Outline

Random walks on networks

Random walks on networks—basics:
- Imagine a single random walker moving around on a network.
- At \(t = 0 \), start walker at node \(j \) and take time to be discrete.
- \(Q \): What’s the long term probability distribution for where the walker will be?
- Define \(\rho_i(t) \) as the probability that at time step \(t \), our walker is at node \(i \).
- We want to characterize the evolution of \(\dot{\rho}(t) \).
- First task: connect \(\dot{\rho}(t + 1) \) to \(\dot{\rho}(t) \).
- Let’s call our walker Barry.
- Unfortunately for Barry, he lives on a high dimensional graph and is far from home.
- Worse still: Barry is hopelessly drunk.

Where is Barry?
- Consider simple undirected, ergodic (strongly connected) networks.
- As usual, represent network by adjacency matrix \(A \) where
 \[
 a_{ij} = 1 \text{ if } i \text{ has an edge leading to } j, \\
 a_{ij} = 0 \text{ otherwise.}
 \]
- Barry is at node \(j \) at time \(t \) with probability \(p_j(t) \).
- In the next time step, he randomly lurches toward one of \(j \)'s neighbors.
- Barry arrives at node \(i \) from node \(j \) with probability \(\frac{1}{k_j} \) if an edge connects \(j \) to \(i \).
- Equation-wise:
 \[
 p_i(t + 1) = \sum_{j=1}^{n} \frac{1}{k_j} a_{ji} p_j(t).
 \]
 where \(k_j \) is \(j \)'s degree. Note: \(k_i = \sum_{j=1}^{n} a_{ij} \).

Inebriation and diffusion:
- \(x_i(t) = \) amount of stuff at node \(i \) at time \(t \).
- \[
 x_i(t + 1) = \sum_{j=1}^{n} \frac{1}{k_j} a_{ji} x_j(t).
 \]
- Random walking is equivalent to diffusion (\(\Box \)).

Where is Barry?
- Linear algebra-based excitement:
 \[
 \rho_i(t + 1) = \sum_{j=1}^{n} a_{ij} \frac{1}{k_j} \rho_j(t)
 \]
 is more usefully viewed as
 \[
 \dot{\rho}(t + 1) = A^T K^{-1} \dot{\rho}(t)
 \]
 where \([K] = [k_j] \) has node degrees on the main diagonal and zeros everywhere else.
- So... we need to find the dominant eigenvalue of \(A^T K^{-1} \).
- Expect this eigenvalue will be 1 (doesn’t make sense for total probability to change).
- The corresponding eigenvector will be the limiting probability distribution (or invariant measure).
- Extra concerns: multiplicity of eigenvalue = 1, and network connectedness.
Where is Barry?

- By inspection, we see that

\[\vec{p}(\infty) = \frac{1}{\sum_{i=1}^{n} k_i} \vec{K} \]

satisfies \[\vec{p}(\infty) = A^T K^{-1} \vec{p}(\infty) \] with eigenvalue 1.

- We will find Barry at node \(i \) with probability proportional to its degree \(k_i \).

- Nice implication: probability of finding Barry travelling along any edge is uniform.

- Diffusion in real space smooths things out.

- On networks, uniformity occurs on edges.

- So in fact, diffusion in real space is about the edges too but we just don’t see that.

Other pieces:

- Goodness: \(A^T K^{-1} \) is similar to a real symmetric matrix if \(A = A^T \).

- Consider the transformation \(M = K^{-1/2} \):

\[K^{-1/2} A^T K^{-1} K^{1/2} = K^{-1/2} A^T K^{-1/2} \]

- Since \(A^T = A \), we have

\[(K^{-1/2} AK^{-1/2})^T = K^{-1/2} AK^{-1/2} \]

- Upshot: \(A^T K^{-1} = AK^{-1} \) has real eigenvalues and a complete set of orthogonal eigenvectors.

- Can also show that maximum eigenvalue magnitude is indeed 1.