Random walks and diffusion on networks

Complex Networks
CSYS/MATH 303, Spring, 2011

Prof. Peter Dodds

Department of Mathematics & Statistics
Center for Complex Systems
Vermont Advanced Computing Center
University of Vermont

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.
Outline

Random walks on networks
Random walks on networks—basics:

- Imagine a single random walker moving around on a network.
- At $t = 0$, start walker at node j and take time to be discrete.
- Q: What’s the long term probability distribution for where the walker will be?
- Define $p_i(t)$ as the probability that at time step t, our walker is at node i.
- We want to characterize the evolution of $\bar{p}(t)$.
- First task: connect $\bar{p}(t + 1)$ to $\bar{p}(t)$.
- Let’s call our walker Barry.
- Unfortunately for Barry, he lives on a high dimensional graph and is far from home.
- Worse still: Barry is hopelessly drunk.
Where is Barry?

- Consider simple undirected, ergodic (strongly connected) networks.
- As usual, represent network by adjacency matrix A where
 \[
 a_{ij} = 1 \text{ if } i \text{ has an edge leading to } j, \\
 a_{ij} = 0 \text{ otherwise.}
 \]
- Barry is at node j at time t with probability $p_j(t)$.
- In the next time step, he randomly lurches toward one of j’s neighbors.
- Barry arrives at node i from node j with probability $\frac{1}{k_j}$ if an edge connects j to i.
- Equation-wise:
 \[
 p_i(t + 1) = \sum_{j=1}^{n} \frac{1}{k_j} a_{ji} p_j(t).
 \]
 where k_j is j’s degree. Note: $k_i = \sum_{j=1}^{n} a_{ij}$.
Inebriation and diffusion:

- **Excellent observation**: The same equation applies for stuff moving around a network, such that at each time step all material at node i is sent to its neighbors.

 $x_i(t) = \text{amount of stuff at node } i \text{ at time } t.$

- Random walking is equivalent to diffusion (\triangleright)
Where is Barry?

- Linear algebra-based excitement:
 \[p_i(t + 1) = \sum_{j=1}^{n} a_{ji} \frac{1}{k_j} p_j(t) \]
 is more usefully viewed as
 \[\vec{p}(t + 1) = A^T K^{-1} \vec{p}(t) \]
 where \([K_{ij}] = [\delta_{ij} k_i]\) has node degrees on the main diagonal and zeros everywhere else.

- So... we need to find the **dominant eigenvalue** of \(A^T K^{-1}\).

- Expect this eigenvalue will be 1 (doesn’t make sense for total probability to change).

- The corresponding eigenvector will be the limiting probability distribution (or invariant measure).

- Extra concerns: multiplicity of eigenvalue = 1, and network connectedness.
Where is Barry?

- By inspection, we see that
 \[
 \vec{p}(\infty) = \frac{1}{\sum_{i=1}^{n} k_i} \vec{k}
 \]
 satisfies \(\vec{p}(\infty) = A^T K^{-1} \vec{p}(\infty) \) with eigenvalue 1.

- We will find Barry at node \(i \) with probability proportional to its degree \(k_i \).

- Nice implication: probability of finding Barry travelling along any edge is uniform.

- Diffusion in real space smooths things out.

- On networks, uniformity occurs on edges.

- So in fact, diffusion in real space is about the edges too but we just don’t see that.
Other pieces:

- Goodness: $A^T K^{-1}$ is similar to a real symmetric matrix if $A = A^T$.
- Consider the transformation $M = K^{-1/2}$:
 \[
 K^{-1/2} A^T K^{-1} K^{1/2} = K^{-1/2} A^T K^{-1/2}.
 \]
- Since $A^T = A$, we have
 \[
 (K^{-1/2} AK^{-1/2})^T = K^{-1/2} AK^{-1/2}.
 \]
- Upshot: $A^T K^{-1} = AK^{-1}$ has real eigenvalues and a complete set of orthogonal eigenvectors.
- Can also show that maximum eigenvalue magnitude is indeed 1.