Outline

Directed random networks

Mixed random networks
 Definition
 Correlations

Mixed Random Network Contagion
 Spreading condition
 Full generalization

Nutshell

References
Random directed networks:

- So far, we’ve studied networks with undirected, unweighted edges.
- Now consider directed, unweighted edges.
- Nodes have k_i and k_o incoming and outgoing edges, otherwise random.

Network defined by joint in- and out-degree distribution: P_{k_i,k_o}

- Normalization: $\sum_{k_i=0}^{\infty} \sum_{k_o=0}^{\infty} P_{k_i,k_o} = 1$
- Marginal in-degree and out-degree distributions:

 $P_{k_i} = \sum_{k_o=0}^{\infty} P_{k_i,k_o}$ and $P_{k_o} = \sum_{k_i=0}^{\infty} P_{k_i,k_o}$

- Required balance:

 $\langle k_i \rangle = \sum_{k_i=0}^{\infty} \sum_{k_o=0}^{\infty} k_i P_{k_i,k_o} = \sum_{k_i=0}^{\infty} \sum_{k_o=0}^{\infty} k_o P_{k_i,k_o} = \langle k_o \rangle$
Random directed networks:

- So far, we’ve studied networks with undirected, unweighted edges.
- Now consider directed, unweighted edges.
 - Nodes have k_i and k_o incoming and outgoing edges, otherwise random.
 - Network defined by joint in- and out-degree distribution: P_{k_i, k_o}
 - Normalization: $\sum_{k_i=0}^{\infty} \sum_{k_o=0}^{\infty} P_{k_i, k_o} = 1$
 - Marginal in-degree and out-degree distributions:
 \[P_{k_i} = \sum_{k_o=0}^{\infty} P_{k_i, k_o} \quad \text{and} \quad P_{k_o} = \sum_{k_i=0}^{\infty} P_{k_i, k_o} \]
 - Required balance:
 \[\langle k_i \rangle = \sum_{k_i=0}^{\infty} \sum_{k_o=0}^{\infty} k_i P_{k_i, k_o} = \sum_{k_i=0}^{\infty} \sum_{k_o=0}^{\infty} k_o P_{k_i, k_o} = \langle k_o \rangle \]
Random directed networks:

- So far, we’ve studied networks with undirected, unweighted edges.
- Now consider directed, unweighted edges.
- Nodes have k_i and k_o incoming and outgoing edges, otherwise random.

- Network defined by joint in- and out-degree distribution: P_{k_i,k_o}
- Normalization: $\sum_{k_i=0}^{\infty} \sum_{k_o=0}^{\infty} P_{k_i,k_o} = 1$
- Marginal in-degree and out-degree distributions:

$$P_{k_i} = \sum_{k_o=0}^{\infty} P_{k_i,k_o} \text{ and } P_{k_o} = \sum_{k_i=0}^{\infty} P_{k_i,k_o}$$

- Required balance:

$$\langle k_i \rangle = \sum_{k_i=0}^{\infty} \sum_{k_o=0}^{\infty} k_i P_{k_i,k_o} = \sum_{k_i=0}^{\infty} \sum_{k_o=0}^{\infty} k_o P_{k_i,k_o} = \langle k_o \rangle$$
Random directed networks:

- So far, we’ve studied networks with undirected, unweighted edges.
- Now consider directed, unweighted edges.
- Nodes have k_i and k_o incoming and outgoing edges, otherwise random.

Network defined by joint in- and out-degree distribution: P_{k_i,k_o}

- Normalization: $\sum_{k_i=0}^{\infty} \sum_{k_o=0}^{\infty} P_{k_i,k_o} = 1$
- Marginal in-degree and out-degree distributions:

 \[
P_{k_i} = \sum_{k_o=0}^{\infty} P_{k_i,k_o} \text{ and } P_{k_o} = \sum_{k_i=0}^{\infty} P_{k_i,k_o}
 \]

- Required balance:

 \[
 \langle k_i \rangle = \sum_{k_i=0}^{\infty} \sum_{k_o=0}^{\infty} k_i P_{k_i,k_o} = \sum_{k_i=0}^{\infty} \sum_{k_o=0}^{\infty} k_o P_{k_i,k_o} = \langle k_o \rangle
 \]
Random directed networks:

- So far, we’ve studied networks with undirected, unweighted edges.
- Now consider directed, unweighted edges.
- Nodes have \(k_i \) and \(k_o \) incoming and outgoing edges, otherwise random.

Network defined by joint in- and out-degree distribution:

\[
P_{k_i,k_o}
\]

Normalization:

\[
\sum_{k_i=0}^{\infty} \sum_{k_o=0}^{\infty} P_{k_i,k_o} = 1
\]

Marginal in-degree and out-degree distributions:

\[
P_{k_i} = \sum_{k_o=0}^{\infty} P_{k_i,k_o} \quad \text{and} \quad P_{k_o} = \sum_{k_i=0}^{\infty} P_{k_i,k_o}
\]

Required balance:

\[
\langle k_i \rangle = \sum_{k_i=0}^{\infty} \sum_{k_o=0}^{\infty} k_i P_{k_i,k_o} = \sum_{k_i=0}^{\infty} \sum_{k_o=0}^{\infty} k_o P_{k_i,k_o} = \langle k_o \rangle
\]
Random directed networks:

- So far, we’ve studied networks with undirected, unweighted edges.
- Now consider directed, unweighted edges.
- Nodes have k_i and k_o incoming and outgoing edges, otherwise random.

Network defined by joint in- and out-degree distribution: P_{k_i,k_o}

- Normalization: $\sum_{k_i=0}^{\infty} \sum_{k_o=0}^{\infty} P_{k_i,k_o} = 1$

- Marginal in-degree and out-degree distributions:

 $P_{k_i} = \sum_{k_o=0}^{\infty} P_{k_i,k_o}$ and $P_{k_o} = \sum_{k_i=0}^{\infty} P_{k_i,k_o}$

- Required balance:

 $\langle k_i \rangle = \sum_{k_i=0}^{\infty} \sum_{k_o=0}^{\infty} k_i P_{k_i,k_o} = \sum_{k_i=0}^{\infty} \sum_{k_o=0}^{\infty} k_o P_{k_i,k_o} = \langle k_o \rangle$
Random directed networks:

- So far, we’ve studied networks with undirected, unweighted edges.
- Now consider directed, unweighted edges.
- Nodes have k_i and k_o incoming and outgoing edges, otherwise random.

- Network defined by joint in- and out-degree distribution: P_{k_i,k_o}

- Normalization: $\sum_{k_i=0}^{\infty} \sum_{k_o=0}^{\infty} P_{k_i,k_o} = 1$

- Marginal in-degree and out-degree distributions:

 $$P_{k_i} = \sum_{k_o=0}^{\infty} P_{k_i,k_o} \quad \text{and} \quad P_{k_o} = \sum_{k_i=0}^{\infty} P_{k_i,k_o}$$

- Required balance:

 $$\langle k_i \rangle = \sum_{k_i=0}^{\infty} \sum_{k_o=0}^{\infty} k_i P_{k_i,k_o} = \sum_{k_i=0}^{\infty} \sum_{k_o=0}^{\infty} k_o P_{k_i,k_o} = \langle k_o \rangle$$
Directed network structure:

- GWCC = Giant Weakly Connected Component (directions removed);
- GIN = Giant In-Component;
- GOUT = Giant Out-Component;
- GSCC = Giant Strongly Connected Component;
- DC = Disconnected Components (finite).

When moving through a family of increasingly connected directed random networks, GWCC usually appears before GIN, GOUT, and GSCC which tend to appear together. [4, 1]

From Boguñá and Serano. [1]
Directed network structure:

From Boguñá and Serano. \[1\]

- GWCC = Giant Weakly Connected Component (directions removed);
- GIN = Giant In-Component;
- GOUT = Giant Out-Component;
- GSCC = Giant Strongly Connected Component;
- DC = Disconnected Components (finite).

When moving through a family of increasingly connected directed random networks, GWCC usually appears before GIN, GOUT, and GSCC which tend to appear together. \[4, 1\]
Outline

Directed random networks

Mixed random networks

Definition

Correlations

Mixed Random Network Contagion

Spreading condition

Full generalization

Nutshell

References
Mixed random networks:
Important observation:

- Directed and undirected random networks are separate families...
- ... and analyses are also disjoint.
- Need to examine a larger family of random networks with mixed directed and undirected edges.
Mixed random networks:
Important observation:

- Directed and undirected random networks are separate families...
- ...and analyses are also disjoint.
- Need to examine a larger family of random networks with mixed directed and undirected edges.
Mixed random networks:
Important observation:

- Directed and undirected random networks are separate families...
- ...and analyses are also disjoint.
- Need to examine a larger family of random networks with mixed directed and undirected edges.
Mixed random networks:

Important observation:

- Directed and undirected random networks are separate families...
- ...and analyses are also disjoint.
- Need to examine a larger family of random networks with mixed directed and undirected edges.

Consider nodes with three types of edges:

1. k_u undirected edges,
2. k_i incoming directed edges,
3. k_o outgoing directed edges.

Define a node by generalized degree:

$$\vec{k} = [k_u \ k_i \ k_o]^T.$$
Mixed random networks:
Important observation:

- Directed and undirected random networks are separate families...
- ... and analyses are also disjoint.
- Need to examine a larger family of random networks with mixed directed and undirected edges.

- Consider nodes with three types of edges:
 1. \(k_u\) undirected edges,
 2. \(k_i\) incoming directed edges,
 3. \(k_o\) outgoing directed edges.

- Define a node by generalized degree:
 \[
 \vec{k} = [k_u \ k_i \ k_o]^T.
 \]
Mixed random networks:

- Joint degree distribution:

 \[P_{\vec{k}} \text{ where } \vec{k} = [k_u \ k_i \ k_o]^T. \]

- As for directed networks, require in- and out-degree averages to match up:

 \[
 \langle k_i \rangle = \sum_{k_u=0}^{\infty} \sum_{k_i=0}^{\infty} \sum_{k_o=0}^{\infty} k_i P_{\vec{k}} = \sum_{k_u=0}^{\infty} \sum_{k_i=0}^{\infty} \sum_{k_o=0}^{\infty} k_o P_{\vec{k}} = \langle k_o \rangle
 \]

- Otherwise, no other restrictions and connections are random.

- Directed and undirected random networks are disjoint subfamilies:

 Undirected: \[P_{\vec{k}} = P_{k_u} \delta_{k_i,0} \delta_{k_o,0}. \]
 Directed: \[P_{\vec{k}} = \delta_{k_i,0} P_{k_u,k_o}. \]
Mixed random networks:

- Joint degree distribution:
 \[P_{\vec{k}} \text{ where } \vec{k} = [k_u \ k_i \ k_o]^T. \]

- As for directed networks, require in- and out-degree averages to match up:
 \[
 \langle k_i \rangle = \sum_{k_u=0}^{\infty} \sum_{k_i=0}^{\infty} \sum_{k_o=0}^{\infty} k_i P_{\vec{k}} = \sum_{k_u=0}^{\infty} \sum_{k_i=0}^{\infty} \sum_{k_o=0}^{\infty} k_o P_{\vec{k}} = \langle k_o \rangle
 \]

- Otherwise, no other restrictions and connections are random.

- Directed and undirected random networks are disjoint subfamilies:
 \[
 \text{Undirected: } P_{\vec{k}} = P_{k_u} \delta_{k_i,0} \delta_{k_o,0}.
 \]
 \[
 \text{Directed: } P_{\vec{k}} = \delta_{k_u,0} P_{k_i,k_o}.
 \]
Mixed random networks:

- Joint degree distribution:
 \[P_{\vec{k}} \text{ where } \vec{k} = [k_u \ k_i \ k_o]^T. \]

- As for directed networks, require in- and out-degree averages to match up:
 \[
 \langle k_i \rangle = \sum_{k_u=0}^{\infty} \sum_{k_i=0}^{\infty} \sum_{k_o=0}^{\infty} k_i P_{\vec{k}} = \sum_{k_u=0}^{\infty} \sum_{k_i=0}^{\infty} \sum_{k_o=0}^{\infty} k_o P_{\vec{k}} = \langle k_o \rangle
 \]

- Otherwise, no other restrictions and connections are random.

- Directed and undirected random networks are disjoint subfamilies:
 \[
 \text{Undirected: } P_{\vec{k}} = P_{k_u} \delta_{k_i,0} \delta_{k_o,0};
 \]
 \[
 \text{Directed: } P_{\vec{k}} = \delta_{k_u,0} P_{k_i,k_o}.
 \]
Mixed random networks:

- Joint degree distribution:

 \[P_{\vec{k}} \] where \(\vec{k} = [k_u \ k_i \ k_o]^T. \)

- As for directed networks, require in- and out-degree averages to match up:

 \[
 \langle k_i \rangle = \sum_{k_u=0}^{\infty} \sum_{k_i=0}^{\infty} \sum_{k_o=0}^{\infty} k_i P_{\vec{k}} = \sum_{k_u=0}^{\infty} \sum_{k_i=0}^{\infty} \sum_{k_o=0}^{\infty} k_o P_{\vec{k}} = \langle k_o \rangle
 \]

- Otherwise, no other restrictions and connections are random.

- Directed and undirected random networks are disjoint subfamilies:

 Undirected: \(P_{\vec{k}} = P_{k_u} \delta_{k_i,0} \delta_{k_o,0} \)

 Directed: \(P_{\vec{k}} = \delta_{k_u,0} P_{k_i,k_o} \)
Outline

Directed random networks

Mixed random networks
 Definition
 Correlations

Mixed Random Network Contagion
 Spreading condition
 Full generalization

Nutshell

References
Correlations:

► Now add correlations (two point or Markovian):

1. $P^{(u)}(\vec{k} | \vec{k}') = \text{probability that an undirected edge leaving a degree } \vec{k}' \text{ nodes arrives at a degree } \vec{k} \text{ node.}$
2. $P^{(i)}(\vec{k} | \vec{k}') = \text{probability that an edge leaving a degree } \vec{k}' \text{ nodes arrives at a degree } \vec{k} \text{ node is an in-directed edge relative to the destination node.}$
3. $P^{(o)}(\vec{k} | \vec{k}') = \text{probability that an edge leaving a degree } \vec{k}' \text{ nodes arrives at a degree } \vec{k} \text{ node is an out-directed edge relative to the destination node.}$

► Now require more refined (detailed) balance.
► Conditional probabilities cannot be arbitrary.

1. $P^{(u)}(\vec{k} | \vec{k}')$ must be related to $P^{(u)}(\vec{k}' | \vec{k}).$
2. $P^{(o)}(\vec{k} | \vec{k}')$ and $P^{(o)}(\vec{k} | \vec{k}')$ must be connected.
Correlations:

► Now add correlations (two point or Markovian):

1. $P^{(u)}(\vec{k} | \vec{k}')$ = probability that an undirected edge leaving a degree \vec{k}' nodes arrives at a degree \vec{k} node.

2. $P^{(i)}(\vec{k} | \vec{k}')$ = probability that an edge leaving a degree \vec{k}' nodes arrives at a degree \vec{k} node is an in-directed edge relative to the destination node.

3. $P^{(o)}(\vec{k} | \vec{k}')$ = probability that an edge leaving a degree \vec{k}' nodes arrives at a degree \vec{k} node is an out-directed edge relative to the destination node.

► Now require more refined (detailed) balance.

► Conditional probabilities cannot be arbitrary.

1. $P^{(u)}(\vec{k} | \vec{k}')$ must be related to $P^{(u)}(\vec{k}' | \vec{k})$.

2. $P^{(o)}(\vec{k} | \vec{k}')$ and $P^{(o)}(\vec{k} | \vec{k}')$ must be connected.
Correlations:

- Now add correlations (two point or Markovian):
 1. $P^{(u)}(\vec{k} \mid \vec{k}') = \text{probability that an undirected edge leaving a degree } \vec{k}' \text{ nodes arrives at a degree } \vec{k} \text{ node.}$
 2. $P^{(i)}(\vec{k} \mid \vec{k}') = \text{probability that an edge leaving a degree } \vec{k}' \text{ nodes arrives at a degree } \vec{k} \text{ node is an in-directed edge relative to the destination node.}$
 3. $P^{(o)}(\vec{k} \mid \vec{k}') = \text{probability that an edge leaving a degree } \vec{k}' \text{ nodes arrives at a degree } \vec{k} \text{ node is an out-directed edge relative to the destination node.}$

- Now require more refined (detailed) balance.
- Conditional probabilities cannot be arbitrary.
 1. $P^{(u)}(\vec{k} \mid \vec{k}') \text{ must be related to } P^{(u)}(\vec{k}' \mid \vec{k}).$
 2. $P^{(o)}(\vec{k} \mid \vec{k}') \text{ and } P^{(o)}(\vec{k} \mid \vec{k}') \text{ must be connected.}$
Correlations:

Now add correlations (two point or Markovian):

1. \(P^{(u)}(\vec{k} | \vec{k}') = \text{probability that an undirected edge leaving a degree } \vec{k}' \text{ nodes arrives at a degree } \vec{k} \text{ node.} \)
2. \(P^{(i)}(\vec{k} | \vec{k}') = \text{probability that an edge leaving a degree } \vec{k}' \text{ nodes arrives at a degree } \vec{k} \text{ node is an in-directed edge relative to the destination node.} \)
3. \(P^{(o)}(\vec{k} | \vec{k}') = \text{probability that an edge leaving a degree } \vec{k}' \text{ nodes arrives at a degree } \vec{k} \text{ node is an out-directed edge relative to the destination node.} \)

Now require more refined (detailed) balance.

Conditional probabilities cannot be arbitrary.

1. \(P^{(u)}(\vec{k} | \vec{k}') \) must be related to \(P^{(u)}(\vec{k}' | \vec{k}) \).
2. \(P^{(o)}(\vec{k} | \vec{k}') \) and \(P^{(o)}(\vec{k} | \vec{k}') \) must be connected.
Correlations:

- Now add correlations (two point or Markovian):
 1. \(P^{(u)}(\vec{k} | \vec{k}') = \) probability that an undirected edge leaving a degree \(\vec{k}' \) nodes arrives at a degree \(\vec{k} \) node.
 2. \(P^{(i)}(\vec{k} | \vec{k}') = \) probability that an edge leaving a degree \(\vec{k}' \) nodes arrives at a degree \(\vec{k} \) node is an in-directed edge relative to the destination node.
 3. \(P^{(o)}(\vec{k} | \vec{k}') = \) probability that an edge leaving a degree \(\vec{k}' \) nodes arrives at a degree \(\vec{k} \) node is an out-directed edge relative to the destination node.

- Now require more refined (detailed) balance.

- Conditional probabilities cannot be arbitrary.
 1. \(P^{(u)}(\vec{k} | \vec{k}') \) must be related to \(P^{(u)}(\vec{k}' | \vec{k}) \).
 2. \(P^{(o)}(\vec{k} | \vec{k}') \) and \(P^{(o)}(\vec{k} | \vec{k}') \) must be connected.
Correlations:

- Now add correlations (two point or Markovian):
 1. $P^{(u)}(\vec{k} | \vec{k}') = \text{probability that an undirected edge leaving a degree } \vec{k}' \text{ nodes arrives at a degree } \vec{k} \text{ node.}$
 2. $P^{(i)}(\vec{k} | \vec{k}') = \text{probability that an edge leaving a degree } \vec{k}' \text{ nodes arrives at a degree } \vec{k} \text{ node is an in-directed edge relative to the destination node.}$
 3. $P^{(o)}(\vec{k} | \vec{k}') = \text{probability that an edge leaving a degree } \vec{k}' \text{ nodes arrives at a degree } \vec{k} \text{ node is an out-directed edge relative to the destination node.}$

- Now require more refined (detailed) balance.
- Conditional probabilities cannot be arbitrary.
 1. $P^{(u)}(\vec{k} | \vec{k}') \text{ must be related to } P^{(u)}(\vec{k}' | \vec{k}).$
 2. $P^{(o)}(\vec{k} | \vec{k}') \text{ and } P^{(o)}(\vec{k} | \vec{k}'') \text{ must be connected.}$
Correlations:

- Now add correlations (two point or Markovian):
 1. \(P^{(u)}(\vec{k} | \vec{k'}) = \text{probability that an undirected edge leaving a degree } \vec{k}' \text{ nodes arrives at a degree } \vec{k} \text{ node.} \)
 2. \(P^{(i)}(\vec{k} | \vec{k'}) = \text{probability that an edge leaving a degree } \vec{k}' \text{ nodes arrives at a degree } \vec{k} \text{ node is an in-directed edge relative to the destination node.} \)
 3. \(P^{(o)}(\vec{k} | \vec{k'}) = \text{probability that an edge leaving a degree } \vec{k}' \text{ nodes arrives at a degree } \vec{k} \text{ node is an out-directed edge relative to the destination node.} \)

- Now require more refined (detailed) balance.

- Conditional probabilities cannot be arbitrary.
 1. \(P^{(u)}(\vec{k} | \vec{k'}) \) must be related to \(P^{(u)}(\vec{k'} | \vec{k}) \).
 2. \(P^{(o)}(\vec{k} | \vec{k'}) \) and \(P^{(u)}(\vec{k} | \vec{k''}) \) must be connected.
Correlations:

- Now add correlations (two point or Markovian):
 1. \(P^{(u)}(\mathbf{k} | \mathbf{k}') = \) probability that an undirected edge leaving a degree \(\mathbf{k}' \) nodes arrives at a degree \(\mathbf{k} \) node.
 2. \(P^{(i)}(\mathbf{k} | \mathbf{k}') = \) probability that an edge leaving a degree \(\mathbf{k}' \) nodes arrives at a degree \(\mathbf{k} \) node is an in-directed edge relative to the destination node.
 3. \(P^{(o)}(\mathbf{k} | \mathbf{k}') = \) probability that an edge leaving a degree \(\mathbf{k}' \) nodes arrives at a degree \(\mathbf{k} \) node is an out-directed edge relative to the destination node.

- Now require more refined (detailed) balance.

- Conditional probabilities cannot be arbitrary.
 1. \(P^{(u)}(\mathbf{k} | \mathbf{k}') \) must be related to \(P^{(u)}(\mathbf{k}' | \mathbf{k}) \).
 2. \(P^{(o)}(\mathbf{k} | \mathbf{k}') \) and \(P^{(o)}(\mathbf{k} | \mathbf{k}') \) must be connected.
Correlations—Undirected edge balance:

- Randomly choose an edge, and randomly choose one end.
- Say we find a degree \(\vec{k} \) node at this end, and a degree \(\vec{k}' \) node at the other end.
- Define probability this happens as \(P^{(u)}(\vec{k}, \vec{k}') \).
- Observe we must have \(P^{(u)}(\vec{k}, \vec{k}') = P^{(u)}(\vec{k}', \vec{k}) \).

- Conditional probability connection:
 \[
 P^{(u)}(\vec{k}, \vec{k}') = P^{(u)}(\vec{k} | \vec{k}') \frac{P(\vec{k}')}{\langle k'_u \rangle} \\
 \| \\
 P^{(u)}(\vec{k}', \vec{k}) = P^{(u)}(\vec{k}' | \vec{k}) \frac{P(\vec{k})}{\langle k_u \rangle}.
 \]
Correlations—Undirected edge balance:

- Randomly choose an edge, and randomly choose one end.
- Say we find a degree \(\vec{k} \) node at this end, and a degree \(\vec{k}' \) node at the other end.
- Define probability this happens as \(P^{(u)}(\vec{k}, \vec{k}') \).
- Observe we must have \(P^{(u)}(\vec{k}, \vec{k}') = P^{(u)}(\vec{k}', \vec{k}) \).
- Conditional probability connection:

\[
P^{(u)}(\vec{k}, \vec{k}') = P^{(u)}(\vec{k} | \vec{k}') \frac{k' P(\vec{k}')}{\langle k' \rangle} \]

\[
P^{(u)}(\vec{k}', \vec{k}) = P^{(u)}(\vec{k}' | \vec{k}) \frac{k P(\vec{k})}{\langle k \rangle}.
\]
Correlations—Undirected edge balance:

- Randomly choose an edge, and randomly choose one end.
- Say we find a degree \vec{k} node at this end, and a degree \vec{k}' node at the other end.
- Define probability this happens as $P^{(u)}(\vec{k}, \vec{k}')$.
- Observe we must have $P^{(u)}(\vec{k}, \vec{k}') = P^{(u)}(\vec{k}', \vec{k})$.

- Conditional probability connection:

 \[
 P^{(u)}(\vec{k}, \vec{k}') = P^{(u)}(\vec{k} | \vec{k}') \frac{P(\vec{k}') (\vec{k})}{P(\vec{k}') (\vec{k})}
 \]

 \[
 P^{(u)}(\vec{k}', \vec{k}) = P^{(u)}(\vec{k}' | \vec{k}) \frac{P(\vec{k}) (\vec{k}')}{P(\vec{k}) (\vec{k}')}
 \]
Correlations—Undirected edge balance:

- Randomly choose an edge, and randomly choose one end.
- Say we find a degree \vec{k} node at this end, and a degree \vec{k}' node at the other end.
- Define probability this happens as $P^{(u)}(\vec{k}, \vec{k}')$.
- Observe we must have $P^{(u)}(\vec{k}, \vec{k}') = P^{(u)}(\vec{k}', \vec{k})$.

Conditional probability connection:

\[
P^{(u)}(\vec{k}, \vec{k}') = P^{(u)}(\vec{k} \mid \vec{k}') \frac{k_{u}^{\vec{k}' \vec{k}}}{\langle k_{u} \rangle}
\]

\[
P^{(u)}(\vec{k}', \vec{k}) = P^{(u)}(\vec{k} \mid \vec{k}') \frac{k_{u}^{\vec{k} \vec{k}'}}{\langle k_{u} \rangle}.
\]
Correlations—Undirected edge balance:

- Randomly choose an edge, and randomly choose one end.
- Say we find a degree \vec{k} node at this end, and a degree \vec{k}' node at the other end.
- Define probability this happens as $P^{(u)}(\vec{k}, \vec{k}')$.
- Observe we must have $P^{(u)}(\vec{k}, \vec{k}') = P^{(u)}(\vec{k}', \vec{k})$.

- Conditional probability connection:

$$
P^{(u)}(\vec{k}, \vec{k}') = P^{(u)}(\vec{k} | \vec{k}') \frac{k_u' P(\vec{k}')}{\langle k'_u \rangle}$$

$$
P^{(u)}(\vec{k}', \vec{k}) = P^{(u)}(\vec{k}' | \vec{k}) \frac{k_u P(\vec{k})}{\langle k_u \rangle}.$$
Correlations—Directed edge balance:

- The quantities
 \[\frac{k_o P(\vec{k})}{\langle k_o \rangle} \text{ and } \frac{k_i P(\vec{k})}{\langle k_i \rangle} \]
give the probabilities that in starting at a random end of a randomly selected edge, we begin at a degree \(\vec{k} \) node and then find ourselves travelling:

 1. along an outgoing edge, or
 2. against the direction of an incoming edge.

- We therefore have

 \[P^{(\text{dir})}(\vec{k}, \vec{k}') = P^{(i)}(\vec{k} | \vec{k}') \frac{k'_o P(\vec{k}')}{{\langle k'_o \rangle}} = P^{(o)}(\vec{k}' | \vec{k}) \frac{k_i P(\vec{k})}{\langle k_i \rangle}. \]

- Note that \(P^{(\text{dir})}(\vec{k}, \vec{k}') \) and \(P^{(\text{dir})}(\vec{k}', \vec{k}) \) are in general not related if \(\vec{k} \neq \vec{k}' \).
Correlations—Directed edge balance:

- The quantities
 \[
 \frac{k_o P(\vec{k})}{\langle k_o \rangle} \quad \text{and} \quad \frac{k_i P(\vec{k})}{\langle k_i \rangle}
 \]
give the probabilities that in starting at a random end of a randomly selected edge, we begin at a degree \(\vec{k} \) node and then find ourselves travelling:

1. along an outgoing edge, or
2. against the direction of an incoming edge.

- We therefore have
 \[
P^{(\text{dir})}(\vec{k}, \vec{k}') = P^{(\text{i})}(\vec{k} | \vec{k}') \frac{k_o' P(\vec{k}')}{\langle k_o' \rangle} = P^{(\text{o})}(\vec{k}' | \vec{k}) \frac{k_i P(\vec{k})}{\langle k_i \rangle}.
 \]

- Note that \(P^{(\text{dir})}(\vec{k}, \vec{k}') \) and \(P^{(\text{dir})}(\vec{k}', \vec{k}) \) are in general not related if \(\vec{k} \neq \vec{k}' \).
Correlations—Directed edge balance:

The quantities
\[
\frac{k_o P(\vec{k})}{\langle k_o \rangle} \quad \text{and} \quad \frac{k_i P(\vec{k})}{\langle k_i \rangle}
\]
give the probabilities that in starting at a random end of a randomly selected edge, we begin at a degree \(\vec{k}\) node and then find ourselves travelling:

1. along an outgoing edge, or
2. against the direction of an incoming edge.

We therefore have
\[
P^{(\text{dir})}(\vec{k}, \vec{k}') = P^{(\text{i})}(\vec{k} | \vec{k}') \frac{k'_o P(\vec{k}')}{\langle k'_o \rangle} = P^{(\text{o})}(\vec{k}' | \vec{k}) \frac{k_i P(\vec{k})}{\langle k_i \rangle}.
\]

Note that \(P^{(\text{dir})}(\vec{k}, \vec{k}')\) and \(P^{(\text{dir})}(\vec{k}', \vec{k})\) are in general not related if \(\vec{k} \neq \vec{k}'\).
Outline

Directed random networks

Mixed random networks
 Definition
 Correlations

Mixed Random Network Contagion
 Spreading condition
 Full generalization

Nutshell

References
Global spreading condition: \[2\]

When are cascades possible?:

- Consider uncorrelated mixed networks first.
- Recall our first result for undirected random networks, that edge gain ratio must exceed 1:

\[
R = \sum_{k_u=0}^{\infty} \frac{k_u P_{k_u}}{\langle k_u \rangle} \cdot \left(k_u - 1 \right) \cdot B_{k_u, 1} > 1.
\]

- Similar form for purely directed networks:

\[
R = \sum_{k_i=0}^{\infty} \sum_{k_o=0}^{\infty} \frac{k_i P_{k_i}}{\langle k_i \rangle} \cdot k_o \cdot B_{k_i, 1} > 1.
\]

- Both are composed of (1) probability of connection to a node of a given type; (2) number of newly infected edges if successful; and (3) probability of infection.
Global spreading condition: [2]

When are cascades possible?:

- Consider uncorrelated mixed networks first.

- Recall our first result for undirected random networks, that edge gain ratio must exceed 1:

\[R = \sum_{k_u=0}^{\infty} \frac{k_u P_{k_u}}{(k_u)^i} \cdot (k_u - 1) \cdot B_{k_u,1} > 1. \]

- Similar form for purely directed networks:

\[R = \sum_{k_i=0}^{\infty} \sum_{k_o=0}^{\infty} \frac{k_i P_{k_i} k_o}{(k_i)} \cdot k_o \cdot B_{k_i,1} > 1. \]

- Both are composed of (1) probability of connection to a node of a given type; (2) number of newly infected edges if successful; and (3) probability of infection.
Global spreading condition: [2]

When are cascades possible?:

- Consider uncorrelated mixed networks first.
- Recall our first result for undirected random networks, that edge gain ratio must exceed 1:

\[
R = \sum_{k_u=0}^{\infty} k_u \frac{P_{k_u}}{\langle k_u \rangle} \cdot (k_u - 1) \cdot B_{k_u,1} > 1.
\]

- Similar form for purely directed networks:

\[
R = \sum_{k_i=0}^{\infty} \sum_{k_o=0}^{\infty} k_i \frac{P_{k_i, k_o}}{\langle k_i \rangle} \cdot k_o \cdot B_{k_i,1} > 1.
\]

- Both are composed of (1) probability of connection to a node of a given type; (2) number of newly infected edges if successful; and (3) probability of infection.
Global spreading condition: \([2]\)

When are cascades possible?:

- Consider uncorrelated mixed networks first.
- Recall our first result for undirected random networks, that edge gain ratio must exceed 1:

\[
R = \sum_{k_u=0}^{\infty} \frac{k_u P_{k_u}}{\langle k_u \rangle} \cdot (k_u - 1) \cdot B_{k_u,1} > 1.
\]

- Similar form for purely directed networks:

\[
R = \sum_{k_i=0}^{\infty} \sum_{k_o=0}^{\infty} \frac{k_i P_{k_i,k_o}}{\langle k_i \rangle} \cdot k_o \cdot B_{k_i,1} > 1.
\]

- Both are composed of (1) probability of connection to a node of a given type; (2) number of newly infected edges if successful; and (3) probability of infection.
Global spreading condition: [2]

When are cascades possible?:

- Consider uncorrelated mixed networks first.
- Recall our first result for undirected random networks, that edge gain ratio must exceed 1:

\[
R = \sum_{k_u=0}^{\infty} \frac{k_u P_{k_u}}{\langle k_u \rangle} \cdot (k_u - 1) \cdot B_{k_u,1} > 1.
\]

- Similar form for purely directed networks:

\[
R = \sum_{k_i=0}^{\infty} \sum_{k_o=0}^{\infty} \frac{k_i P_{k_i,k_o}}{\langle k_i \rangle} \cdot k_o \cdot B_{k_i,1} > 1.
\]

- Both are composed of (1) probability of connection to a node of a given type; (2) number of newly infected edges if successful; and (3) probability of infection.
Global spreading condition:

Local growth equation:

- Define number of infected edges leading to nodes a distance d away from the original seed as $f(d)$.
- Infected edge growth equation:

 $$f(d + 1) = Rf(d).$$

- Applies for discrete time and continuous time contagion processes.
- Now see $B_{k=1}$ is the probability that an infected edge eventually infects a node.
- Also allows for recovery of nodes (SIR).
Global spreading condition:

Local growth equation:

- Define number of infected edges leading to nodes a distance d away from the original seed as $f(d)$.
- Infected edge growth equation:
 \[
 f(d + 1) = R f(d).
 \]
- Applies for discrete time and continuous time contagion processes.
- Now see B_{k+1} is the probability that an infected edge eventually infects a node.
- Also allows for recovery of nodes (SIR).
Global spreading condition:

Local growth equation:

- Define number of infected edges leading to nodes a distance d away from the original seed as $f(d)$.
- Infected edge growth equation:

 $$f(d + 1) = R f(d).$$

- Applies for discrete time and continuous time contagion processes.
- Now see B_{k+1} is the probability that an infected edge eventually infects a node.
- Also allows for recovery of nodes (SIR).
Global spreading condition:

Local growth equation:

- Define number of infected edges leading to nodes a distance d away from the original seed as $f(d)$.
- Infected edge growth equation:

$$f(d + 1) = Rf(d).$$

- Applies for discrete time and continuous time contagion processes.
- Now see $B_{k_u,1}$ is the probability that an infected edge eventually infects a node.
- Also allows for recovery of nodes (SIR).
Global spreading condition:

Local growth equation:

- Define number of infected edges leading to nodes a distance d away from the original seed as $f(d)$.
- Infected edge growth equation:
 \[f(d + 1) = R f(d). \]
- Applies for discrete time and continuous time contagion processes.
- Now see $B_{k,u,1}$ is the probability that an infected edge eventually infects a node.
- Also allows for recovery of nodes (SIR).
Global spreading condition:

Mixed, uncorrelated random networks:

- Now have two types of edges spreading infection: directed and undirected.

- Gain ratio now more complicated:
 1. Infected directed edges can lead to infected directed or undirected edges.
 2. Infected undirected edges can lead to infected directed or undirected edges.

- Define $f^{(u)}(d')$ and $f^{(d)}(d')$ as the expected number of infected undirected and directed edges leading to nodes a distance d' from seed.
Global spreading condition:

Mixed, uncorrelated random networks:

- Now have two types of edges spreading infection: directed and undirected.
- Gain ratio now more complicated:
 1. Infected directed edges can lead to infected directed or undirected edges.
 2. Infected undirected edges can lead to infected directed or undirected edges.

Define $f^{(u)}(d)$ and $f^{(d)}(d')$ as the expected number of infected undirected and directed edges leading to nodes a distance d' from seed.
Global spreading condition:

Mixed, uncorrelated random networks:

- Now have two types of edges spreading infection: directed and undirected.
- Gain ratio now more complicated:
 1. Infected directed edges can lead to infected directed or undirected edges.
 2. Infected undirected edges can lead to infected directed or undirected edges.
- Define $f^{(u)}(d)$ and $f^{(o)}(d')$ as the expected number of infected undirected and directed edges leading to nodes a distance d' from seed.
Gain ratio now has a matrix form:

\[
\begin{bmatrix}
 f^{(u)}(d + 1) \\
 f^{(o)}(d + 1)
\end{bmatrix} = \mathbf{R}
\begin{bmatrix}
 f^{(u)}(d) \\
 f^{(o)}(d)
\end{bmatrix}
\]

Two separate gain equations:

\[
\begin{align*}
 f^{(u)}(d + 1) &= k_u P_k \langle k_u \rangle \cdot (k_u - 1) + k_i P_k \langle k_i \rangle \cdot k_u + B_{k_u}, k_{i,1} \\
 f^{(o)}(d + 1) &= k_u P_k \langle k_u \rangle \cdot k_o + k_i P_k \langle k_i \rangle \cdot k_o + B_{k_u}, k_{i,1}
\end{align*}
\]

Gain ratio matrix:

\[
\mathbf{R} = \sum_{k} \sum_{k'} \begin{bmatrix}
 \frac{k_u P_k \langle k_u \rangle}{k_u P_k \langle k_u \rangle} \cdot (k_u - 1) & \frac{k_u P_k \langle k_u \rangle}{k_u P_k \langle k_u \rangle} \cdot k_u \\
 \frac{k_o P_k \langle k_o \rangle}{k_o P_k \langle k_o \rangle} \cdot k_o & \frac{k_o P_k \langle k_o \rangle}{k_o P_k \langle k_o \rangle} \cdot k_o
\end{bmatrix} \cdot B_{k_u}, k_{i,1}
\]

Spreading condition: max eigenvalue of $\mathbf{R} > 1$.
Gain ratio now has a matrix form:

\[
\begin{bmatrix}
 f^{(u)}(d + 1) \\
 f^{(o)}(d + 1)
\end{bmatrix} = R
\begin{bmatrix}
 f^{(u)}(d) \\
 f^{(o)}(d)
\end{bmatrix}
\]

Two separate gain equations:

\[
f^{(u)}(d+1) = \frac{k_u P_{\vec{k}}}{\langle k_u \rangle} \cdot (k_u - 1) B_{k_u+k_i,1} f^{(u)}(d) + \frac{k_i P_{\vec{k}}}{\langle k_i \rangle} \cdot k_u \cdot B_{k_u+k_i,1} f^{(o)}(d)
\]

Gain ratio matrix:

\[
R = \sum_{\vec{k}} \begin{bmatrix}
 \frac{k_u P_{\vec{k}}}{\langle k_u \rangle} \cdot (k_u - 1) & \frac{k_i P_{\vec{k}}}{\langle k_i \rangle} \cdot k_u \\
 \frac{k_u P_{\vec{k}}}{\langle k_u \rangle} \cdot k_u & \frac{k_i P_{\vec{k}}}{\langle k_i \rangle} \cdot k_u
\end{bmatrix} \cdot B_{k_u+k_i,1}
\]

Spreading condition: max eigenvalue of \(R > 1 \).
Gain ratio now has a matrix form:

\[
\begin{bmatrix}
 f^{(u)}(d + 1) \\
 f^{(o)}(d + 1)
\end{bmatrix}
= R \begin{bmatrix}
 f^{(u)}(d) \\
 f^{(o)}(d)
\end{bmatrix}
\]

Two separate gain equations:

\[
f^{(u)}(d+1) = \frac{k_u P_{\hat{k}}}{\langle k_u \rangle} \cdot (k_u - 1) B_{k_u+k_i,1} f^{(u)}(d) + \frac{k_i P_{\hat{k}}}{\langle k_i \rangle} \cdot k_u \cdot B_{k_u+k_i,1} f^{(o)}(d)
\]

\[
f^{(o)}(d+1) = \frac{k_u P_{\hat{k}}}{\langle k_u \rangle} \cdot k_o B_{k_u+k_i,1} f^{(u)}(d) + \frac{k_i P_{\hat{k}}}{\langle k_i \rangle} \cdot k_o \cdot B_{k_u+k_i,1} f^{(o)}(d)
\]

Gain ratio matrix:

\[
R = \sum_{k'} \begin{bmatrix}
 \frac{k_u P_{\hat{k}'} P_{\hat{k}}}{\langle k_u \rangle} \cdot (k_u - 1) & \frac{k_i P_{\hat{k}'} P_{\hat{k}}}{\langle k_i \rangle} \cdot k_u \\
 \frac{k_i P_{\hat{k}'} P_{\hat{k}}}{\langle k_i \rangle} \cdot k_o & \frac{k_i P_{\hat{k}'} P_{\hat{k}}}{\langle k_i \rangle} \cdot k_o
\end{bmatrix} \cdot B_{k_u+k_i,1}
\]

Spreading condition: max eigenvalue of \(R > 1 \).
Gain ratio now has a matrix form:

\[
\begin{bmatrix}
 f^{(u)}(d + 1) \\
 f^{(o)}(d + 1)
\end{bmatrix}
= R
\begin{bmatrix}
 f^{(u)}(d) \\
 f^{(o)}(d)
\end{bmatrix}
\]

Two separate gain equations:

\[
f^{(u)}(d+1) = \frac{k_u P_{k}}{\langle k_u \rangle} \cdot (k_u - 1) B_{k_u+k_i,1} f^{(u)}(d) + \frac{k_i P_{k}}{\langle k_i \rangle} \cdot k_u \cdot B_{k_u+k_i,1} f^{(o)}(d)
\]

\[
f^{(o)}(d+1) = \frac{k_u P_{k}}{\langle k_u \rangle} \cdot k_0 B_{k_u+k_i,1} f^{(u)}(d) + \frac{k_i P_{k}}{\langle k_i \rangle} \cdot k_0 \cdot B_{k_u+k_i,1} f^{(o)}(d)
\]

Gain ratio matrix:

\[
R = \sum \begin{bmatrix}
 \frac{k_u P_{k}}{\langle k_u \rangle} \cdot (k_u - 1) & \frac{k_i P_{k}}{\langle k_i \rangle} \cdot k_u \\
 \frac{k_u P_{k}}{\langle k_u \rangle} \cdot k_0 & \frac{k_i P_{k}}{\langle k_i \rangle} \cdot k_0
\end{bmatrix} \cdot B_{k_u+k_i,1}
\]

Spreading condition: max eigenvalue of \(R > 1 \).
Gain ratio now has a matrix form:

\[
\begin{bmatrix}
 f^{(u)}(d + 1) \\
 f^{(o)}(d + 1)
\end{bmatrix} = R
\begin{bmatrix}
 f^{(u)}(d) \\
 f^{(o)}(d)
\end{bmatrix}
\]

Two separate gain equations:

\[
f^{(u)}(d+1) = \frac{k_u P_{\vec{k}}}{\langle k_u \rangle} \cdot (k_u - 1) B_{k_u+k_i,1} f^{(u)}(d) + \frac{k_i P_{\vec{k}}}{\langle k_i \rangle} \cdot k_u \cdot B_{k_u+k_i,1} f^{(o)}(d)
\]

\[
f^{(o)}(d+1) = \frac{k_u P_{\vec{k}}}{\langle k_u \rangle} \cdot k_o B_{k_u+k_i,1} f^{(u)}(d) + \frac{k_i P_{\vec{k}}}{\langle k_i \rangle} \cdot k_o \cdot B_{k_u+k_i,1} f^{(o)}(d)
\]

Gain ratio matrix:

\[
R = \sum_{\vec{k}} \begin{bmatrix}
 \frac{k_u P_{\vec{k}}}{\langle k_u \rangle} \cdot (k_u - 1) & \frac{k_i P_{\vec{k}}}{\langle k_i \rangle} \cdot k_u \\
 \frac{k_u P_{\vec{k}}}{\langle k_u \rangle} \cdot k_o & \frac{k_i P_{\vec{k}}}{\langle k_i \rangle} \cdot k_o
\end{bmatrix} \cdot B_{k_u+k_i,1}
\]

Spreading condition: max eigenvalue of \(R > 1 \).
Global spreading condition:

▶ Useful change of notation for making results more general: write $P^{(u)}(\vec{k}|\ast) = \frac{k_u P_{\vec{k}}}{\langle k_u \rangle}$ and $P^{(i)}(\vec{k}|\ast) = \frac{k_i P_{\vec{k}}}{\langle k_i \rangle}$ where \ast indicates the starting node’s degree is irrelevant (no correlations).

▶ Also write $B_{k_u, k_i, \ast}$ to indicate a more general infection probability, but one that does not depend on the edge’s origin.

▶ Now have, for the example of mixed, uncorrelated random networks:

$$R = \sum_{\vec{k}} \left[P^{(u)}(\vec{k}|\ast) \cdot (k_u - 1) \quad P^{(i)}(\vec{k}|\ast) \cdot k_i \right] \cdot B_{k_u, k_i, \ast}$$
Global spreading condition:

- Useful change of notation for making results more general: write $P^{(u)}(\vec{k} \mid \ast) = \frac{k_u P_{\vec{k}}}{\langle k_u \rangle}$ and $P^{(i)}(\vec{k} \mid \ast) = \frac{k_i P_{\vec{k}}}{\langle k_i \rangle}$ where \ast indicates the starting node’s degree is irrelevant (no correlations).

- Also write $B_{k_u k_i \ast}$ to indicate a more general infection probability, but one that does not depend on the edge’s origin.

- Now have, for the example of mixed, uncorrelated random networks:

$$R = \sum_{\vec{k}} \left[\frac{k_u P^{(u)}(\vec{k} \mid \ast) \bullet (k_u - 1)}{P^{(u)}(\vec{k} \mid \ast) \bullet k_u} \cdot \frac{k_i P^{(i)}(\vec{k} \mid \ast) \bullet k_i}{P^{(i)}(\vec{k} \mid \ast) \bullet k_i} \right] \cdot B_{k_u k_i \ast}.$$
Global spreading condition:

- Useful change of notation for making results more general: write $P^{(u)}(\vec{k} | *) = \frac{k_u P_{\vec{k}}}{\langle k_u \rangle}$ and $P^{(i)}(\vec{k} | *) = \frac{k_i P_{\vec{k}}}{\langle k_i \rangle}$ where $*$ indicates the starting node’s degree is irrelevant (no correlations).

- Also write $B_{k_u k_i,*}$ to indicate a more general infection probability, but one that does not depend on the edge’s origin.

- Now have, for the example of mixed, uncorrelated random networks:

$$R = \sum_{\vec{k}} \begin{bmatrix} P^{(u)}(\vec{k} | *) \cdot (k_u - 1) & P^{(i)}(\vec{k} | *) \cdot k_u \\ P^{(u)}(\vec{k} | *) \cdot k_o & P^{(i)}(\vec{k} | *) \cdot k_o \end{bmatrix} \cdot B_{k_u k_i,*}$$
Summary of contagion conditions for uncorrelated networks:

- **I. Undirected, Uncorrelated** — $f(d + 1) = f(d)$:

 \[
 R = \sum_{k_u} P^{(u)}(k_u | *) \cdot (k_u - 1) \cdot B_{k_u,*}
 \]

- **II. Directed, Uncorrelated** — $f(d + 1) = f(d')$:

 \[
 R = \sum_{k_i, k_o} P^{(i)}(k_i, k_o | *) \cdot k_i \cdot B_{k_i,*}
 \]

- **III. Mixed Directed and Undirected, Uncorrelated** —

 \[
 \begin{bmatrix}
 f^{(u)}(d + 1) \\
 f^{(u)}(d + 1)
 \end{bmatrix}
 = \sum_k \begin{bmatrix}
 P^{(u)}(k | *) \cdot (k_u - 1) \\
 P^{(u)}(k | *) \cdot k_u
 \end{bmatrix} \cdot \begin{bmatrix}
 f^{(u)}(d) \\
 f^{(u)}(d')
 \end{bmatrix} \cdot B_{k_u,k_i}
 \]
Summary of contagion conditions for uncorrelated networks:

- **I. Undirected, Uncorrelated**—$f(d + 1) = f(d)$:
 \[
 R = \sum_{k_u} P^{(u)}(k_u \mid *) \cdot (k_u - 1) \cdot B_{k_u,*}
 \]

- **II. Directed, Uncorrelated**—$f(d + 1) = f(d)$:
 \[
 R = \sum_{k_i, k_o} P^{(i)}(k_i, k_o \mid *) \cdot k_o \cdot B_{k_i,*}
 \]

- **III. Mixed Directed and Undirected, Uncorrelated**—
 \[
 \begin{bmatrix}
 f^{(u)}(d + 1) \\
 f^{(u)}(d + 1)
 \end{bmatrix}
 = R
 \begin{bmatrix}
 f^{(u)}(d) \\
 f^{(u)}(d)
 \end{bmatrix}
 \]
 \[
 R = \sum_{\vec{k}}
 \begin{bmatrix}
 P^{(u)}(\vec{k} \mid *) \cdot (k_u - 1) \\
 P^{(u)}(\vec{k} \mid *) \cdot k_o \\
 P^{(i)}(\vec{k} \mid *) \cdot k_u \\
 P^{(i)}(\vec{k} \mid *) \cdot k_o
 \end{bmatrix}
 \cdot B_{k_u,k_l,*}
 \]
Summary of contagion conditions for uncorrelated networks:

▶ I. Undirected, Uncorrelated—\(f(d + 1) = f(d) \):

\[
R = \sum_{k_u} P^{(u)}(k_u | *) \cdot (k_u - 1) \cdot B_{k_u,*}
\]

▶ II. Directed, Uncorrelated—\(f(d + 1) = f(d) \):

\[
R = \sum_{k_i, k_o} P^{(i)}(k_i, k_o | *) \cdot k_o \cdot B_{k_i,*}
\]

▶ III. Mixed Directed and Undirected, Uncorrelated—

\[
\begin{bmatrix}
 f^{(u)}(d + 1) \\
 f^{(o)}(d + 1)
\end{bmatrix} = R
\begin{bmatrix}
 f^{(u)}(d) \\
 f^{(o)}(d)
\end{bmatrix}
\]

\[
R = \sum_{\vec{k}} \begin{bmatrix}
 P^{(u)}(\vec{k} | *) \cdot (k_u - 1) & P^{(i)}(\vec{k} | *) \cdot k_u \\
 P^{(u)}(\vec{k} | *) \cdot k_o & P^{(i)}(\vec{k} | *) \cdot k_o
\end{bmatrix} \cdot B_{k_u k_i,*}
\]
Correlated version:

- Now have to think of transfer of infection from edges emanating from degree \tilde{k}' nodes to edges emanating from degree \tilde{k} nodes.
- Replace $P^{(i)}(\tilde{k} | \ast)$ with $P^{(i)}(\tilde{k} | \tilde{k}'')$ and so on.
- Edge types are now more diverse beyond directed and undirected as originating node type matters.
- Sums are now over \tilde{k}'.
Correlated version:

- Now have to think of transfer of infection from edges emanating from degree \vec{k}' nodes to edges emanating from degree \vec{k} nodes.
- Replace $P^{(i)}(\vec{k} | \ast)$ with $P^{(i)}(\vec{k} | \vec{k}')$ and so on.
- Edge types are now more diverse beyond directed and undirected as originating node type matters.
- Sums are now over \vec{k}'.
Correlated version:

- Now have to think of transfer of infection from edges emanating from degree \vec{k}' nodes to edges emanating from degree \vec{k} nodes.
- Replace $P^{(i)}(\vec{k} \mid \star)$ with $P^{(i)}(\vec{k} \mid \vec{k}')$ and so on.
- Edge types are now more diverse beyond directed and undirected as originating node type matters.
- Sums are now over \vec{k}'.
Correlated version:

- Now have to think of transfer of infection from edges emanating from degree \vec{k}' nodes to edges emanating from degree \vec{k} nodes.
- Replace $P^{(i)}(\vec{k} | \star)$ with $P^{(i)}(\vec{k} | \vec{k}')$ and so on.
- Edge types are now more diverse beyond directed and undirected as originating node type matters.
- Sums are now over \vec{k}'.
Summary of contagion conditions for correlated networks:

- IV. Undirected, Correlated—\(f_{ku}(d + 1) = \sum_{k'_u} R_{ku,k'_u} f_{k'_u}(d) \)

\[
R_{ku,k'_u} = P^{(u)}(k_u \mid k'_u) \cdot (k_u - 1) \cdot B_{ku,k'_u}
\]

- V. Directed, Correlated—\(f_{ki,ko}(d + 1) = \sum_{k'_i,k'_o} R_{ki,k'_i,ko,k'_o} f_{k'_i,k'_o}(d) \)

\[
R_{ki,k'_i,ko,k'_o} = P^{(i)}(k_i, k_o \mid k'_i, k'_o) \cdot k_i \cdot B_{ki,k'_i,ko,k'_o}
\]

- VI. Mixed Directed and Undirected, Correlated—

\[
\begin{bmatrix}
P^{(u)}(\vec{k} \mid \vec{k}') \cdot (k_u - 1) \\
\]

\[
R_{\vec{k}\vec{k}'} = \begin{bmatrix}
P^{(i)}(\vec{k} \mid \vec{k}') \cdot k_i \\
\end{bmatrix} \cdot B_{\vec{k}\vec{k}'}
\]

References
Summary of contagion conditions for correlated networks:

- IV. Undirected, Correlated—
 \[f_{k_u}(d + 1) = \sum_{k_u'} R_{k_u k_u'} f_{k_u'}(d) \]
 \[R_{k_u k_u'} = P^{(u)}(k_u | k_u') \cdot (k_u - 1) \cdot B_{k_u k_u'} \]

- V. Directed, Correlated—
 \[f_{k_i k_o}(d + 1) = \sum_{k_i', k_o'} R_{k_i k_o k_i' k_o'} f_{k_i' k_o'}(d) \]
 \[R_{k_i k_o k_i' k_o'} = P^{(i)}(k_i, k_o | k_i', k_o') \cdot k_o \cdot B_{k_i k_o k_i' k_o'} \]

- VI. Mixed Directed and Undirected, Correlated—
 \[\begin{bmatrix} f_k^{(u)}(d + 1) \\ f_k^{(i)}(d + 1) \end{bmatrix} = \sum_{k_i} R_{k_i k_i'} \begin{bmatrix} f_k^{(u)}(d) \\ f_k^{(i)}(d) \end{bmatrix} \]
 \[R_{k_i k_i'} = \begin{bmatrix} P^{(u)}(k_i | k_i') \cdot (k_i - 1) & P^{(i)}(k_i | k_i') \cdot k_o \\ P^{(i)}(k_i | k_i') \cdot k_o & P^{(i)}(k_i | k_i') \cdot k_o \end{bmatrix} \cdot B_{k_i k_i'} \]
Summary of contagion conditions for correlated networks:

- IV. Undirected, Correlated—\(f_{k_u}(d + 1) = \sum_{k'_u} R_{k_u,k'_u} f_{k'_u}(d) \)

 \[
 R_{k_u,k'_u} = P^{(u)}(k_u | k'_u) \cdot (k_u - 1) \cdot B_{k_u,k'_u}
 \]

- V. Directed, Correlated—\(f_{k_i k_o}(d + 1) = \sum_{k'_i,k'_o} R_{k_i k_o,k'_i k'_o} f_{k'_i k'_o}(d) \)

 \[
 R_{k_i k_o,k'_i k'_o} = P^{(i)}(k_i, k_o | k'_i, k'_o) \cdot k_o \cdot B_{k_i k_o,k'_i k'_o}
 \]

- VI. Mixed Directed and Undirected, Correlated—

\[
\begin{bmatrix}
 f^{(u)}_{\vec{k}}(d + 1) \\
 f^{(o)}_{\vec{k}}(d + 1)
\end{bmatrix}
= \sum_{k'} R_{\vec{k} \vec{k}'}
\begin{bmatrix}
 f^{(u)}_{\vec{k}'}(d) \\
 f^{(o)}_{\vec{k}'}(d)
\end{bmatrix}
\]

\[
R_{\vec{k} \vec{k}'} = \begin{bmatrix}
 P^{(u)}(\vec{k} | \vec{k}') \cdot (k_u - 1) & P^{(i)}(\vec{k} | \vec{k}') \cdot k_u \\
 P^{(u)}(\vec{k} | \vec{k}') \cdot k_o & P^{(i)}(\vec{k} | \vec{k}') \cdot k_o
\end{bmatrix} \cdot B_{\vec{k} \vec{k}'}
\]
Summary of triggering probabilities for uncorrelated networks:[3]

I. Undirected, Uncorrelated—

\[Q = \sum_{k_u'} P^{(u)}(k_u' \mid \cdot) B(1, k_u') \left[1 - (1 - Q)^{k_u'-1} \right] \]

\[S_{trig} = \sum_{k_u'} P(k_u') \left[1 - (1 - Q)^{k_u'} \right] \]

II. Directed, Uncorrelated—

\[Q = \sum_{k_i', k_o'} P^{(d)}(k_i', k_o' \mid \cdot) B(1, k_i') \left[1 - (1 - Q)^{k_o'} \right] \]

\[S_{trig} = \sum_{k_i', k_o'} P(k_i', k_o') \left[1 - (1 - Q)^{k_o'} \right] \]
Summary of triggering probabilities for uncorrelated networks: \[^3\]

- **I. Undirected, Uncorrelated**
 \[Q = \sum_{k_u'} P^{(u)}(k_u' | \cdot) B(1, k_u') \left[1 - (1 - Q)^{k_u' - 1} \right] \]
 \[S_{\text{trig}} = \sum_{k_u'} P(k_u') \left[1 - (1 - Q)^{k_u'} \right] \]

- **II. Directed, Uncorrelated**
 \[Q = \sum_{k_i', k_o'} P^{(u)}(k_i', k_o' | \cdot) B(1, k_i') \left[1 - (1 - Q)^{k_o'} \right] \]
 \[S_{\text{trig}} = \sum_{k_i', k_o'} P(k_i', k_o') \left[1 - (1 - Q)^{k_o'} \right] \]
Summary of triggering probabilities for uncorrelated networks:

III. Mixed Directed and Undirected, Uncorrelated—

\[
Q^{(u)} = \sum_{\vec{k}'} P^{(u)}(\vec{k}' | \cdot) B(1, \vec{k}') \left[1 - (1 - Q^{(u)})^{k'_u} - 1 \right] \left(1 - Q^{(o)}\right)^{k'_o}
\]

\[
Q^{(o)} = \sum_{\vec{k}'} P^{(i)}(\vec{k}' | \cdot) B(1, \vec{k}') \left[1 - (1 - Q^{(u)})^{k'_u} \right] \left(1 - Q^{(o)}\right)^{k'_o}
\]

\[
S_{\text{trig}} = \sum_{\vec{k}'} P(\vec{k}') \left[1 - (1 - Q^{(u)})^{k'_u} \right] \left(1 - Q^{(o)}\right)^{k'_o}
\]
Summary of triggering probabilities for correlated networks:

iv. Undirected, Correlated—

\[Q_{ku} = \sum_{k_u'} P^{(u)}(k_u' | k_u) B(1, k_u') \left[1 - (1 - Q_{k_u'})^{k_u'} - 1 \right] \]

\[S_{trig} = \sum_{k_u'} P(k_u') \left[1 - (1 - Q_{k_u'})^{k_u'} \right] \]

v. Directed, Correlated—

\[Q_{ki,ko} = \sum_{k_i'} \sum_{k_o'} P^{(i, o)}(k_i', k_o' | k_i, k_o) B(1, k_i') \left[1 - (1 - Q_{k_i', k_o'})^{k_o'} \right] \]

\[S_{trig} = \sum_{k_i'} \sum_{k_o'} P(k_i', k_o') \left[1 - (1 - Q_{k_i', k_o'})^{k_o'} \right] \]
Summary of triggering probabilities for correlated networks:

- **IV. Undirected, Correlated**—
 \[
 Q_{k_u} = \sum_{k_u'} P^{(u)}(k_u' | k_u) B(1, k_u') \left[1 - (1 - Q_{k_u'})^{k_u'} - 1 \right]
 \]
 \[
 S_{\text{trig}} = \sum_{k_u'} P(k_u') \left[1 - (1 - Q_{k_u'})^{k_u'} \right]
 \]

- **V. Directed, Correlated**—
 \[
 Q_{k_i k_o} = \sum_{k_i', k_o'} P^{(u)}(k_i', k_o' | k_i, k_o) B(1, k_i') \left[1 - (1 - Q_{k_i' k_o'})^{k_o'} \right]
 \]
 \[
 S_{\text{trig}} = \sum_{k_i', k_o'} P(k_i', k_o') \left[1 - (1 - Q_{k_i' k_o'})^{k_o'} \right]
 \]
Summary of triggering probabilities for correlated networks:

VI. Mixed Directed and Undirected, Correlated—

\[
Q_{\vec{k}}^{(u)} = \sum_{\vec{k}'} P^{(u)}(\vec{k}'|\vec{k}) B(1, \vec{k}') \left[1 - (1 - Q_{\vec{k}}^{(u)})^{k'_u} - 1 (1 - Q_{\vec{k}}^{(o)})^{k'_o} \right]
\]

\[
Q_{\vec{k}}^{(o)} = \sum_{\vec{k}'} P^{(i)}(\vec{k}'|\vec{k}) B(1, \vec{k}') \left[1 - (1 - Q_{\vec{k}}^{(u)})^{k'_u} (1 - Q_{\vec{k}}^{(o)})^{k'_o} \right]
\]

\[
S_{\text{trig}} = \sum_{\vec{k}'} P(\vec{k}') \left[1 - (1 - Q_{\vec{k}}^{(u)})^{k'_u} (1 - Q_{\vec{k}}^{(o)})^{k'_o} \right]
\]
Outline

Directed random networks

Mixed random networks
 Definition
 Correlations

Mixed Random Network Contagion
 Spreading condition
 Full generalization

Nutshell

References
Full generalization:

\[\bar{\alpha}' = (\nu', \lambda') \]

\[\bar{\alpha} = (\nu, \lambda) \]

\[f_{\bar{\alpha}}(d + 1) = \sum_{\bar{\alpha}'} R_{\bar{\alpha}\bar{\alpha}'} f_{\bar{\alpha}'}(d) \]

\(R_{\bar{\alpha}\bar{\alpha}'} \) is the gain ratio matrix and has the form:

\[R_{\bar{\alpha}\bar{\alpha}'} = P_{\bar{\alpha}\bar{\alpha}'} \cdot k_{\bar{\alpha}\bar{\alpha}'} \cdot B_{\bar{\alpha}\bar{\alpha}'} \]

- \(P_{\bar{\alpha}\bar{\alpha}'} \) = conditional probability that a type \(\lambda' \) edge emanating from a type \(\nu' \) node leads to a type \(\nu' \) node.
- \(k_{\bar{\alpha}\bar{\alpha}'} \) = potential number of newly infected edges of type \(\lambda \) emanating from nodes of type \(\nu \).
- \(B_{\bar{\alpha}\bar{\alpha}'} \) = probability that a type \(\nu \) node is eventually infected by a single infected type \(\lambda' \) link arriving from a neighboring node of type \(\nu' \).

Generalized contagion condition:

\[\max |\mu| : \mu \in \sigma(R) > 1 \]
Full generalization:

\[\vec{\alpha}' = (\nu', \lambda') \]

\[\vec{\alpha} = (\nu, \lambda) \]

\[f_{\vec{\alpha}}(d + 1) = \sum_{\vec{\alpha}'} R_{\vec{\alpha} \vec{\alpha}'} f_{\vec{\alpha}'}(d) \]

\(R_{\vec{\alpha} \vec{\alpha}'} \) is the gain ratio matrix and has the form:

\[R_{\vec{\alpha} \vec{\alpha}'} = P_{\vec{\alpha} \vec{\alpha}'} \cdot k_{\vec{\alpha} \vec{\alpha}'} \cdot B_{\vec{\alpha} \vec{\alpha}'} \cdot \]

- \(P_{\vec{\alpha} \vec{\alpha}'} \) = conditional probability that a type \(\lambda' \) edge emanating from a type \(\nu' \) node leads to a type \(\nu \) node.
- \(k_{\vec{\alpha} \vec{\alpha}'} \) = potential number of newly infected edges of type \(\lambda \) emanating from nodes of type \(\nu \).
- \(B_{\vec{\alpha} \vec{\alpha}'} \) = probability that a type \(\nu \) node is eventually infected by a single infected type \(\lambda' \) link arriving from a neighboring node of type \(\nu' \).
- Generalized contagion condition:

\[\max |\mu| : \mu \in \sigma(\mathbf{R}) > 1 \]
Full generalization:

\[\bar{\alpha}' = (\nu', \lambda') \]

\[\bar{\alpha} = (\nu, \lambda) \]

\[f_{\bar{\alpha}}(d + 1) = \sum_{\bar{\alpha}'} R_{\bar{\alpha} \bar{\alpha}'} f_{\bar{\alpha}'}(d) \]

\[R_{\bar{\alpha} \bar{\alpha}'} \text{ is the gain ratio matrix and has the form:} \]

\[R_{\bar{\alpha} \bar{\alpha}'} = P_{\bar{\alpha} \bar{\alpha}'} \cdot k_{\bar{\alpha} \bar{\alpha}'} \cdot B_{\bar{\alpha} \bar{\alpha}'} . \]

- \(P_{\bar{\alpha} \bar{\alpha}'} \) = conditional probability that a type \(\lambda' \) edge emanating from a type \(\nu' \) node leads to a type \(\nu \) node.
- \(k_{\bar{\alpha} \bar{\alpha}'} \) = potential number of newly infected edges of type \(\lambda \) emanating from nodes of type \(\nu \).
- \(B_{\bar{\alpha} \bar{\alpha}'} \) = probability that a type \(\nu \) node is eventually infected by a single infected type \(\lambda' \) link arriving from a neighboring node of type \(\nu' \).

Generalized contagion condition:

\[\max |\mu| : \mu \in \sigma(R) > 1 \]
Full generalization:

\[\vec{\alpha}' = (\nu', \lambda') \]

\[\vec{\alpha} = (\nu, \lambda) \]

\[f_{\vec{\alpha}}(d + 1) = \sum_{\vec{\alpha}'} R_{\vec{\alpha}\vec{\alpha}'} f_{\vec{\alpha}'}(d) \]

\[R_{\vec{\alpha}\vec{\alpha}'} \] is the gain ratio matrix and has the form:

\[R_{\vec{\alpha}\vec{\alpha}'} = P_{\vec{\alpha}\vec{\alpha}'} \cdot k_{\vec{\alpha}\vec{\alpha}'} \cdot B_{\vec{\alpha}\vec{\alpha}'} . \]

- \(P_{\vec{\alpha}\vec{\alpha}'} \) = conditional probability that a type \(\lambda' \) edge emanating from a type \(\nu' \) node leads to a type \(\nu \) node.

- \(k_{\vec{\alpha}\vec{\alpha}'} \) = potential number of newly infected edges of type \(\lambda \) emanating from nodes of type \(\nu \).

- \(B_{\vec{\alpha}\vec{\alpha}'} \) = probability that a type \(\nu \) node is eventually infected by a single infected type \(\lambda' \) link arriving from a neighboring node of type \(\nu' \).

Generalized contagion condition:

\[\max |\mu| : \mu \in \sigma(R) > 1 \]
Full generalization:

\[\bar{\alpha}' = (\nu', \lambda') \]

\[\bar{\alpha} = (\nu, \lambda) \]

\[f_{\bar{\alpha}}(d + 1) = \sum_{\bar{\alpha}'} R_{\bar{\alpha}\bar{\alpha}'} f_{\bar{\alpha}'}(d) \]

\(R_{\bar{\alpha}\bar{\alpha}'} \) is the gain ratio matrix and has the form:

\[R_{\bar{\alpha}\bar{\alpha}'} = P_{\bar{\alpha}\bar{\alpha}'} \bullet k_{\bar{\alpha}\bar{\alpha}'} \bullet B_{\bar{\alpha}\bar{\alpha}'} \]

- \(P_{\bar{\alpha}\bar{\alpha}'} \) = conditional probability that a type \(\lambda' \) edge emanating from a type \(\nu' \) node leads to a type \(\nu \) node.
- \(k_{\bar{\alpha}\bar{\alpha}'} \) = potential number of newly infected edges of type \(\lambda \) emanating from nodes of type \(\nu \).
- \(B_{\bar{\alpha}\bar{\alpha}'} \) = probability that a type \(\nu \) node is eventually infected by a single infected type \(\lambda' \) link arriving from a neighboring node of type \(\nu' \).

Generalized contagion condition:

\[\max |\mu| : \mu \in \sigma(R) > 1 \]
Nutshell:

- Mixed, correlated random networks with undirected and directed edges form a natural inclusive generalization of purely undirected and purely directed random networks.
- Spreading conditions and triggering probabilities of contagion processes can be determined using a direct, physical approach.
- These conditions can be generalized to arbitrary random networks with arbitrary node and edge types.
Nutshell:

- Mixed, correlated random networks with undirected and directed edges form natural inclusive generalization of purely undirected and purely directed random networks.
- Spreading conditions and triggering probabilities of contagion processes can be determined using a direct, physical approach.
- These conditions can be generalized to arbitrary random networks with arbitrary node and edge types.
Mixed, correlated random networks with undirected and directed edges form natural inclusive generalization of purely undirected and purely directed random networks.

Spreading conditions and triggering probabilities of contagion processes can be determined using a direct, physical approach.

These conditions can be generalized to arbitrary random networks with arbitrary node and edge types.
References

References II