Overview of Complex Networks

Complex Networks
CSYS/MATH 303, Spring, 2011

Prof. Peter Dodds
Department of Mathematics & Statistics
Center for Complex Systems
Vermont Advanced Computing Center
University of Vermont

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

Outline

Class admin
Basic definitions
Popularity
Examples of Complex Networks
Properties of Complex Networks
Modelling Complex Networks
Nutshell
References

Class Admin

- Office hours:
 - 1:00 pm to 3:00 pm, Wednesday: Farrell Hall, second floor, Trinity Campus.
 - Appointments by email (peter.dodds@uvm.edu).
- Course outline
- Projects
- Assignments (about 8)
- Assignment 1 appears today and involves:
 - dolphins
 - a Karate club
 - political blogs
 - a worm’s brain
 - the Internet
 - jazz musicians

Exciting details regarding these slides:

- Three versions (all in pdf):
 1. Presentation,
 2. Flat Presentation,
 3. Handout (2x2).
- Presentation versions are navigable and hyperlinks are clickable.
- Web links look like this (⊞).
- References in slides link to full citation at end. [2]
- Citations contain links to papers in pdf (if available).
- Brought to you by a troubling concoction of LaTeX, Beamer, and perl.

Bonus materials:

Textbooks:
- Mark Newman (Physics, Michigan)
 “Networks: An Introduction” [3]
- David Easley and Jon Kleinberg (Economics and Computer Science, Cornell)
 “Networks, Crowds, and Markets: Reasoning About a Highly Connected World” [3]

Review articles:
- S. Boccaletti et al.
 “Complex networks: structure and dynamics” [5]
 Times cited: 1,028 (as of June 7, 2010)
- M. Newman
 “The structure and function of complex networks” [16]
 Times cited: 2,559 (as of June 7, 2010)
- R. Albert and A.-L. Barabási
 “Statistical mechanics of complex networks” [1]
 Times cited: 3,995 (as of June 7, 2010)
Basic definitions:

Complex: (Latin = with + fold/weave (com + plex))

Adjective
- Made up of multiple parts; intricate or detailed.
- Not simple or straightforward.

Basic definitions:

Complex System—Some ingredients:
- Distributed system of many interrelated parts
- No centralized control
- Nonlinear relationships
- Existence of feedback loops
- Complex systems are open (out of equilibrium)
- Presence of Memory
- Modular (nested)/multiscale structure
- Emergence—More is Different
- Many phenomena can be complex: social, technical, informational, geophysical, meteorological, fluidic, ...

network | [network]
noun
1 an arrangement of intersecting horizontal and vertical lines.
- a complex system of roads, railroads, or other transportation routes: a network of railroads.
- a group of people who exchange information, contacts, and experience for professional or social purposes: a social network.
- a group of broadcasting stations that connect for the simultaneous broadcast of a program: the introduction of a second TV network.
- a number of interconnected computers, machines, or operations: specialized computers that manage multiple outside connections to a network.
- a local cellular phone network.
- a system of connected electrical conductors.

verb
connect as or operate with a network: the stock exchanges have proven to be resourceful in networking these deals.
- link (machines, esp. computers) to operate interactively: networked; networked applications.

Ancestry:

From Keith Briggs’s excellent etymological investigation:

- Opus reticulatum:
- A Latin origin?

References
- Nutshell
- Networks Modelling Complex Complex Networks Properties of Complex Networks Examples of Popularity
- References

Thesaurus deliciousness:

network
- a network of arteries, WEB, lattice, net, matrix, mesh, crisscross, grid, reticulum, reticulation; Anatomy plexus.
- a network of lanes, MAZE, labyrinth, warren, tangle.
- a network of friends, SYSTEM, complex, nexus, web, webwork.
Overview
Class admin
Basic definitions
Popularity
Examples of Complex Networks
Properties of Complex Networks
Modelling Complex Networks
Nutshell
References

Ancestry:

First known use: Geneva Bible, 1560
‘And thou shalt make unto it a grate like networke of brass (Exodus xxvii 4).’

From the OED via Briggs:
» 1658–: reticulate structures in animals
» 1839–: rivers and canals
» 1869–: railways
» 1883–: distribution network of electrical cables
» 1914–: wireless broadcasting networks

Overview
Class admin
Basic definitions
Popularity
Examples of Complex Networks
Properties of Complex Networks
Modelling Complex Networks
Nutshell
References

Ancestry:

Net and Work are venerable old words:
» ‘Net’ first used to mean spider web (King Ælfréd, 888).
» ‘Work’ appears to have long meant purposeful action.

» ‘Network’ = something built based on the idea of natural, flexible lattice or web.
» c.f., ironwork, stonework, fretwork.

Overview
Class admin
Basic definitions
Popularity
Examples of Complex Networks
Properties of Complex Networks
Modelling Complex Networks
Nutshell
References

Key Observation:

» Many complex systems can be viewed as complex networks of physical or abstract interactions.
» Opens door to mathematical and numerical analysis.
» Dominant approach of last decade of a theoretical-physics/stat-mechish flavor.
» Mindboggling amount of work published on complex networks since 1998...
» ... largely due to your typical theoretical physicist:

» Piranha physicus
» Hunt in packs.
» Feast on new and interesting ideas (see chaos, cellular automata, ...)

Overview
Class admin
Basic definitions
Popularity
Examples of Complex Networks
Properties of Complex Networks
Modelling Complex Networks
Nutshell
References

Popularity (according to ISI)

“Collective dynamics of ‘small-world’ networks”[23]
» Watts and Strogatz
» ≈ 4677 citations (as of January 18, 2011)
» Over 1100 citations in 2008 alone.

“Emergence of scaling in random networks”[3]
» Barabási and Albert
Science, 1999
» ≈ 5270 citations (as of January 18, 2011)
» Over 1100 citations in 2008 alone.

Overview
Class admin
Basic definitions
Popularity
Examples of Complex Networks
Properties of Complex Networks
Modelling Complex Networks
Nutshell
References

Popularity according to books:

Nexus: Small Worlds and the Groundbreaking Science of Networks—Mark Buchanan

Overview
Class admin
Basic definitions
Popularity
Examples of Complex Networks
Properties of Complex Networks
Modelling Complex Networks
Nutshell
References

Popularity according to books:

Linked: How Everything Is Connected to Everything Else and What It Means—Albert-Laszlo Barabási

Six Degrees: The Science of a Connected Age—Duncan Watts[21]

Overview
Class admin
Basic definitions
Popularity
Examples of Complex Networks
Properties of Complex Networks
Modelling Complex Networks
Nutshell
References
Numerous others:
- Complex Social Networks—F. Vega-Redondo
- Fractal River Basins: Chance and Self-Organization—I. Rodríguez-Iturbe and A. Rinaldo
- Random Graph Dynamics—R. Durette
- Scale-Free Networks—Guido Caldarelli
- Evolution and Structure of the Internet: A Statistical Physics Approach—Romu Pastor-Satorras and Alessandro Vespignani
- Complex Graphs and Networks—Fan Chung
- Social Network Analysis—Stanley Wasserman and Kathleen Faust
- Evolution of Networks—S. N. Dorogovtsev and J. F. F. Mendes

More observations:
- But surely networks aren’t new...
- Graph theory is well established...
- Study of social networks started in the 1930’s...
- So why all this ‘new’ research on networks?
- Answer: Oodles of Easily Accessible Data.
- We can now inform (alias) our theories with a much more measurable reality.*
- Real networks occupy a tiny, low entropy part of all network space and require specific attention.
- A worthy goal: establish mechanistic explanations.
- What kinds of dynamics lead to these real networks?
 *If this is upsetting, maybe string theory is for you...

More observations:
- Web-scale data sets can be overly exciting.

Witness:
- The End of Theory: The Data Deluge Makes the Scientific Theory Obsolete (Anderson, Wired)
- “The Unreasonable Effectiveness of Data,” Halevy et al.
- c.f. Wigner’s “The Unreasonable Effectiveness of Mathematics in the Natural Sciences"

But:
- For scientists, description is only part of the battle.
- We still need to understand.

Nodes = A collection of entities which have properties that are somehow related to each other
- e.g., people, forks in rivers, proteins, webpages, organisms,...

Super basic definitions

Nodes
- Super basic definitions
- Basic definitions
- Examples of Complex Networks
- Properties of Complex Networks
- Modelling Complex Networks
- Nutshell
- References

Nodes
- Super basic definitions
- Basic definitions
- Examples of Complex Networks
- Properties of Complex Networks
- Modelling Complex Networks
- Nutshell
- References

Basic definitions:

Links = Connections between nodes
- Basic definitions
- Examples of Complex Networks
- Properties of Complex Networks
- Modelling Complex Networks
- Nutshell
- References

Basic definitions:

Node degree = Number of links per node
- Basic definitions
- Examples of Complex Networks
- Properties of Complex Networks
- Modelling Complex Networks
- Nutshell
- References

Basic definitions:

Node degree = Number of links per node
- Basic definitions
- Examples of Complex Networks
- Properties of Complex Networks
- Modelling Complex Networks
- Nutshell
- References
Basic definitions:

Adjacency matrix:

- We represent a graph or network by a matrix \(A \) with link weight \(a_{ij} \) for nodes \(i \) and \(j \) in entry \((i, j)\).
- e.g.,
 \[
 A = \begin{pmatrix}
 0 & 1 & 1 & 0 \\
 0 & 1 & 0 & 1 \\
 1 & 0 & 0 & 0 \\
 0 & 1 & 0 & 1 \\
 0 & 1 & 0 & 1 \\
 \end{pmatrix}
 \]
 (n.b., for numerical work, we always use sparse matrices.)

Examples

What passes for a complex network?

- Complex networks are large (in node number)
- Complex networks are sparse (low edge to node ratio)
- Complex networks are usually dynamic and evolving
- Complex networks can be social, economic, natural, informational, abstract, ...

Examples

Physical networks

- River networks
- Neural networks
- Trees and leaves
- Blood networks
- Distribution (branching) versus redistribution (cyclical)

Examples

Interaction networks

- The Blogosphere
- Biochemical networks
- Gene-protein networks
- Food webs: who eats whom
- The World Wide Web (W)
- Airline networks
- Call networks (AT&T)
- The Media

Examples

Interaction networks: social networks

- Snogging
- Friendships
- Acquaintances
- Boards and directors
- Organizations
- twitter.com (open), instant messaging, Facebook posts, emails, phone logs (*cough*).

Examples

Relational networks

- Consumer purchases (Wal-Mart: \(2.5 \times 10^{15} \) bytes)
- Thesauri: Networks of words generated by meanings
- Knowledge/Databases/Ideas
- Metadata—Tagging: delicious (open), flickr (open)
A notable feature of large-scale networks:

- Graphical renderings are often just a big mess.
- Typical hairball
 - number of nodes $N = 500$
 - number of edges $m = 1000$
 - average degree $\langle k \rangle = 4$
- And even when renderings somehow look good: “That is a very graphic analogy which aids understanding wonderfully while being, strictly speaking, wrong in every possible way” said Ponder [Stibbons] — Making Money, T. Pratchett.
- We need to extract digestible, meaningful aspects.

Properties

Some key aspects of real complex networks:

- degree distribution*
- assortativity
- homophily
- clustering
- motifs
- modularity
- concurrency
- hierarchical scaling
- network distances
- centrality
- efficiency
- robustness

*Plus coevolution of network structure and processes on networks.

- Degree distribution is the elephant in the room that we are now all very aware of...

1. degree distribution P_k

- P_k is the probability that a randomly selected node has degree k
- $k = \text{node degree} = \text{number of connections}$
- ex 1: Erdős-Rényi random networks:
 $$P_k = e^{-\langle k \rangle} \langle k \rangle^k / k!$$
- Distribution is Poisson

1. degree distribution P_k

- ex 2: “Scale-free” networks: $P_k \propto k^{-\gamma} \Rightarrow \text{hubs}$
- link cost controls skew
- hubs may facilitate or impede contagion

Note:

- Erdős-Rényi random networks are a mathematical construct.
- ‘Scale-free’ networks are growing networks that form according to a plausible mechanism.
- Randomness is out there, just not to the degree of a completely random network.
Properties

2. Assortativity/3. Homophily:
- Social networks: Homophily (≡) = birds of a feather e.g., degree is standard property for sorting; measure degree-degree correlations.
- Assortative network: similar degree nodes connecting to each other. Often social: company directors, coauthors, actors.
- Disassortative network: high degree nodes connecting to low degree nodes. Often technological or biological: Internet, WWW, protein interactions, neural networks, food webs.

Local socialness:

4. Clustering:
- Your friends tend to know each other.
- Two measures (explained on following slides):
 1. Watts & Strogatz \[C_1 = \left(\frac{\sum_{i=1}^{n} \sum_{j \in N_i} A_{ij} - n}{k_i(k_i - 1)/2} \right) \]
 2. Newman \[C_2 = \frac{3 \times \# \text{triangles}}{\# \text{triples}} \]

First clustering measure:

Example network:

Calculation of \(C_1 \):

\[C_1 = \frac{\sum_{i=1}^{n} \sum_{j \in N_i} A_{ij} - n}{k_i(k_i - 1)/2} \]

where \(k_i \) is node \(i \)'s degree, and \(N_i \) is the set of \(i \)'s neighbors.

Averaging over all nodes, we have:

\[C_1 = \frac{1}{n} \sum_{i=1}^{n} \frac{\sum_{j \in N_i} A_{ij}}{k_i(k_i - 1)/2} \]

Triangles and triangles

Example network:

- Nodes \(i_1 \), \(i_2 \), and \(i_3 \) form a triangle if each pair of nodes is connected
- The definition \(C_2 = \frac{3 \times \# \text{triangles}}{\# \text{triples}} \) measures the fraction of closed triangles
- The '3' appears because for each triangle, we have 3 closed triangles.
- Social Network Analysis (SNA): fraction of transitive triples.

Properties

5. motifs:
- small, recurring functional subnetworks e.g., Feed Forward Loop:

\[
\begin{align*}
\text{FeedForwardLoop} & \\
\text{Shen-Orr, Uri Alon, et al.} [18]
\end{align*}
\]
Properties

6. modularity and structure/community detection:

Clauset et al., 2006[^9]: NCAA football

Overview

Class admin
Basic definitions
Popularity
Examples of Complex Networks
Properties of Complex Networks
Modelling Complex Networks
Nutshell
References

Properties

9. network distances:

(a) shortest path length \(d_{ij}\):

- Fewest number of steps between nodes \(i\) and \(j\).
- (Also called the chemical distance between \(i\) and \(j\)).

(b) average path length \(\langle d_{ij} \rangle\):

- Average shortest path length in whole network.
- Good algorithms exist for calculation.
- Weighted links can be accommodated.

Overview

Class admin
Basic definitions
Popularity
Examples of Complex Networks
Properties of Complex Networks
Modelling Complex Networks
Nutshell
References

Properties

7. concurrency:

- transmission of a contagious element only occurs during contact
- rather obvious but easily missed in a simple model
- dynamic property—static networks are not enough
- knowledge of previous contacts crucial
- beware cumulated network data
- Kretzschmar and Morris, 1996[^14]

Overview

Class admin
Basic definitions
Popularity
Examples of Complex Networks
Properties of Complex Networks
Modelling Complex Networks
Nutshell
References

Properties

8. Horton-Strahler ratios:

- Metrics for branching networks:
 - Method for ordering streams hierarchically
 - Number: \(R_0 = N_0 / N_{0+1}\)
 - Segment length: \(R_s = \langle u_{i+1} \rangle / \langle u_i \rangle\)
 - Area/Volume: \(R_A = \langle a_{i+1} \rangle / \langle a_i \rangle\)

Overview

Class admin
Basic definitions
Popularity
Examples of Complex Networks
Properties of Complex Networks
Modelling Complex Networks
Nutshell
References

Properties

9. network distances:

- network diameter \(d_{max}\):
 - Maximum shortest path length between any two nodes.
- closeness \(d_{cl} = \left[\sum_{ij} \frac{d_{ij} - 1}{n^2} \right]^{-1}\):
 - Average ‘distance’ between any two nodes.
 - Closeness handles disconnected networks (\(d_{ij} = \infty\))
 - \(d_{cl} = \infty\) only when all nodes are isolated.
 - Closeness perhaps compresses too much into one number

Overview

Class admin
Basic definitions
Popularity
Examples of Complex Networks
Properties of Complex Networks
Modelling Complex Networks
Nutshell
References

Properties

10. centrality:

- Many such measures of a node’s ‘importance.’
 - ex 1: Degree centrality: \(k_i\).
 - ex 2: Node \(i\)’s betweenness
 - fraction of shortest paths that pass through \(i\).
 - ex 3: Edge \(\ell\)’s betweenness
 - fraction of shortest paths that travel along \(\ell\).
 - ex 4: Recursive centrality: Hubs and Authorities (Jon Kleinberg[^13])

Overview

Class admin
Basic definitions
Popularity
Examples of Complex Networks
Properties of Complex Networks
Modelling Complex Networks
Nutshell
References
Models

Some important models:

1. generalized random networks (touched on in 300)
2. scale-free networks (⊞) (covered in 300)
3. small-world networks (⊞) (covered in 300)
4. statistical generative models (p^*)
5. generalized affiliation networks (partly covered in 300)

1. generalized random networks:
 - Arbitrary degree distribution P_k.
 - Wire nodes together randomly.
 - Create ensemble to test deviations from randomness.
 - Interesting, applicable, rich mathematically.
 - We will have fun with these guys...

2. ‘scale-free’ networks:
 - Introduced by Barabasi and Albert[2]
 - Generative model
 - Preferential attachment model with growth:
 $P(attachment \ to \ node \ i) \sim k_i^\alpha$.
 - Produces $P_k \sim k^{-\gamma}$ when $\alpha = 1$.
 - Trickiness: other models generate skewed degree distributions.

3. small-world networks
 - Introduced by Watts and Strogatz[3]
 - Two scales:
 - local regularity (an individual’s friends know each other)
 - global randomness (shortcuts).
 - Shortcuts allow disease to jump
 - Number of infectives increases exponentially in time
 - Facilitates synchronization

Bipartite affiliation networks: boards and directors, movies and actors.
Models

5. generalized affiliation networks

graph

- Blau & Schwartz [4], Simmel [19], Breiger [8], Watts et al. [22]

Nutshell:

Overview Key Points:
- The field of complex networks came into existence in the late 1990s.
- Explosion of papers and interest since 1998/99.
- Hardened up much thinking about complex systems.
- Specific focus on networks that are large-scale, sparse, natural or man-made, evolving and dynamic, and (crucially) measurable.
- Three main (blurred) categories:
 1. Physical (e.g., river networks),
 2. Interactional (e.g., social networks),
 3. Abstract (e.g., thesauri).

References

I

II

III

References IV

References V

References VI

