 2. Newman\(^{[16]}\)
 \[
 C_2 = \frac{3 \times \text{#triangles}}{\text{#triples}}
 \]
Local socialness:

4. Clustering:

- Your friends tend to know each other.
- Two measures (explained on following slides):
 1. Watts & Strogatz $^{[23]}$

\[C_1 = \left\langle \frac{\sum_{h,l \in N_i} a_{h,l}}{k_i(k_i - 1)/2} \right\rangle_i \]

2. Newman $^{[16]}$

\[C_2 = \frac{3 \times \#\text{triangles}}{\#\text{triples}} \]
Local socialness:

4. Clustering:

- Your friends tend to know each other.
- Two measures (explained on following slides):
 1. Watts & Strogatz\(^{[23]}\)

\[
C_1 = \frac{\sum_{j_1,j_2 \in N_i} a_{j_1,j_2}}{k_i(k_i - 1)/2}
\]

2. Newman\(^{[16]}\)

\[
C_2 = \frac{3 \times \#\text{triangles}}{\#\text{triples}}
\]
First clustering measure:

Example network:

▶ C_1 is the average fraction of pairs of neighbors who are connected.

▶ Fraction of pairs of neighbors who are connected is

$$\frac{\sum_{j_1,j_2 \in N_i} a_{j_1,j_2}}{k_i(k_i-1)/2}$$

where k_i is node i's degree, and N_i is the set of i's neighbors.

▶ Averaging over all nodes, we have:

$$C_1 = \frac{1}{n} \sum_{i=1}^{n} \frac{\sum_{j_1,j_2 \in N_i} a_{j_1,j_2}}{k_i(k_i-1)/2}$$
First clustering measure:

C₁ is the average fraction of pairs of neighbors who are connected.

Fraction of pairs of neighbors who are connected is

\[
\frac{\sum_{j, h \in N_i} a_{j, h}}{k_i(k_i - 1)/2}
\]

where \(k_i\) is node \(i\)'s degree, and \(N_i\) is the set of \(i\)'s neighbors.

Averaging over all nodes, we have:

\[
C_1 = \frac{1}{n} \sum_{i=1}^{n} \frac{\sum_{j, h \in N_i} a_{j, h}}{k_i(k_i - 1)/2}
\]
First clustering measure:

Example network:

Calculation of C_1:

- C_1 is the average fraction of pairs of neighbors who are connected.
- Fraction of pairs of neighbors who are connected is
 \[
 \frac{\sum_{j_1,j_2 \in N_i} a_{j_1,j_2}}{k_i(k_i - 1)/2}
 \]
 where k_i is node i's degree, and N_i is the set of i's neighbors.
- Averaging over all nodes, we have:
 \[
 C_1 = \frac{1}{n} \sum_{i=1}^{n} \frac{\sum_{j_1,j_2 \in N_i} a_{j_1,j_2}}{k_i(k_i - 1)/2}
 \]
First clustering measure:

Example network:

- \(C_1 \) is the average fraction of pairs of neighbors who are connected.
- Fraction of pairs of neighbors who are connected is
 \[
 \frac{\sum_{j_1 j_2 \in \mathcal{N}_i} a_{j_1 j_2}}{k_i(k_i - 1)/2}
 \]
 where \(k_i \) is node \(i \)'s degree, and \(\mathcal{N}_i \) is the set of \(i \)'s neighbors.
- Averaging over all nodes, we have:
 \[
 C_1 = \frac{1}{n} \sum_{i=1}^{n} \frac{\sum_{j_1 j_2 \in \mathcal{N}_i} a_{j_1 j_2}}{k_i(k_i - 1)/2}
 \]
First clustering measure:

Example network:

Calculation of C_1:

- C_1 is the **average fraction of pairs of neighbors who are connected**.
- Fraction of pairs of neighbors who are connected is

$$\frac{\sum_{j_1,j_2 \in \mathcal{N}_i} a_{j_1,j_2}}{k_i(k_i - 1)/2}$$

where k_i is node i’s degree, and \mathcal{N}_i is the set of i’s neighbors.

- Averaging over all nodes, we have:

$$C_1 = \frac{1}{n} \sum_{i=1}^{n} \frac{\sum_{j_1,j_2 \in \mathcal{N}_i} a_{j_1,j_2}}{k_i(k_i - 1)/2} = \left\langle \frac{\sum_{j_1,j_2 \in \mathcal{N}_i} a_{j_1,j_2}}{k_i(k_i - 1)/2} \right\rangle_i$$
Triples and triangles

Example network:

- **Triangles:**
 - Nodes i_1, i_2, and i_3 form a triangle if each pair of nodes is connected.

- **Triples:**
 - The definition $C_2 = \frac{3 \times \# \text{triangles}}{\# \text{triples}}$ measures the fraction of closed triples.
 - The ‘3’ appears because for each triangle, we have 3 closed triples.
 - Social Network Analysis (SNA): fraction of transitive triples.

- Nodes i_1, i_2, and i_3 form a triple around i_1 if i_1 is connected to i_2 and i_3.
Triples and triangles

Example network:

- Nodes i_1, i_2, and i_3 form a **triple** around i_1 if i_1 is connected to i_2 and i_3.
- Nodes i_1, i_2, and i_3 form a **triangle** if each pair of nodes is connected.

The definition $C_2 = \frac{3 \times \# \text{triangles}}{\# \text{triples}}$ measures the fraction of closed triples.

The ‘3’ appears because for each triangle, we have 3 closed triples.

Social Network Analysis (SNA): fraction of transitive triples.
Triples and triangles

Example network:

- Nodes i_1, i_2, and i_3 form a **triple** around i_1 if i_1 is connected to i_2 and i_3.
- Nodes i_1, i_2, and i_3 form a **triangle** if each pair of nodes is connected.
- The definition $C_2 = \frac{3 \times \#\text{triangles}}{\#\text{triples}}$ measures the fraction of closed triples.
- The ‘3’ appears because for each triangle, we have 3 closed triples.
- Social Network Analysis (SNA): fraction of transitive triples.
Triples and triangles

Example network:

- Nodes i_1, i_2, and i_3 form a **triple** around i_1 if i_1 is connected to i_2 and i_3.
- Nodes i_1, i_2, and i_3 form a **triangle** if each pair of nodes is connected.
- The definition $C_2 = \frac{3 \times \#\text{triangles}}{\#\text{triples}}$ measures the fraction of **closed triples**.
- The ‘3’ appears because for each triangle, we have 3 closed triples.
- **Social Network Analysis (SNA):** fraction of transitive triples.
Triples and triangles

Example network:

- Nodes i_1, i_2, and i_3 form a **triple** around i_1 if i_1 is connected to i_2 and i_3.
- Nodes i_1, i_2, and i_3 form a **triangle** if each pair of nodes is connected.

The definition $C_2 = \frac{3 \times \#\text{triangles}}{\#\text{triples}}$ measures the fraction of **closed triples**.

- The ‘3’ appears because for each triangle, we have 3 closed triples.
- Social Network Analysis (SNA): fraction of **transitive triples**.
Properties

- For sparse networks, C_1 tends to discount highly connected nodes.
- C_2 is a useful and often preferred variant.
- In general, $C_1 \neq C_2$.
- C_1 is a global average of a local ratio.
- C_2 is a ratio of two global quantities.
Properties

- For sparse networks, C_1 tends to discount highly connected nodes.
- C_2 is a useful and often preferred variant
 - In general, $C_1 \neq C_2$.
 - C_1 is a global average of a local ratio.
 - C_2 is a ratio of two global quantities.
Properties

- For sparse networks, C_1 tends to discount highly connected nodes.
- C_2 is a useful and often preferred variant.
- In general, $C_1 \neq C_2$.
- C_1 is a global average of a local ratio.
- C_2 is a ratio of two global quantities.
Properties

- For sparse networks, C_1 tends to discount highly connected nodes.
- C_2 is a useful and often preferred variant.
- In general, $C_1 \neq C_2$.
- C_1 is a global average of a local ratio.
- C_2 is a ratio of two global quantities.
Properties

- For sparse networks, C_1 tends to discount highly connected nodes.
- C_2 is a useful and often preferred variant.
- In general, $C_1 \neq C_2$.
- C_1 is a global average of a local ratio.
- C_2 is a ratio of two global quantities.
5. motifs:

- small, recurring functional subnetworks
- e.g., Feed Forward Loop:

Shen-Orr, Uri Alon, et al. [18]
Properties

5. motifs:

- small, recurring functional subnetworks
- e.g., Feed Forward Loop:

Shen-Orr, Uri Alon, et al. [18]
5. motifs:

- small, recurring functional subnetworks
- e.g., Feed Forward Loop:

![Feed Forward Loop Diagram]

Shen-Orr, Uri Alon, *et al.* [18]
Properties

6. modularity and structure/community detection:

Clauset et al., 2006[9]: NCAA football
7. concurrency:

- transmission of a contagious element only occurs during contact
- rather obvious but easily missed in a simple model
- dynamic property—static networks are not enough
- knowledge of previous contacts crucial
- beware cumulated network data
- Kretzschmar and Morris, 1996 [14]
7. concurrency:

- transmission of a contagious element only occurs during contact
- rather obvious but easily missed in a simple model
- dynamic property—static networks are not enough
- knowledge of previous contacts crucial
- beware cumulated network data
- Kretzschmar and Morris, 1996 [14]
7. concurrency:

- transmission of a contagious element only occurs during contact
- rather obvious but easily missed in a simple model
- dynamic property—static networks are not enough
- knowledge of previous contacts crucial
- beware cumulated network data
- Kretzschmar and Morris, 1996[^14]
Properties

7. concurrency:

- transmission of a contagious element only occurs during contact
- rather obvious but easily missed in a simple model
- dynamic property—static networks are not enough
- knowledge of previous contacts crucial
- beware cumulated network data
- Kretzschmar and Morris, 1996[14]
7. concurrency:

- transmission of a contagious element only occurs during contact
- rather obvious but easily missed in a simple model
- dynamic property—static networks are not enough
- knowledge of previous contacts crucial
- beware cumulated network data
- Kretzschmar and Morris, 1996[14]
7. concurrency:

- transmission of a contagious element only occurs during contact
- rather obvious but easily missed in a simple model
- dynamic property—static networks are not enough
- knowledge of previous contacts crucial
- beware cumulated network data

Kretzschmar and Morris, 1996[14]
Properties

7. concurrency:

- transmission of a contagious element only occurs during contact
- rather obvious but easily missed in a simple model
- dynamic property—static networks are not enough
- knowledge of previous contacts crucial
- beware cumulated network data
- Kretzschmar and Morris, 1996 [14]
Properties

8. Horton-Strahler ratios:

- Metrics for branching networks:
 - Method for ordering streams hierarchically
 - Number: \(R_n = \frac{N_\omega}{N_{\omega+1}} \)
 - Segment length: \(R_l = \frac{\langle l_{\omega+1} \rangle}{\langle l_\omega \rangle} \)
 - Area/Volume: \(R_a = \frac{\langle a_{\omega+1} \rangle}{\langle a_\omega \rangle} \)
8. Horton-Strahler ratios:

- Metrics for branching networks:
 - Method for ordering streams hierarchically
 - Number: $R_n = \frac{N_{\omega_i}}{N_{\omega+1}}$
 - Segment length: $R_l = \frac{\langle l_{\omega+1} \rangle}{\langle l_{\omega} \rangle}$
 - Area/Volume: $R_a = \frac{\langle a_{\omega+1} \rangle}{\langle a_\omega \rangle}$
Properties

8. Horton-Strahler ratios:

- Metrics for branching networks:
 - Method for ordering streams hierarchically
 - Number: \(R_n = \frac{N_\omega}{N_{\omega+1}} \)
 - Segment length: \(R_l = \frac{\langle l_{\omega+1} \rangle}{\langle l_\omega \rangle} \)
 - Area/Volume: \(R_a = \frac{\langle a_{\omega+1} \rangle}{\langle a_\omega \rangle} \)
8. Horton-Strahler ratios:

- Metrics for branching networks:
 - Method for ordering streams hierarchically
 - Number: \(R_n = \frac{N_\omega}{N_{\omega+1}} \)
 - Segment length: \(R_l = \frac{\langle l_{\omega+1} \rangle}{\langle l_\omega \rangle} \)
 - Area/Volume: \(R_a = \frac{\langle a_{\omega+1} \rangle}{\langle a_\omega \rangle} \)
Properties

8. Horton-Strahler ratios:

- Metrics for branching networks:
 - Method for ordering streams hierarchically
 - Number: \(R_n = N_ω / N_{ω+1} \)
 - Segment length: \(R_l = \langle l_{ω+1} \rangle / \langle l_ω \rangle \)
 - Area/Volume: \(R_a = \langle a_{ω+1} \rangle / \langle a_ω \rangle \)
Properties

9. network distances:

(a) shortest path length d_{ij}:
- Fewest number of steps between nodes i and j.
- (Also called the chemical distance between i and j.)

(b) average path length $\langle d_{ij} \rangle$:
- Average shortest path length in whole network.
- Good algorithms exist for calculation.
- Weighted links can be accommodated.
9. network distances:

(a) shortest path length d_{ij}:

- Fewest number of steps between nodes i and j.
- (Also called the chemical distance between i and j.)

(b) average path length $\langle d_{ij} \rangle$:

- Average shortest path length in whole network.
- Good algorithms exist for calculation.
- Weighted links can be accommodated.
Properties

9. **network distances:**

(a) **shortest path length** d_{ij}:

- Fewest number of steps between nodes i and j.
- (Also called the chemical distance between i and j.)

(b) **average path length** $\langle d_{ij} \rangle$:

- Average shortest path length in whole network.
- Good algorithms exist for calculation.
- Weighted links can be accommodated.
Properties

9. network distances:

(a) shortest path length d_{ij}:
- Fewest number of steps between nodes i and j.
- (Also called the chemical distance between i and j.)

(b) average path length $\langle d_{ij} \rangle$:
- Average shortest path length in whole network.
- Good algorithms exist for calculation.
- Weighted links can be accommodated.
9. network distances:

(a) shortest path length d_{ij}:

- Fewest number of steps between nodes i and j.
- (Also called the chemical distance between i and j.)

(b) average path length $\langle d_{ij} \rangle$:

- Average shortest path length in whole network.
- Good algorithms exist for calculation.
- Weighted links can be accommodated.
9. network distances:

(a) shortest path length \(d_{ij}\):

- Fewest number of steps between nodes \(i\) and \(j\).
- (Also called the chemical distance between \(i\) and \(j\).)

(b) average path length \(\langle d_{ij} \rangle\):

- Average shortest path length in whole network.
- Good algorithms exist for calculation.
- Weighted links can be accommodated.
Properties

9. network distances:
 (a) shortest path length d_{ij}:
 - Fewest number of steps between nodes i and j.
 - (Also called the chemical distance between i and j.)
 (b) average path length $\langle d_{ij} \rangle$:
 - Average shortest path length in whole network.
 - Good algorithms exist for calculation.
 - Weighted links can be accommodated.
Properties

9. network distances:

(a) shortest path length d_{ij}:
- Fewest number of steps between nodes i and j.
- (Also called the chemical distance between i and j.)

(b) average path length $\langle d_{ij} \rangle$:
- Average shortest path length in whole network.
- Good algorithms exist for calculation.
- Weighted links can be accommodated.
Properties

9. network distances:

- **network diameter** d_{max}:
 Maximum shortest path length between any two nodes.

- **closeness** d_{cl}:
 Average ‘distance’ between any two nodes.

- Closeness handles disconnected networks ($d_{ij} = \infty$)
- $d_{\text{cl}} = \infty$ only when all nodes are isolated.
- Closeness perhaps compresses too much into one number.
Properties

9. network distances:

- **network diameter** d_{max}:
 Maximum shortest path length between any two nodes.

- **closeness** $d_{\text{cl}} = \left[\sum_{ij} d_{ij}^{-1} / \left(\begin{pmatrix} n \end{pmatrix} / 2 \right) \right]^{-1}$:
 Average ‘distance’ between any two nodes.

- Closeness handles disconnected networks ($d_{ij} = \infty$)

- $d_{\text{cl}} = \infty$ only when all nodes are isolated.

- Closeness perhaps compresses too much into one number.
Properties

9. network distances:

- **network diameter** d_{max}:
 Maximum shortest path length between any two nodes.

- **closeness** $d_{\text{cl}} = \left[\sum_{ij} d_{ij}^{-1} / \binom{n}{2} \right]^{-1}$:
 Average ‘distance’ between any two nodes.

- Closeness handles disconnected networks ($d_{ij} = \infty$)

- $d_{\text{cl}} = \infty$ only when all nodes are isolated.

- Closeness perhaps compresses too much into one number
9. network distances:

- **network diameter** d_{max}: Maximum shortest path length between any two nodes.
- **closeness** $d_{\text{cl}} = [\sum_{ij} d_{ij}^{-1} / (\binom{n}{2})]^{-1}$: Average ‘distance’ between any two nodes.
- Closeness handles disconnected networks ($d_{ij} = \infty$)
- $d_{\text{cl}} = \infty$ only when all nodes are isolated.
- Closeness perhaps compresses too much into one number
Properties

10. centrality:

- Many such measures of a node's 'importance.'
- **ex 1:** Degree centrality: k_i.
- **ex 2:** Node i's betweenness
 - fraction of shortest paths that pass through i.
- **ex 3:** Edge ℓ's betweenness
 - fraction of shortest paths that travel along ℓ.
- **ex 4:** Recursive centrality: Hubs and Authorities (Jon Kleinberg[13])
Properties

10. centrality:

- Many such measures of a node’s ‘importance.’
- ex 1: Degree centrality: k_i.
- ex 2: Node i’s betweenness
 = fraction of shortest paths that pass through i.
- ex 3: Edge ℓ’s betweenness
 = fraction of shortest paths that travel along ℓ.
- ex 4: Recursive centrality: Hubs and Authorities (Jon Kleinberg[13])
Properties

10. Centrality:

- Many such measures of a node’s ‘importance.’

- **ex 1:** Degree centrality: k_i.

- **ex 2:** Node i’s betweenness
 - fraction of shortest paths that pass through i.

- **ex 3:** Edge ℓ’s betweenness
 - fraction of shortest paths that travel along ℓ.

- **ex 4:** Recursive centrality: Hubs and Authorities (Jon Kleinberg [13])
10. centrality:

- Many such measures of a node’s ‘importance.’
- **ex 1**: Degree centrality: k_i.
- **ex 2**: Node i’s betweenness
 = fraction of shortest paths that pass through i.
- **ex 3**: Edge ℓ’s betweenness
 = fraction of shortest paths that travel along ℓ.
- **ex 4**: Recursive centrality: Hubs and Authorities (Jon Kleinberg[13])
10. centrality:
 - Many such measures of a node’s ‘importance.’
 - **ex 1:** Degree centrality: k_i.
 - **ex 2:** Node i’s betweenness
 = fraction of shortest paths that pass through i.
 - **ex 3:** Edge ℓ’s betweenness
 = fraction of shortest paths that travel along ℓ.
 - **ex 4:** Recursive centrality: Hubs and Authorities (Jon Kleinberg\cite{Kleinberg})
Properties

10. centrality:

- Many such measures of a node’s ‘importance.’
- **ex 1:** Degree centrality: k_i.
- **ex 2:** Node i’s betweenness
 = fraction of shortest paths that pass through i.
- **ex 3:** Edge ℓ’s betweenness
 = fraction of shortest paths that travel along ℓ.
- **ex 4:** Recursive centrality: Hubs and Authorities (Jon Kleinberg[13])
Some important models:

1. generalized random networks (touched on in 300)
2. scale-free networks (⊞) (covered in 300)
3. small-world networks (黾) (covered in 300)
4. statistical generative models (p^*)
5. generalized affiliation networks (partly covered in 300)
Some important models:

1. generalized random networks *(touched on in 300)*
2. scale-free networks *(covered in 300)*
3. small-world networks *(covered in 300)*
4. statistical generative models *(ρ*)
5. generalized affiliation networks *(partly covered in 300)*
Some important models:

1. generalized random networks (touched on in 300)
2. scale-free networks (neger) (covered in 300)
3. small-world networks (neger) (covered in 300)
4. statistical generative models (p^*)
5. generalized affiliation networks (partly covered in 300)
Some important models:

1. generalized random networks *(touched on in 300)*
2. scale-free networks *(covered in 300)*
3. small-world networks *(covered in 300)*
4. statistical generative models *(ρ*)
5. generalized affiliation networks *(partly covered in 300)*
Some important models:

1. generalized random networks (touched on in 300)
2. scale-free networks (covered in 300)
3. small-world networks (covered in 300)
4. statistical generative models (ρ^*)
5. generalized affiliation networks (partly covered in 300)
Models

Some important models:

1. generalized random networks *(touched on in 300)*
2. scale-free networks *(□) (covered in 300)*
3. small-world networks *(□) (covered in 300)*
4. statistical generative models *(ρ*)
5. generalized affiliation networks *(partly covered in 300)*
Models

1. generalized random networks:
 - Arbitrary degree distribution P_k.
 - Wire nodes together randomly.
 - Create ensemble to test deviations from randomness.
 - Interesting, applicable, rich mathematically.
 - We will have fun with these guys...
1. generalized random networks:
 - Arbitrary degree distribution P_k.
 - Wire nodes together randomly.
 - Create ensemble to test deviations from randomness.
 - Interesting, applicable, rich mathematically.
 - We will have fun with these guys...
1. generalized random networks:

- Arbitrary degree distribution P_k.
- Wire nodes together randomly.
- Create ensemble to test deviations from randomness.
- Interesting, applicable, rich mathematically.
- We will have fun with these guys...
1. generalized random networks:

- Arbitrary degree distribution P_k.
- Wire nodes together randomly.
- Create ensemble to test deviations from randomness.

- Interesting, applicable, rich mathematically.
- We will have fun with these guys...
Models

1. generalized random networks:
 - Arbitrary degree distribution P_k.
 - Wire nodes together randomly.
 - Create ensemble to test deviations from randomness.
 - Interesting, applicable, rich mathematically.
 - We will have fun with these guys...
1. generalized random networks:

- Arbitrary degree distribution P_k.
- Wire nodes together randomly.
- Create ensemble to test deviations from randomness.
- Interesting, applicable, rich mathematically.
- We will have fun with these guys...
2. ‘scale-free networks’:

- Generative model.
- Preferential attachment model with growth:
 - $P[\text{attachment to node } i] \propto k_i^\alpha$.
 - Produces $P_k \sim k^{-\gamma}$ when $\alpha = 1$.
- Trickiness: other models generate skewed degree distributions.

$\gamma = 2.5$
$\langle k \rangle = 1.8$
$N = 150$
2. ‘scale-free networks’:

- Introduced by Barabasi and Albert \([3]\)
- Generative model
 - Preferential attachment model with growth:
 - \(P[\text{attachment to node } i] \propto k_i^\alpha\).
 - Produces \(P_k \sim k^{-\gamma}\) when \(\alpha = 1\).
- Trickiness: other models generate skewed degree distributions.

\(\gamma = 2.5\)
\(\langle k \rangle = 1.8\)
\(N = 150\)
2. ‘scale-free networks’:

- Introduced by Barabasi and Albert\(^\text{[3]}\)
- Generative model
- Preferential attachment model with growth:
 - \(P[\text{attachment to node } i] \propto k_i^\alpha\).
 - Produces \(P_k \sim k^{-\gamma}\) when \(\alpha = 1\).
- Trickiness: other models generate skewed degree distributions.

\(\gamma = 2.5\)
\(\langle k \rangle = 1.8\)
\(N = 150\)
2. ‘scale-free networks’:

- Introduced by Barabasi and Albert\[^3\]
- Generative model
- Preferential attachment model with growth:
 - $P[\text{attachment to node } i] \propto k_i^\alpha$.
 - Produces $P_k \sim k^{-\gamma}$ when $\alpha = 1$.
- Trickiness: other models generate skewed degree distributions.

$\gamma = 2.5$
$\langle k \rangle = 1.8$
$N = 150$
2. ‘scale-free networks’:

- Introduced by Barabasi and Albert \[^{[3]}\]
- Generative model
- Preferential attachment model with growth:
 - \(P[\text{attachment to node } i] \propto k_i^\alpha \).
 - Produces \(P_k \sim k^{-\gamma} \) when \(\alpha = 1 \).
- Trickiness: other models generate skewed degree distributions.

\(\gamma = 2.5 \)
\(\langle k \rangle = 1.8 \)
\(N = 150 \)
2. ‘scale-free networks’:

- Introduced by Barabasi and Albert [3]
- Generative model
- Preferential attachment model with growth:
 - $P[attachment \text{ to node } i] \propto k_i^\alpha$.
 - Produces $P_k \sim k^{-\gamma}$ when $\alpha = 1$.
- Trickiness: other models generate skewed degree distributions.

$\gamma = 2.5$
$\langle k \rangle = 1.8$
$N = 150$
3. small-world networks

- Introduced by Watts and Strogatz

- local regularity (an individual’s friends know each other)

- global randomness (shortcuts).

- Shortcuts allow disease to jump

- Number of infectives increases exponentially in time

- Facilitates synchronization
Models

3. small-world networks

- Introduced by Watts and Strogatz\(^{[23]}\)

Two scales:

- local regularity (an individual’s friends know each other)
- global randomness (shortcuts).

- Shortcuts allow disease to jump
- Number of infectives increases exponentially in time
- Facilitates synchronization
3. small-world networks

- Introduced by Watts and Strogatz [23]

Two scales:

- **local regularity** (an individual’s friends know each other)
- **global randomness** (shortcuts).

- Shortcuts allow disease to jump
- Number of infectives increases exponentially in time
- Facilitates synchronization
Models

3. small-world networks

- Introduced by Watts and Strogatz [23]

Two scales:

- **local regularity** (an individual’s friends know each other)
- **global randomness** (shortcuts).

- Shortcuts allow disease to jump
- Number of infectives increases exponentially in time
- Facilitates synchronization
3. small-world networks

- Introduced by Watts and Strogatz [23]

Two scales:
- local regularity (an individual’s friends know each other)
- global randomness (shortcuts).

- Shortcuts allow disease to jump
- Number of infectives increases exponentially in time
- Facilitates synchronization
3. small-world networks

- Introduced by Watts and Strogatz \[^{23}\]

Two scales:

- local regularity (an individual’s friends know each other)
- global randomness (shortcuts).

- Shortcuts allow disease to jump
- Number of infectives increases exponentially in time
- Facilitates synchronization
3. small-world networks

- Introduced by Watts and Strogatz \(^{23}\)

Two scales:

- **local regularity** (an individual’s friends know each other)
- **global randomness** (shortcuts).

- Shortcuts allow disease to jump
- Number of infectives increases exponentially in time
- Facilitates synchronization
Models

5. generalized affiliation networks

Bipartite affiliation networks: boards and directors, movies and actors.
5. generalized affiliation networks
5. generalized affiliation networks

- Blau & Schwartz [4], Simmel [19], Breiger [8], Watts et al. [22]

Models

Overview

Class admin

Basic definitions

Popularity

Examples of Complex Networks

Properties of Complex Networks

Modelling Complex Networks

Nutshell

References
Nutshell:

Overview Key Points:

- The field of complex networks came into existence in the late 1990s.
- Explosion of papers and interest since 1998/99.
- Hardened up much thinking about complex systems.
- Specific focus on networks that are large-scale, sparse, natural or man-made, evolving and dynamic, and (crucially) measurable.
- Three main (blurred) categories:
 1. Physical (e.g., river networks),
 2. Interactional (e.g., social networks),
 3. Abstract (e.g., thesauri).
Nutshell:

Overview Key Points:

- The field of complex networks came into existence in the late 1990s.
- Explosion of papers and interest since 1998/99.
- Hardened up much thinking about complex systems.
- Specific focus on networks that are large-scale, sparse, natural or man-made, evolving and dynamic, and (crucially) measurable.
- Three main (blurred) categories:
 - 1. Physical (e.g., river networks),
 - 2. Interactional (e.g., social networks),
 - 3. Abstract (e.g., thesauri).
Overview Key Points:

- The field of complex networks came into existence in the late 1990s.
- Explosion of papers and interest since 1998/99.
- Hardened up much thinking about complex systems.
- Specific focus on networks that are large-scale, sparse, natural or man-made, evolving and dynamic, and (crucially) measurable.
- Three main (blurred) categories:
 1. Physical (e.g., river networks),
 2. Interactional (e.g., social networks),
 3. Abstract (e.g., thesauri).
Overview Key Points:

- The field of complex networks came into existence in the late 1990s.
- Explosion of papers and interest since 1998/99.
- Hardened up much thinking about complex systems.
- Specific focus on networks that are large-scale, sparse, natural or man-made, evolving and dynamic, and (crucially) measurable.

Three main (blurred) categories:

1. Physical (e.g., river networks),
2. Interactional (e.g., social networks),
3. Abstract (e.g., thesauri).
Nutshell:

Overview Key Points:

- The field of complex networks came into existence in the late 1990s.
- Explosion of papers and interest since 1998/99.
- Hardened up much thinking about complex systems.
- Specific focus on networks that are large-scale, sparse, natural or man-made, evolving and dynamic, and (crucially) measurable.
- Three main (blurred) categories:
 1. Physical (e.g., river networks),
 2. Interactional (e.g., social networks),
 3. Abstract (e.g., thesauri).
Overview Key Points (cont.):

▶ Obvious connections with the vast extant field of graph theory.
▶ But focus on dynamics is more of a physics/stat-mech/comp-sci flavor.
▶ Two main areas of focus:
 1. Description: Characterizing very large networks
 2. Explanation: Micro story ⇒ Macro features
▶ Some essential structural aspects are understood: degree distribution, clustering, assortativity, group structure, overall structure, ...
▶ Still much work to be done, especially with respect to dynamics... exciting!
Overview Key Points (cont.):

- Obvious connections with the vast extant field of graph theory.
- But focus on dynamics is more of a physics/stat-mech/comp-sci flavor.
- Two main areas of focus:
 1. Description: Characterizing very large networks
 2. Explanation: Micro story ⇒ Macro features
- Some essential structural aspects are understood: degree distribution, clustering, assortativity, group structure, overall structure,...
- Still much work to be done, especially with respect to dynamics... exciting!
Nutshell:

Overview Key Points (cont.):

- Obvious connections with the vast extant field of graph theory.
- But focus on dynamics is more of a physics/stat-mech/comp-sci flavor.
- Two main areas of focus:
 1. **Description**: Characterizing very large networks
 2. **Explanation**: Micro story \(\Rightarrow \) Macro features
- Some essential structural aspects are understood: degree distribution, clustering, assortativity, group structure, overall structure,...
- Still much work to be done, especially with respect to dynamics... exciting!
Nutshell:

Overview Key Points (cont.):

- Obvious connections with the vast extant field of graph theory.
- But focus on dynamics is more of a physics/stat-mech/comp-sci flavor.
- Two main areas of focus:
 1. Description: Characterizing very large networks
 2. Explanation: Micro story \Rightarrow Macro features
- Some essential structural aspects are understood: degree distribution, clustering, assortativity, group structure, overall structure,...
- Still much work to be done, especially with respect to dynamics... exciting!
Nutshell:

Overview Key Points (cont.):

- Obvious connections with the vast extant field of graph theory.
- But focus on dynamics is more of a physics/stat-mech/comp-sci flavor.
- Two main areas of focus:
 1. **Description**: Characterizing very large networks
 2. **Explanation**: Micro story \Rightarrow Macro features
- Some essential structural aspects are understood: degree distribution, clustering, assortativity, group structure, overall structure,...
- Still much work to be done, especially with respect to dynamics... **exciting!**
Nutshell:

Overview Key Points (cont.):

- Obvious connections with the vast extant field of graph theory.
- But focus on dynamics is more of a physics/stat-mech/comp-sci flavor.
- Two main areas of focus:
 1. Description: Characterizing very large networks
 2. Explanation: Micro story ⇒ Macro features
- Some essential structural aspects are understood: degree distribution, clustering, assortativity, group structure, overall structure,…
- Still much work to be done, especially with respect to dynamics… exciting!
References

References II

References III

The duality of persons and groups.

Evolution of Networks.

The Tipping Point.

The unreasonable effectiveness of data.
IEEE Intelligent Systems, 24:8–12, 2009. pdf
References IV

Authoritative sources in a hyperlinked environment.

Measures of concurrency in networks and the spread of infectious disease.

Assortative mixing in networks.

The structure and function of complex networks.
References V

References VI

Six Degrees.

Identity and search in social networks.

Collective dynamics of ‘small-world’ networks.

The unreasonable effectiveness of mathematics in the natural sciences.