Measures of centrality

Complex Networks
CSYS/MATH 303, Spring, 2011

Prof. Peter Dodds

Department of Mathematics & Statistics
Center for Complex Systems
Vermont Advanced Computing Center
University of Vermont

References
Outline

Background

Centrality measures
Degree centrality
Closeness centrality
Betweenness
Eigenvalue centrality
Hubs and Authorities

References
How big is my node?

- **Basic question:** how ‘important’ are specific nodes and edges in a network?

- An important node or edge might:
 1. handle a relatively large amount of the network’s traffic (e.g., cars, information);
 2. bridge two or more distinct groups (e.g., liason, interpreter);
 3. be a source of important ideas, knowledge, or judgments (e.g., supreme court decisions, an employee who ‘knows where everything is’).

- So how do we quantify such a slippery concept as importance?

- We generate ad hoc, reasonable measures, and examine their utility...
How big is my node?

- **Basic question:** how ‘important’ are specific nodes and edges in a network?
- **An important node or edge** might:
 1. handle a relatively large amount of the network’s traffic (e.g., cars, information);
 2. bridge two or more distinct groups (e.g., liason, interpreter);
 3. be a source of important ideas, knowledge, or judgments (e.g., supreme court decisions, an employee who ‘knows where everything is’).

- So how do we quantify such a slippery concept as importance?
- We generate ad hoc, reasonable measures, and examine their utility...
How big is my node?

- **Basic question:** how ‘important’ are specific nodes and edges in a network?
- **An important node or edge** might:
 1. **handle** a relatively large amount of the network’s traffic (e.g., cars, information);
 2. **bridge** two or more distinct groups (e.g., liaison, interpreter);
 3. **be a source** of important ideas, knowledge, or judgments (e.g., supreme court decisions, an employee who ‘knows where everything is’).

- So how do we quantify such a slippery concept as importance?
- **We generate ad hoc, reasonable measures, and examine their utility...**
How big is my node?

► Basic question: how ‘important’ are specific nodes and edges in a network?
► An important node or edge might:
 1. handle a relatively large amount of the network’s traffic (e.g., cars, information);
 2. bridge two or more distinct groups (e.g., liason, interpreter);
 3. be a source of important ideas, knowledge, or judgments (e.g., supreme court decisions, an employee who ‘knows where everything is’).

► So how do we quantify such a slippery concept as importance?
► We generate ad hoc, reasonable measures, and examine their utility...
How big is my node?

Basic question: how ‘important’ are specific nodes and edges in a network?

An important node or edge might:
1. handle a relatively large amount of the network’s traffic (e.g., cars, information);
2. bridge two or more distinct groups (e.g., liason, interpreter);
3. be a source of important ideas, knowledge, or judgments (e.g., supreme court decisions, an employee who ‘knows where everything is’).

So how do we quantify such a slippery concept as importance?

We generate ad hoc, reasonable measures, and examine their utility...
How big is my node?

- Basic question: how ‘important’ are specific nodes and edges in a network?
- An important node or edge might:
 1. handle a relatively large amount of the network’s traffic (e.g., cars, information);
 2. bridge two or more distinct groups (e.g., liason, interpreter);
 3. be a source of important ideas, knowledge, or judgments (e.g., supreme court decisions, an employee who ‘knows where everything is’).
- So how do we quantify such a slippery concept as importance?
- We generate ad hoc, reasonable measures, and examine their utility...
How big is my node?

- **Basic question:** how ‘important’ are specific nodes and edges in a network?
- **An important node or edge might:**
 1. **handle** a relatively large amount of the network’s traffic (e.g., cars, information);
 2. **bridge** two or more distinct groups (e.g., liaison, interpreter);
 3. **be a source** of important ideas, knowledge, or judgments (e.g., supreme court decisions, an employee who ‘knows where everything is’).

- **So how do we quantify such a slippery concept as importance?**
- **We generate ad hoc, reasonable measures, and examine their utility...**
One possible reflection of importance is **centrality**.

Presumption is that nodes or edges that are (in some sense) in the middle of a network are important for the network’s function.

Idea of centrality comes from social networks literature [7].

Many flavors of centrality...

1. Many are topological and quasi-dynamical;
2. Some are based on dynamics (e.g., traffic).

We will define and examine a few...

(Later: see centrality useful in identifying communities in networks.)
Centrality

- One possible reflection of importance is **centrality**.
- Presumption is that nodes or edges that are (in some sense) in the middle of a network are important for the network’s function.
- Idea of centrality comes from social networks literature [7].
- Many flavors of centrality...
 1. Many are topological and quasi-dynamical;
 2. Some are based on dynamics (e.g., traffic).
- We will define and examine a few...
- (Later: see centrality useful in identifying communities in networks.)
One possible reflection of importance is **centrality**. Presumption is that nodes or edges that are (in some sense) in the middle of a network are important for the network’s function. Idea of centrality comes from social networks literature [7]. Many flavors of centrality...

1. Many are topological and quasi-dynamical;
2. Some are based on dynamics (e.g., traffic).

We will define and examine a few...

(Later: see centrality useful in identifying communities in networks.)
One possible reflection of importance is **centrality**.

Presumption is that nodes or edges that are (in some sense) in the middle of a network are important for the network’s function.

Idea of centrality comes from social networks literature [7].

Many flavors of centrality...

1. Many are topological and quasi-dynamical;
2. Some are based on dynamics (e.g., traffic).

We will define and examine a few...

(Later: see centrality useful in identifying communities in networks.)
Centrality

- One possible reflection of importance is **centrality**.
- Presumption is that nodes or edges that are (in some sense) in the middle of a network are important for the network’s function.
- Idea of centrality comes from social networks literature\(^7\).
- Many flavors of centrality...
 1. Many are topological and quasi-dynamical;
 2. Some are based on dynamics (e.g., traffic).
- We will define and examine a few...
- (Later: see centrality useful in identifying communities in networks.)
Centrality

- One possible reflection of importance is centrality.
- Presumption is that nodes or edges that are (in some sense) in the middle of a network are important for the network’s function.
- Idea of centrality comes from social networks literature[^7].
- Many flavors of centrality...
 1. Many are topological and quasi-dynamical;
 2. Some are based on dynamics (e.g., traffic).
- We will define and examine a few...
- (Later: see centrality useful in identifying communities in networks.)
Outline

Background

Centrality measures
Degree centrality
Closeness centrality
Betweenness
Eigenvalue centrality
Hubs and Authorities

References
Centrality

Degree centrality

- Naively estimate importance by node degree.[7]
- Doh: assumes linearity
 (If node i has twice as many friends as node j, it’s twice as important.)
- Doh: doesn’t take in any non-local information.
Centrality

Degree centrality

- Naively estimate importance by node degree.[7]
- \textbf{Doh:} assumes linearity
 (If node \textit{i} has twice as many friends as node \textit{j}, it’s twice as important.)
- \textbf{Doh:} doesn’t take in any non-local information.
Centrality

Degree centrality

- Naively estimate importance by node degree. [7]
- **Doh**: assumes linearity
 (If node i has twice as many friends as node j, it’s twice as important.)
- **Doh**: doesn’t take in any non-local information.
Measures of centrality

Background

Centrality measures
- Degree centrality
- Closeness centrality
- Betweenness
- Eigenvalue centrality
- Hubs and Authorities

References
Closeness centrality

- **Idea:** Nodes are more central if they can reach other nodes ‘easily.’
- Measure average shortest path from a node to all other nodes.
- Define Closeness Centrality for node i as
 \[
 \frac{N - 1}{\sum_{j \neq i} \text{(distance from } i \text{ to } j)}.\]
- Range is 0 (no friends) to 1 (single hub).
- Unclear what the exact values of this measure tells us because of its ad-hocness.
- General problem with simple centrality measures: what do they exactly mean?
- Perhaps, at least, we obtain an ordering of nodes in terms of ‘importance.’
Closeness centrality

- **Idea:** Nodes are more central if they can reach other nodes ‘easily.’
- **Measure** average shortest path from a node to all other nodes.
- **Define** Closeness Centrality for node i as

$$N - 1 - \sum_{j \neq i} (\text{distance from } i \text{ to } j).$$

- **Range** is 0 (no friends) to 1 (single hub).
- **Unclear** what the exact values of this measure tell us because of its ad-hocness.
- **General problem** with simple centrality measures: what do they exactly mean?
- **Perhaps,** at least, we obtain an ordering of nodes in terms of ‘importance.’
Closeness centrality

- **Idea:** Nodes are more central if they can reach other nodes ‘easily.’
- **Measure** average shortest path from a node to all other nodes.
- **Define** **Closeness Centrality** for node i as

 $$\frac{N - 1}{\sum_{j \neq i} (\text{distance from } i \text{ to } j)}.$$

- **Range** is 0 (no friends) to 1 (single hub).
- **Unclear** what the exact values of this measure tells us because of its ad-hocness.
- **General problem** with simple centrality measures: what do they exactly mean?
- **Perhaps,** at least, we obtain an ordering of nodes in terms of ‘importance.’
Closeness centrality

- **Idea:** Nodes are more central if they can reach other nodes ‘easily.’
- Measure average shortest path from a node to all other nodes.
- Define **Closeness Centrality** for node \(i \) as
 \[
 N - 1 \sum_{j,j \neq i} (\text{distance from } i \text{ to } j).
 \]
- Range is 0 (no friends) to 1 (single hub).
- Unclear what the exact values of this measure tells us because of its ad-hocness.
- General problem with simple centrality measures: what do they exactly mean?
- Perhaps, at least, we obtain an ordering of nodes in terms of ‘importance.’
Closeness centrality

- **Idea:** Nodes are more central if they can reach other nodes ‘easily.’
- **Measure** average shortest path from a node to all other nodes.
- **Define** Closeness Centrality for node i as
 \[
 C_i = \frac{N - 1}{\sum_{j \neq i} \text{(distance from } i \text{ to } j)}.
 \]
 - Range is 0 (no friends) to 1 (single hub).
 - Unclear what the exact values of this measure tells us because of its ad-hocness.
 - General problem with simple centrality measures: what do they exactly mean?
 - Perhaps, at least, we obtain an ordering of nodes in terms of ‘importance.’
Closeness centrality

- **Idea:** Nodes are more central if they can reach other nodes ‘easily.’
- Measure average shortest path from a node to all other nodes.
- Define **Closeness Centrality** for node i as

$$\frac{N - 1}{\sum_{j \neq i} (\text{distance from } i \text{ to } j)}.$$

- Range is 0 (no friends) to 1 (single hub).
- Unclear what the exact values of this measure tells us because of its ad-hocness.
- General problem with simple centrality measures: what do they exactly mean?
- Perhaps, at least, we obtain an ordering of nodes in terms of ‘importance.’
Closeness centrality

- **Idea:** Nodes are more central if they can reach other nodes ‘easily.’
- Measure average shortest path from a node to all other nodes.
- Define **Closeness Centrality** for node i as
 $$\frac{N - 1}{\sum_{j \neq i} \text{(distance from } i \text{ to } j)}.$$
 - Range is 0 (no friends) to 1 (single hub).
 - Unclear what the exact values of this measure tells us because of its ad-hocness.
 - General problem with simple centrality measures: what do they exactly mean?
 - Perhaps, at least, we obtain an ordering of nodes in terms of ‘importance.’
Measures of centrality

Background

Centrality measures

Degree centrality

Closeness centrality

Betweenness

Eigenvalue centrality

Hubs and Authorities

Photosynth ((Field).
Outline

Background

Centrality measures
Degree centrality
Closeness centrality
Betweenness
Eigenvalue centrality
Hubs and Authorities

References
Betweenness centrality

- **Betweenness centrality** is based on shortest paths in a network.

 - **Idea:** If the quickest way between any two nodes on a network disproportionately involves certain nodes, then they are ‘important’ in terms of global cohesion.

 - For each node i, count how many shortest paths pass through i.

 - In the case of ties, or divide counts between paths.

 - Call frequency of shortest paths passing through node i the betweenness of i, B_i.

 - **Note:** Exclude shortest paths between i and other nodes.

 - **Note:** Works for weighted and unweighted networks.
Betweenness centrality

- **Betweenness centrality** is based on shortest paths in a network.
- **Idea:** If the quickest way between any two nodes on a network disproportionately involves certain nodes, then they are ‘important’ in terms of global cohesion.
 - For each node i, count how many shortest paths pass through i.
 - In the case of ties, or divide counts between paths.
 - Call frequency of shortest paths passing through node i the betweenness of i, B_i.
 - Note: Exclude shortest paths between i and other nodes.
 - Note: works for weighted and unweighted networks.
Betweenness centrality

- **Betweenness centrality** is based on shortest paths in a network.
- **Idea**: If the quickest way between any two nodes on a network disproportionately involves certain nodes, then they are ‘important’ in terms of global cohesion.
- For each node i, count how many shortest paths pass through i.
 - In the case of ties, or divide counts between paths.
 - Call frequency of shortest paths passing through node i the betweenness of i, B_i.
- Note: Exclude shortest paths between i and other nodes.
- Note: works for weighted and unweighted networks.
Betweenness centrality

- **Betweenness centrality** is based on shortest paths in a network.
- **Idea:** If the quickest way between any two nodes on a network disproportionately involves certain nodes, then they are ‘important’ in terms of global cohesion.
- For each node i, count how many shortest paths pass through i.
- In the case of ties, or divide counts between paths.
- Call frequency of shortest paths passing through node i the betweenness of i, B_i.
- Note: Exclude shortest paths between i and other nodes.
- Note: works for weighted and unweighted networks.
Betweenness centrality

- **Betweenness centrality** is based on shortest paths in a network.
- **Idea:** If the quickest way between any two nodes on a network disproportionately involves certain nodes, then they are ‘important’ in terms of global cohesion.
- For each node i, count how many shortest paths pass through i.
- In the case of ties, or divide counts between paths.
- Call frequency of shortest paths passing through node i the betweenness of i, B_i.
- Note: Exclude shortest paths between i and other nodes.
- Note: works for weighted and unweighted networks.
Betweenness centrality

- **Betweenness centrality** is based on shortest paths in a network.
- **Idea:** If the quickest way between any two nodes on a network disproportionately involves certain nodes, then they are ‘important’ in terms of global cohesion.
- For each node i, count how many shortest paths pass through i.
- In the case of ties, or divide counts between paths.
- Call frequency of shortest paths passing through node i the betweenness of i, B_i.
- Note: Exclude shortest paths between i and other nodes.
- Note: works for weighted and unweighted networks.
Betweenness centrality

- **Betweenness centrality** is based on shortest paths in a network.
- **Idea:** If the quickest way between any two nodes on a network disproportionately involves certain nodes, then they are ‘important’ in terms of global cohesion.
- For each node i, count how many shortest paths pass through i.
- In the case of ties, or divide counts between paths.
- Call frequency of shortest paths passing through node i the betweenness of i, B_i.
- Note: Exclude shortest paths between i and other nodes.
- Note: works for weighted and unweighted networks.
Consider a network with N nodes and m edges (possibly weighted).

Computational goal: Find $\binom{N}{2}$ shortest paths between all pairs of nodes.

Traditionally use Floyd-Warshall algorithm.

Computation time grows as $O(N^3)$.

See also:

1. Dijkstra’s algorithm for finding shortest path between two specific nodes,
2. and Johnson’s algorithm which outperforms Floyd-Warshall for sparse networks: $O(mN + N^2 \log N)$.

Newman (2001) and Brandes (2001) independently derive equally fast algorithms that also compute betweenness.

Computation times grow as:

1. $O(mN)$ for unweighted graphs;
2. and $O(mN + N^2 \log N)$ for weighted graphs.
Consider a network with N nodes and m edges (possibly weighted).

computational goal: Find $\binom{N}{2}$ shortest paths (⊞) between all pairs of nodes.

Traditionally use Floyd-Warshall (⊞) algorithm.

Computation time grows as $O(N^3)$.

See also:

1. Dijkstra’s algorithm (⊞) for finding shortest path between two specific nodes,
2. and Johnson’s algorithm (⊞) which outperforms Floyd-Warshall for sparse networks: $O(mN + N^2 \log N)$.

Newman (2001) $^{[4, 5]}$ and Brandes (2001) $^{[1]}$ independently derive equally fast algorithms that also compute betweenness.

Computation times grow as:

1. $O(mN)$ for unweighted graphs;
2. and $O(mN + N^2 \log N)$ for weighted graphs.
Consider a network with N nodes and m edges (possibly weighted).

Computational goal: Find $\binom{N}{2}$ shortest paths between all pairs of nodes.

Traditionally use **Floyd-Warshall** algorithm.

Computation time grows as $O(N^3)$.

See also:
1. Dijkstra’s algorithm for finding shortest path between two specific nodes,
2. and Johnson’s algorithm which outperforms Floyd-Warshall for sparse networks: $O(mN + N^2 \log N)$.

Newman (2001) and Brandes (2001) independently derive equally fast algorithms that also compute betweenness.

Computation times grow as:
1. $O(mN)$ for unweighted graphs;
2. and $O(mN + N^2 \log N)$ for weighted graphs.
Consider a network with N nodes and m edges (possibly weighted).

Computational goal: Find $\binom{N}{2}$ shortest paths between all pairs of nodes.

Traditionally use **Floyd-Warshall** algorithm.

Computation time grows as $O(N^3)$.

See also:
1. Dijkstra’s algorithm for finding shortest path between two specific nodes,
2. and Johnson’s algorithm which outperforms Floyd-Warshall for sparse networks: $O(mN + N^2 \log N)$.

Newman (2001) and Brandes (2001) independently derive equally fast algorithms that also compute betweenness.

Computation times grow as:
1. $O(mN)$ for unweighted graphs;
2. and $O(mN + N^2 \log N)$ for weighted graphs.
Consider a network with \(N \) nodes and \(m \) edges (possibly weighted).

Computational goal: Find \(\binom{N}{2} \) shortest paths (⊞) between all pairs of nodes.

Traditionally use **Floyd-Warshall** (⊞) algorithm.

Computation time grows as \(O(N^3) \).

See also:

1. **Dijkstra’s algorithm** (⊞) for finding shortest path between two specific nodes,
2. and **Johnson’s algorithm** (⊞) which outperforms Floyd-Warshall for sparse networks: \(O(mN + N^2 \log N) \).

Newman (2001) \[^4, 5\] and Brandes (2001) \[^1\] independently derive equally fast algorithms that also compute betweenness.

Computation times grow as:

1. \(O(mN) \) for unweighted graphs;
2. and \(O(mN + N^2 \log N) \) for weighted graphs.
Consider a network with \(N \) nodes and \(m \) edges (possibly weighted).

Computational goal: Find \(\binom{N}{2} \) shortest paths (\(\Box \)) between all pairs of nodes.

Traditionally use Floyd-Warshall (\(\Box \)) algorithm.

Computation time grows as \(O(N^3) \).

See also:

1. Dijkstra’s algorithm (\(\Box \)) for finding shortest path between two specific nodes,
2. and Johnson’s algorithm (\(\Box \)) which outperforms Floyd-Warshall for sparse networks: \(O(mN + N^2 \log N) \).

Newman (2001) \(^4, 5\) and Brandes (2001) \(^1\) independently derive equally fast algorithms that also compute betweenness.

Computation times grow as:

1. \(O(mN) \) for unweighted graphs;
2. and \(O(mN + N^2 \log N) \) for weighted graphs.
Consider a network with N nodes and m edges (possibly weighted).

Computational goal: Find $\binom{N}{2}$ shortest paths between all pairs of nodes.

Traditionally use Floyd-Warshall algorithm.

Computation time grows as $O(N^3)$.

See also:
1. Dijkstra's algorithm for finding shortest path between two specific nodes,
2. and Johnson's algorithm which outperforms Floyd-Warshall for sparse networks: $O(mN + N^2 \log N)$.

Newman (2001) and Brandes (2001) independently derive equally fast algorithms that also compute betweenness.

Computation times grow as:
1. $O(mN)$ for unweighted graphs;
2. and $O(mN + N^2 \log N)$ for weighted graphs.
Consider a network with N nodes and m edges (possibly weighted).

Computational goal: Find $\binom{N}{2}$ shortest paths between all pairs of nodes.

Traditionally use Floyd-Warshall algorithm.

Computation time grows as $O(N^3)$.

See also:

1. Dijkstra’s algorithm for finding shortest path between two specific nodes,
2. and Johnson’s algorithm which outperforms Floyd-Warshall for sparse networks: $O(mN + N^2 \log N)$.

Newman (2001) and Brandes (2001) independently derive equally fast algorithms that also compute betweenness.

Computation times grow as:

1. $O(mN)$ for unweighted graphs;
2. and $O(mN + N^2 \log N)$ for weighted graphs.
Consider a network with N nodes and m edges (possibly weighted).

Computational goal: Find $\binom{N}{2}$ shortest paths (⊞) between all pairs of nodes.

Traditionally use Floyd-Warshall (⊞) algorithm.

Computation time grows as $O(N^3)$.

See also:

1. Dijkstra’s algorithm (⊞) for finding shortest path between two specific nodes,
2. and Johnson’s algorithm (⊞) which outperforms Floyd-Warshall for sparse networks: $O(mN + N^2 \log N)$.

Computation times grow as:

1. $O(mN)$ for unweighted graphs;
2. and $O(mN + N^2 \log N)$ for weighted graphs.
Consider a network with N nodes and m edges (possibly weighted).

Computational goal: Find $\binom{N}{2}$ shortest paths between all pairs of nodes.

Traditionally use **Floyd-Warshall** algorithm.

Computation time grows as $O(N^3)$.

See also:

1. **Dijkstra’s algorithm** for finding shortest path between two specific nodes,
2. and **Johnson’s algorithm** which outperforms Floyd-Warshall for sparse networks: $O(mN + N^2 \log N)$.

Computation times grow as:

1. $O(mN)$ for unweighted graphs;
2. and $O(mN + N^2 \log N)$ for weighted graphs.
Shortest path between node i and all others:

- Consider unweighted networks.
- Use breadth-first search:
 1. Start at node i, giving it a distance $d = 0$ from itself.
 2. Create a list of all of i’s neighbors and label them being at a distance $d = 1$.
 3. Go through list of most recently visited nodes and find all of their neighbors.
 4. Exclude any nodes already assigned a distance.
 5. Increment distance d by 1.
 6. Label newly reached nodes as being at distance d.
 7. Repeat steps 3 through 6 until all nodes are visited.
- Record which nodes link to which nodes moving out from i (former are ‘predecessors’ with respect to i’s shortest path structure).
- Runs in $O(m)$ time and gives $N - 1$ shortest paths.
- Find all shortest paths in $O(mN)$ time.
- Much, much better than naive estimate of $O(mN^2)$.

References
Shortest path between node i and all others:

- Consider unweighted networks.
- Use breadth-first search:
 1. Start at node i, giving it a distance $d = 0$ from itself.
 2. Create a list of all of i’s neighbors and label them being at a distance $d = 1$.
 3. Go through list of most recently visited nodes and find all of their neighbors.
 4. Exclude any nodes already assigned a distance.
 5. Increment distance d by 1.
 6. Label newly reached nodes as being at distance d.
 7. Repeat steps 3 through 6 until all nodes are visited.

- Record which nodes link to which nodes moving out from i (former are ‘predecessors’ with respect to i’s shortest path structure).
- Runs in $O(m)$ time and gives $N - 1$ shortest paths.
- Find all shortest paths in $O(mN)$ time
- Much, much better than naive estimate of $O(mN^2)$.

References
Shortest path between node i and all others:

- Consider unweighted networks.
- Use breadth-first search:
 1. Start at node i, giving it a distance $d = 0$ from itself.
 2. Create a list of all of i's neighbors and label them being at a distance $d = 1$.
 3. Go through list of most recently visited nodes and find all of their neighbors.
 4. Exclude any nodes already assigned a distance.
 5. Increment distance d by 1.
 6. Label newly reached nodes as being at distance d.
 7. Repeat steps 3 through 6 until all nodes are visited.

- Record which nodes link to which nodes moving out from i (former are ‘predecessors’ with respect to i's shortest path structure).

- Runs in $O(m)$ time and gives $N-1$ shortest paths.
- Find all shortest paths in $O(mN)$ time
- Much, much better than naive estimate of $O(mN^2)$.

References
Shortest path between node i and all others:

- Consider unweighted networks.
- Use **breadth-first search:**
 1. Start at node i, giving it a distance $d = 0$ from itself.
 2. Create a list of all of i's neighbors and label them being at a distance $d' = 1$.
 3. Go through list of most recently visited nodes and find all of their neighbors.
 4. Exclude any nodes already assigned a distance.
 5. Increment distance d' by 1.
 6. Label newly reached nodes as being at distance d'.
 7. Repeat steps 3 through 6 until all nodes are visited.

- Record which nodes link to which nodes moving out from i (former are 'predecessors' with respect to i's shortest path structure).

- Runs in $O(m)$ time and gives $N - 1$ shortest paths.
- Find all shortest paths in $O(mN)$ time
- Much, much better than naive estimate of $O(mN^2)$.

Background

Centrality measures
- Degree centrality
- Closeness centrality
- Betweenness centrality
- Eigenvalue centrality
- Hubs and Authorities

References
Shortest path between node i and all others:

- Consider unweighted networks.
- Use **breadth-first search**:
 1. Start at node i, giving it a distance $d = 0$ from itself.
 2. Create a list of all of i’s neighbors and label them being at a distance $d = 1$.
 3. Go through list of most recently visited nodes and find all of their neighbors.
 4. Exclude any nodes already assigned a distance.
 5. Increment distance d by 1.
 6. Label newly reached nodes as being at distance d.
 7. Repeat steps 3 through 6 until all nodes are visited.

- Record which nodes link to which nodes moving out from i (former are ‘predecessors’ with respect to i’s shortest path structure).

- Runs in $O(m)$ time and gives $N - 1$ shortest paths.
- Find all shortest paths in $O(mN) $ time
- Much, much better than naive estimate of $O(mN^2)$.

Measures of centrality

Background

Centrality measures
- Degree centrality
- Closeness centrality
- Betweenness
- Eigenvalue centrality
- Hubs and Authorities

References
Shortest path between node i and all others:

- Consider unweighted networks.
- Use **breadth-first search**:
 1. Start at node i, giving it a distance $d = 0$ from itself.
 2. Create a list of all of i’s neighbors and label them being at a distance $d = 1$.
 3. Go through list of most recently visited nodes and find all of their neighbors.
 4. Exclude any nodes already assigned a distance.
 5. Increment distance d by 1.
 6. Label newly reached nodes as being at distance d.
 7. Repeat steps 3 through 6 until all nodes are visited.
- Record which nodes link to which nodes moving out from i (former are ‘predecessors’ with respect to i’s shortest path structure).
- Runs in $O(m)$ time and gives $N - 1$ shortest paths.
- Find all shortest paths in $O(mN)$ time.
- Much, much better than naive estimate of $O(mN^2)$.

Measure of centrality
Background
Centrality measures
Degree centrality
Closeness centrality
Betweenness
Eigenvalue centrality
Hubs and Authorities

References
Shortest path between node i and all others:

- Consider unweighted networks.
- Use **breadth-first search**:
 1. Start at node i, giving it a distance $d = 0$ from itself.
 2. Create a list of all of i's neighbors and label them being at a distance $d = 1$.
 3. Go through list of most recently visited nodes and find all of their neighbors.
 4. Exclude any nodes already assigned a distance.
 5. Increment distance d by 1.
 6. Label newly reached nodes as being at distance d.
 7. Repeat steps 3 through 6 until all nodes are visited.
- Record which nodes link to which nodes moving out from i (former are ‘predecessors’ with respect to i's shortest path structure).
- Runs in $O(m)$ time and gives $N - 1$ shortest paths.
- Find all shortest paths in $O(mN)$ time.
- Much, much better than naive estimate of $O(mN^2)$.

References
Shortest path between node i and all others:

- Consider unweighted networks.
- Use **breadth-first search:**
 1. Start at node i, giving it a distance $d = 0$ from itself.
 2. Create a list of all of i’s neighbors and label them being at a distance $d = 1$.
 3. Go through list of most recently visited nodes and find all of their neighbors.
 4. Exclude any nodes already assigned a distance.
 5. Increment distance d by 1.
 6. Label newly reached nodes as being at distance d.
 7. Repeat steps 3 through 6 until all nodes are visited.

- Record which nodes link to which nodes moving out from i (former are ‘predecessors’ with respect to i’s shortest path structure).
- Runs in $O(m)$ time and gives $N - 1$ shortest paths.
- Find all shortest paths in $O(mN)$ time.
- Much, much better than naive estimate of $O(mN^2)$.
Shortest path between node i and all others:

- Consider unweighted networks.
- Use \textit{breadth-first search}:
 1. Start at node i, giving it a distance $d = 0$ from itself.
 2. Create a list of all of i’s neighbors and label them being at a distance $d = 1$.
 3. Go through list of most recently visited nodes and find all of their neighbors.
 4. Exclude any nodes already assigned a distance.
 5. Increment distance d by 1.
 6. Label newly reached nodes as being at distance d.
 7. Repeat steps 3 through 6 until all nodes are visited.
- Record which nodes link to which nodes moving out from i (former are ‘predecessors’ with respect to i’s shortest path structure).
- Runs in $O(m)$ time and gives $N - 1$ shortest paths.
- Find all shortest paths in $O(mN)$ time.
- Much, much better than naive estimate of $O(mN^2)$.

References
Shortest path between node i and all others:

- Consider unweighted networks.
- Use breadth-first search:
 1. Start at node i, giving it a distance $d = 0$ from itself.
 2. Create a list of all of i's neighbors and label them being at a distance $d = 1$.
 3. Go through list of most recently visited nodes and find all of their neighbors.
 4. Exclude any nodes already assigned a distance.
 5. Increment distance d by 1.
 6. Label newly reached nodes as being at distance d.
 7. Repeat steps 3 through 6 until all nodes are visited.

- Record which nodes link to which nodes moving out from i (former are ‘predecessors’ with respect to i’s shortest path structure).

- Runs in $O(m)$ time and gives $N − 1$ shortest paths.
- Find all shortest paths in $O(mN)$ time.
- Much, much better than naive estimate of $O(mN^2)$.

References
Shortest path between node i and all others:

- Consider unweighted networks.
- Use **breadth-first search**:
 1. Start at node i, giving it a distance $d = 0$ from itself.
 2. Create a list of all of i’s neighbors and label them being at a distance $d = 1$.
 3. Go through list of most recently visited nodes and find all of their neighbors.
 4. Exclude any nodes already assigned a distance.
 5. Increment distance d by 1.
 6. Label newly reached nodes as being at distance d.
 7. Repeat steps 3 through 6 until all nodes are visited.

- Record which nodes link to which nodes moving out from i (former are ‘predecessors’ with respect to i’s shortest path structure).

- Runs in $O(m)$ time and gives $N - 1$ shortest paths.
- Find all shortest paths in $O(mN)$ time
- Much, much better than naive estimate of $O(mN^2)$.

References
Shortest path between node i and all others:

- Consider unweighted networks.
- Use **breadth-first search**:
 1. Start at node i, giving it a distance $d = 0$ from itself.
 2. Create a list of all of i’s neighbors and label them being at a distance $d = 1$.
 3. Go through list of most recently visited nodes and find all of their neighbors.
 4. Exclude any nodes already assigned a distance.
 5. Increment distance d by 1.
 6. Label newly reached nodes as being at distance d.
 7. Repeat steps 3 through 6 until all nodes are visited.

- Record which nodes link to which nodes moving out from i (former are ‘predecessors’ with respect to i’s shortest path structure).

- Runs in $O(m)$ time and gives $N - 1$ shortest paths.
- Find all shortest paths in $O(mN)$ time
- Much, much better than naive estimate of $O(mN^2)$.

References
Shortest path between node i and all others:

- Consider unweighted networks.
- Use breadth-first search:
 1. Start at node i, giving it a distance $d = 0$ from itself.
 2. Create a list of all of i's neighbors and label them being at a distance $d = 1$.
 3. Go through list of most recently visited nodes and find all of their neighbors.
 4. Exclude any nodes already assigned a distance.
 5. Increment distance d by 1.
 6. Label newly reached nodes as being at distance d.
 7. Repeat steps 3 through 6 until all nodes are visited.
- Record which nodes link to which nodes moving out from i (former are ‘predecessors’ with respect to i’s shortest path structure).
- Runs in $O(m)$ time and gives $N - 1$ shortest paths.
- Find all shortest paths in $O(mN)$ time
- Much, much better than naive estimate of $O(mN^2)$.
Shortest path between node i and all others:

- Consider unweighted networks.
- Use **breadth-first search:**
 1. Start at node i, giving it a distance $d = 0$ from itself.
 2. Create a list of all of i's neighbors and label them being at a distance $d = 1$.
 3. Go through list of most recently visited nodes and find all of their neighbors.
 4. Exclude any nodes already assigned a distance.
 5. Increment distance d by 1.
 6. Label newly reached nodes as being at distance d.
 7. Repeat steps 3 through 6 until all nodes are visited.

- Record which nodes link to which nodes moving out from i (former are ‘predecessors’ with respect to i’s shortest path structure).

- Runs in $O(m)$ time and gives $N - 1$ shortest paths.
- Find all shortest paths in $O(mN)$ time
- Much, much better than naive estimate of $O(mN^2)$.
Newman’s Betweenness algorithm: [4]

1. Set all nodes to have a value $c_{ij} = 0$, $j = 1, ..., N$ (c for count).
2. Select one node i.
3. Find shortest paths to all other $N - 1$ nodes using breadth-first search.
4. Record # equal shortest paths reaching each node.
5. Move through nodes according to their distance from i, starting with the furthest.
6. Travel back towards i from each starting node j, along shortest path(s), adding 1 to every value of c_{ij} at each node i' along the way.
7. Whenever more than one possibility exists, apportion according to total number of short paths coming through predecessors.
8. Exclude starting node j and i from increment.
9. Repeat steps 2–8 for every node i and obtain betweenness as $B_j = \sum_{i=1}^{N} c_{ij}$.
Newman’s Betweenness algorithm: \[^4\]

1. Set all nodes to have a value \(c_{ij} = 0, \ j = 1, \ldots, N \) (\(c \) for count).
2. Select one node \(i \).
3. Find shortest paths to all other \(N - 1 \) nodes using breadth-first search.
4. Record # equal shortest paths reaching each node.
5. Move through nodes according to their distance from \(i \), starting with the furthest.
6. Travel back towards \(i \) from each starting node \(j \), along shortest path(s), adding 1 to every value of \(c_{ij} \) at each node \(i' \) along the way.
7. Whenever more than one possibility exists, apportion according to total number of short paths coming through predecessors.
8. Exclude starting node \(j \) and \(i \) from increment.
9. Repeat steps 2–8 for every node \(i \) and obtain betweenness as \(B_j = \sum_{i=1}^{N} c_{ij} \).
Newman’s Betweenness algorithm: [4]

1. Set all nodes to have a value $c_{ij} = 0$, $j = 1, \ldots, N$ (c for count).
2. Select one node i.
3. Find **shortest paths** to all other $N - 1$ nodes using breadth-first search.
4. Record # equal shortest paths reaching each node.
5. Move through nodes according to their distance from i, starting with the furthest.
6. Travel back towards i from each starting node j, along shortest path(s), adding 1 to every value of c_{ij} at each node i' along the way.
7. Whenever more than one possibility exists, apportion according to total number of short paths coming through predecessors.
8. Exclude starting node j and i from increment.
9. Repeat steps 2–8 for every node i and obtain betweenness as $B_j = \sum_{i=1}^{N} c_{ij}$.
Newman’s Betweenness algorithm: [4]

1. Set all nodes to have a value $c_{ij} = 0$, $j = 1, \ldots, N$ (c for count).
2. Select one node i.
3. Find shortest paths to all other $N - 1$ nodes using breadth-first search.
4. Record # equal shortest paths reaching each node.
5. Move through nodes according to their distance from i, starting with the furthest.
6. Travel back towards i from each starting node j, along shortest path(s), adding 1 to every value of c_{ij} at each node ℓ along the way.
7. Whenever more than one possibility exists, apportion according to total number of short paths coming through predecessors.
8. Exclude starting node j and i from increment.
9. Repeat steps 2–8 for every node i and obtain betweenness as $B_j = \sum_{i=1}^{N} c_{ij}$.
Newman’s Betweenness algorithm: [4]

1. Set all nodes to have a value $c_{ij} = 0, j = 1, \ldots, N$ (c for count).
2. Select one node i.
3. Find shortest paths to all other $N - 1$ nodes using breadth-first search.
4. Record # equal shortest paths reaching each node.
5. Move through nodes according to their distance from i, starting with the furthest.
6. Travel back towards i from each starting node j, along shortest path(s), adding 1 to every value of c_{ij} at each node ℓ along the way.
7. Whenever more than one possibility exists, apportion according to total number of short paths coming through predecessors.
8. Exclude starting node j and i from increment.
9. Repeat steps 2–8 for every node i and obtain betweenness as $B_j = \sum_{i=1}^{N} c_{ij}$.

References
Newman’s Betweenness algorithm: \[^{[4]}\]

1. Set all nodes to have a value $c_{ij} = 0$, $j = 1, \ldots, N$ (c for count).
2. Select one node i.
3. Find **shortest paths** to all other $N - 1$ nodes using breadth-first search.
4. Record # equal shortest paths reaching each node.
5. Move through nodes according to their distance from i, starting with the furthest.
6. Travel **back towards i from each starting node j**, along shortest path(s), adding 1 to every value of $c_{i\ell}$ at each node ℓ along the way.
7. Whenever more than one possibility exists, apportion according to total number of short paths coming through predecessors.
8. Exclude starting node j and i from increment.
9. Repeat steps 2–8 for every node i and obtain betweenness as $B_j = \sum_{i=1}^{N} c_{ij}$.
Newman’s Betweenness algorithm: [4]

1. Set all nodes to have a value $c_{ij} = 0$, $j = 1, \ldots, N$ (c for count).
2. Select one node i.
3. Find **shortest paths** to all other $N - 1$ nodes using breadth-first search.
4. Record # equal shortest paths reaching each node.
5. Move through nodes according to their distance from i, starting with the furthest.
6. Travel back towards i from each starting node j, along shortest path(s), adding 1 to every value of $c_{i\ell}$ at each node ℓ along the way.
7. Whenever more than one possibility exists, apportion according to total number of short paths coming through predecessors.
8. Exclude starting node j and i from increment.
9. Repeat steps 2–8 for every node i and obtain betweenness as $B_j = \sum_{i=1}^{N} c_{ij}$.
Newman’s Betweenness algorithm: [4]

1. Set all nodes to have a value $c_{ij} = 0$, $j = 1, \ldots, N$ (c for count).
2. Select one node i.
3. Find shortest paths to all other $N - 1$ nodes using breadth-first search.
4. Record # equal shortest paths reaching each node.
5. Move through nodes according to their distance from i, starting with the furthest.
6. Travel back towards i from each starting node j, along shortest path(s), adding 1 to every value of $c_{i\ell}$ at each node ℓ along the way.
7. Whenever more than one possibility exists, apportion according to total number of short paths coming through predecessors.
8. Exclude starting node j and i from increment.
9. Repeat steps 2–8 for every node i and obtain betweenness as $B_j = \sum_{i=1}^{N} c_{ij}$.
Newman’s Betweenness algorithm: [4]

1. Set all nodes to have a value $c_{ij} = 0, j = 1, \ldots, N$ (c for count).
2. Select one node i.
3. Find shortest paths to all other $N - 1$ nodes using breadth-first search.
4. Record # equal shortest paths reaching each node.
5. Move through nodes according to their distance from i, starting with the furthest.
6. Travel back towards i from each starting node j, along shortest path(s), adding 1 to every value of $c_{i\ell}$ at each node ℓ along the way.
7. Whenever more than one possibility exists, apportion according to total number of short paths coming through predecessors.
8. Exclude starting node j and i from increment.
9. Repeat steps 2–8 for every node i and obtain betweenness as $B_j = \sum_{i=1}^{N} c_{ij}$.
Newman’s Betweenness algorithm: [4]

- For a pure tree network, c_{ij} is the number of nodes beyond j from i’s vantage point.

- Same algorithm for computing drainage area in river networks (with 1 added across the board).

- For edge betweenness, use exact same algorithm but now
 1. j indexes edges,
 2. and we add one to each edge as we traverse it.

- For both algorithms, computation time grows as $O(mN)$.

- For sparse networks with relatively small average degree, we have a fairly digestible time growth of $O(N^2)$.
Newman’s Betweenness algorithm: [4]

- For a **pure tree network**, c_{ij} is the number of nodes beyond j from i’s vantage point.
- Same algorithm for computing drainage area in river networks (with 1 added across the board).
- For **edge betweenness**, use exact same algorithm but now
 1. j indexes edges,
 2. and we add one to each edge as we traverse it.
- For both algorithms, computation time grows as $O(mN)$.
- For sparse networks with relatively small average degree, we have a fairly digestible time growth of $O(N^2)$.
Newman’s Betweenness algorithm: [4]

- For a pure tree network, \(c_{ij} \) is the number of nodes beyond \(j \) from \(i \)'s vantage point.
- Same algorithm for computing drainage area in river networks (with 1 added across the board).
- For edge betweenness, use exact same algorithm but now
 1. \(j \) indexes edges,
 2. and we add one to each edge as we traverse it.
- For both algorithms, computation time grows as \(O(mN) \).
- For sparse networks with relatively small average degree, we have a fairly digestible time growth of \(O(N^2) \).
Newman’s Betweenness algorithm:[4]

- For a pure tree network, c_{ij} is the number of nodes beyond j from i’s vantage point.
- Same algorithm for computing drainage area in river networks (with 1 added across the board).
- For edge betweenness, use exact same algorithm but now
 1. j indexes edges,
 2. and we add one to each edge as we traverse it.
- For both algorithms, computation time grows as $O(mN)$.

- For sparse networks with relatively small average degree, we have a fairly digestible time growth of $O(N^2)$.
Newman’s Betweenness algorithm: \[4\]

- For a pure tree network, \(c_{ij}\) is the number of nodes beyond \(j\) from \(i\)’s vantage point.
- Same algorithm for computing drainage area in river networks (with 1 added across the board).
- For edge betweenness, use exact same algorithm but now
 1. \(j\) indexes edges,
 2. and we add one to each edge as we traverse it.
- For both algorithms, computation time grows as
 \[O(mN)\].
- For sparse networks with relatively small average degree, we have a fairly digestible time growth of
 \[O(N^2)\].
Newman’s Betweenness algorithm: [4]

- For a **pure tree network**, \(c_{ij}\) is the number of nodes beyond \(j\) from \(i\)’s vantage point.
- Same algorithm for computing drainage area in river networks (with 1 added across the board).
- For **edge betweenness**, use exact same algorithm but now
 1. \(j\) indexes edges,
 2. and we add one to each edge as we traverse it.
- For both algorithms, computation time grows as \(O(mN)\).
- For sparse networks with relatively small average degree, we have a fairly digestible time growth of \(O(N^2)\).
Newman’s Betweenness algorithm: [4]

- For a pure tree network, c_{ij} is the number of nodes beyond j from i’s vantage point.
- Same algorithm for computing drainage area in river networks (with 1 added across the board).
- For edge betweenness, use exact same algorithm but now
 1. j indexes edges,
 2. and we add one to each edge as we traverse it.
- For both algorithms, computation time grows as $O(mN)$.
- For sparse networks with relatively small average degree, we have a fairly digestible time growth of $O(N^2)$.
Newman’s Betweenness algorithm: [4]

(a) and (b) illustrate the calculation of shortest-path betweenness. In (a), the vertex s is the source. The leaves are labeled with 1, and the other vertices are labeled with the sum of the scores on the neighboring edges. In (b), the leaves are labeled with $\frac{11}{6}$ and $\frac{25}{6}$, respectively.

The Newman’s Betweenness algorithm:

1. **A. Shortest-path betweenness**
 - Calculating the shortest path between a particular pair of vertices can be done using breadth-first search in time $O(nm)$, where n is the number of vertices and m is the number of edges. Finding all betweennesses in a graph can be done using a variation of this approach.
 - For the vertex s, the leaves are labeled with 1, and the other vertices are labeled with the sum of the scores on the neighboring edges.
 - In the simplest case, when there is only a single shortest path from the source vertex, the vertex s is the source, and the leaves are labeled with 1.

2. **B. Finding and removing the highest-scoring edge**
 - Finding and removing the highest-scoring edge is trivial and does not computationally demanding.

3. **C. Recalculation step**
 - The recalculation step is absolutely crucial to the operation of the cases illustrated here.

4. **D. Newman’s Betweenness algorithm**
 - The Newman’s Betweenness algorithm is based on the shortest-path method. It is the only version of the algorithm they should use for their own problem, let us give an immediate answer: for most problems, we recommend the algorithm of Newman.
 - The Newman’s Betweenness algorithm is as follows:
 - For each vertex v, we calculate the number of shortest paths that pass through v.
 - We then sum these numbers for all vertices.
 - The Newman’s Betweenness algorithm is described in Sec. III A, it can be calculated for all edges in $O(n^2)$ time.

5. **E. Comparison with other algorithms**
 - New algorithms have been proposed by Newman and Girvan, and Freeman vertex betweenness, but it is trivial to adapt their algorithms for edge betweenness. We describe the standard Freeman vertex betweenness, but it is trivial to calculate faster than this, finding all betweennesses in time $O(mn^2)$.

References
Measures of centrality

Background

Centrality measures
- Degree centrality
- Closeness centrality
- Betweenness
- Eigenvalue centrality
- Hubs and Authorities

References
Important nodes have important friends:

- Define \(x_i \) as the 'importance' of node \(i \).
- Idea: \(x_i \) depends (somehow) on \(x_j \) if \(j \) is a neighbor of \(i \).
- Recursive: importance is transmitted through a network.
- Simplest possibility is a linear combination:
 \[
 x_i \propto \sum_j a_{ji} x_j
 \]
- Assume further that constant of proportionality, \(c \), is independent of \(i \).
- Above gives \(\vec{x} = c\vec{A}^T \vec{x} \) or \(A^T \vec{x} = c^{-1} \vec{x} = \lambda \vec{x} \).
- Eigenvalue equation based on adjacency matrix...
- Note: Lots of despair over size of the largest eigenvalue. \(^7\) Lose sight of original assumption’s non-physicality.
Important nodes have important friends:

- Define x_i as the ‘importance’ of node i.
- Idea: x_i depends (somehow) on x_j if j is a neighbor of i.
- Recursive: importance is transmitted through a network.
- Simplest possibility is a linear combination:
 \[x_i \propto \sum_j a_{ji} x_j \]

- Assume further that constant of proportionality, c, is independent of i.
- Above gives $\mathbf{x} = c \mathbf{A}^T \mathbf{x}$ or $\mathbf{A}^T \mathbf{x} = c^{-1} \mathbf{x} = \lambda \mathbf{x}$.
- Eigenvalue equation based on adjacency matrix...
- Note: Lots of despair over size of the largest eigenvalue.\(^7\) Lose sight of original assumption’s non-physicality.
Important nodes have important friends:

- Define x_i as the ‘importance’ of node i.
- **Idea**: x_i depends (somehow) on x_j if j is a neighbor of i.
- **Recursive**: importance is transmitted through a network.
- Simplest possibility is a linear combination:
 \[x_i \propto \sum_j a_{ji} x_j \]
- Assume further that constant of proportionality, c, is independent of i.
- Above gives $\vec{x} = cA^T \vec{x}$ or $A^T \vec{x} = c^{-1} \vec{x} = \lambda \vec{x}$.
- Eigenvalue equation based on adjacency matrix...
- Note: Lots of despair over size of the largest eigenvalue. \[^7\] Lose sight of original assumption’s non-physicality.
Important nodes have important friends:

- Define x_i as the ‘importance’ of node i.
- **Idea:** x_i depends (somehow) on x_j if j is a neighbor of i.
- **Recursive:** importance is transmitted through a network.
- Simplest possibility is a linear combination:

$$x_i \propto \sum_j a_{ji} x_j$$

- Assume further that constant of proportionality, c, is independent of i.
- Above gives $\vec{x} = c \vec{A}^T \vec{x}$ or

$$\vec{A}^T \vec{x} = c^{-1} \vec{x} = \lambda \vec{x}.$$

- Eigenvalue equation based on adjacency matrix...
- Note: Lots of despair over size of the largest eigenvalue.\footnote{Lose sight of original assumption’s non-physicality.}
Important nodes have important friends:

- Define x_i as the ‘importance’ of node i.
- **Idea:** x_i depends (somehow) on x_j
 if j is a neighbor of i.
- **Recursive:** importance is transmitted through a network.
- Simplest possibility is a linear combination:

$$x_i \propto \sum_j a_{ji}x_j$$

- Assume further that constant of proportionality, c, is independent of i.
- Above gives $\vec{x} = cA^T\vec{x}$ or
 $$A^T\vec{x} = c^{-1}\vec{x} = \lambda \vec{x}.$$
- Eigenvalue equation based on adjacency matrix...
- Note: Lots of despair over size of the largest eigenvalue. Lose sight of original assumption’s non-physicality.
Important nodes have important friends:

- Define x_i as the ‘importance’ of node i.
- Idea: x_i depends (somehow) on x_j if j is a neighbor of i.
- Recursive: importance is transmitted through a network.
- Simplest possibility is a linear combination:
 \[x_i \propto \sum_j a_{ji}x_j \]

- Assume further that constant of proportionality, c, is independent of i.
- Above gives $\vec{x} = cA^T\vec{x}$ or $A^T\vec{x} = c^{-1}\vec{x} = \lambda \vec{x}$.
- Eigenvalue equation based on adjacency matrix...
- Note: Lots of despair over size of the largest eigenvalue. [7] Lose sight of original assumption’s non-physicality.
Important nodes have important friends:

- Define x_i as the ‘importance’ of node i.
- **Idea:** x_i depends (somehow) on x_j if j is a neighbor of i.
- **Recursive:** importance is transmitted through a network.
- Simplest possibility is a linear combination:

$$x_i \propto \sum_j a_{ji} x_j$$

- Assume further that constant of proportionality, c, is independent of i.
- Above gives $\vec{x} = cA^T\vec{x}$ or $A^T\vec{x} = c^{-1}\vec{x} = \lambda\vec{x}$.

- Eigenvalue equation based on adjacency matrix...
- Note: Lots of despair over size of the largest eigenvalue. [7] Lose sight of original assumption’s non-physicality.
Important nodes have important friends:

- Define x_i as the ‘importance’ of node i.
- **Idea:** x_i depends (somehow) on x_j if j is a neighbor of i.
- **Recursive:** importance is transmitted through a network.
- Simplest possibility is a linear combination:
 \[
 x_i \propto \sum_j a_{ji} x_j
 \]

- Assume further that constant of proportionality, c, is independent of i.
- Above gives $\vec{x} = cA^T\vec{x}$ or $A^T\vec{x} = c^{-1}\vec{x} = \lambda\vec{x}$.
- Eigenvalue equation based on adjacency matrix...
- Note: Lots of despair over size of the largest eigenvalue. \[^7\] Lose sight of original assumption’s non-physicality.
Important nodes have important friends:

- Define x_i as the ‘importance’ of node i.
- **Idea:** x_i depends (somehow) on x_j if j is a neighbor of i.
- **Recursive:** importance is transmitted through a network.
- Simplest possibility is a linear combination:

$$x_i \propto \sum_j a_{ji} x_j$$

- Assume further that constant of proportionality, c, is independent of i.
- Above gives $\vec{x} = cA^T\vec{x}$ or $A^T\vec{x} = c^{-1}\vec{x} = \lambda \vec{x}$.

- Eigenvalue equation based on adjacency matrix...
- **Note:** Lots of despair over size of the largest eigenvalue. \[7\] Lose sight of original assumption’s non-physicality.
Important nodes have important friends:

- Define x_i as the ‘importance’ of node i.
- **Idea**: x_i depends (somehow) on x_j if j is a neighbor of i.
- **Recursive**: importance is transmitted through a network.
- Simplest possibility is a linear combination:
 $$x_i \propto \sum_j a_{ji}x_j$$

- Assume further that constant of proportionality, c, is independent of i.
- Above gives $\tilde{x} = cA^T\tilde{x}$ or $A^T\tilde{x} = c^{-1}\tilde{x} = \lambda\tilde{x}$.
- Eigenvalue equation based on adjacency matrix...
- Note: Lots of despair over size of the largest eigenvalue.\[^7\] Lose sight of original assumption’s non-physicality.
Important nodes have important friends:

- Define x_i as the ‘importance’ of node i.
- Idea: x_i depends (somehow) on x_j if j is a neighbor of i.
- Recursive: importance is transmitted through a network.
- Simplest possibility is a linear combination:

$$x_i \propto \sum_j a_{ji} x_j$$

- Assume further that constant of proportionality, c, is independent of i.
- Above gives $\tilde{x} = c A^T \tilde{x}$ or $A^T \tilde{x} = c^{-1} \tilde{x} = \lambda \tilde{x}$.
- Eigenvalue equation based on adjacency matrix...
- Note: Lots of despair over size of the largest eigenvalue.\[^7\] Lose sight of original assumption’s non-physicality.
Important nodes have important friends:

- So... solve $A^T \vec{x} = \lambda \vec{x}$.
- But which eigenvalue and eigenvector?
- We, the people, would like:
 1. A unique solution.
 2. λ to be real.
 3. Entries of \vec{x} to be real.
 4. Entries of \vec{x} to be non-negative.
 5. λ to actually mean something...
 6. Values of x_i to mean something
 (what does an observation that $x_3 = 5x_7$ mean?)
 (maybe only ordering is informative...)
 7. λ to equal 1 would be nice...
 8. Ordering of \vec{x} entries to be robust to reasonable modifications of linear assumption
Important nodes have important friends:

- So... solve $A^T \vec{x} = \lambda \vec{x}$.
- But which eigenvalue and eigenvector?
- We, the people, would like:
 1. A unique solution.
 2. λ to be real.
 3. Entries of \vec{x} to be real.
 4. Entries of \vec{x} to be non-negative.
 5. λ to actually mean something...
 6. Values of x_i to mean something
 (what does an observation that $x_3 = 5x_7$ mean?)
 (maybe only ordering is informative...)
 7. λ to equal 1 would be nice...
 8. Ordering of \vec{x} entries to be robust to reasonable modifications of linear assumption
Important nodes have important friends:

- So... solve $A^T\vec{x} = \lambda \vec{x}$.
- But which eigenvalue and eigenvector?
- We, the people, would like:
 1. A unique solution.
 2. λ to be real.
 3. Entries of \vec{x} to be real.
 4. Entries of \vec{x} to be non-negative.
 5. λ to actually mean something...
 6. Values of x_i to mean something
 (what does an observation that $x_i = 5x_7$ mean?)
 (maybe only ordering is informative...)
 7. λ to equal 1 would be nice...
 8. Ordering of \vec{x} entries to be robust to reasonable modifications of linear assumption
Important nodes have important friends:

► So... solve $A^T\vec{x} = \lambda \vec{x}$.
► But which eigenvalue and eigenvector?
► We, the people, would like:
 1. A unique solution.
 2. λ to be real.
 3. Entries of \vec{x} to be real.
 4. Entries of \vec{x} to be non-negative.
 5. λ to actually mean something...
 6. Values of x_i to mean something
 (what does an observation that $x_3 = 5x_7$ mean?)
 (maybe only ordering is informative...)
 7. λ to equal 1 would be nice...
 8. Ordering of \vec{x} entries to be robust to reasonable
 modifications of linear assumption.
Important nodes have important friends:

- So... solve $A^T \vec{x} = \lambda \vec{x}$.
- But which eigenvalue and eigenvector?
- We, the people, would like:
 1. A unique solution.
 2. λ to be real.
 3. Entries of \vec{x}' to be real.
 4. Entries of \vec{x} to be non-negative.
 5. λ to actually mean something...
 6. Values of x_i to mean something
 (what does an observation that $x_3 = 5x_7$ mean?)
 (maybe only ordering is informative...)
 7. λ to equal 1 would be nice...
 8. Ordering of \vec{x} entries to be robust to reasonable modifications of linear assumption
Important nodes have important friends:

- So... solve $A^T \vec{x} = \lambda \vec{x}$.
- But which eigenvalue and eigenvector?
- We, the people, would like:
 1. A unique solution.
 2. λ to be real.
 3. Entries of \vec{x} to be real.
 4. Entries of \vec{x} to be non-negative.
 5. λ to actually mean something...
 6. Values of x_i to mean something
 (what does an observation that $x_3 = 5x_7$ mean?)
 (maybe only ordering is informative...)
 7. λ to equal 1 would be nice...
 8. Ordering of \vec{x} entries to be robust to reasonable modifications of linear assumption.
Important nodes have important friends:

- So... solve $A^T \vec{x} = \lambda \vec{x}$.
- But which eigenvalue and eigenvector?
- We, the people, would like:
 1. A unique solution.
 2. λ to be real.
 3. Entries of \vec{x} to be real.
 4. Entries of \vec{x} to be non-negative.
 5. λ to actually mean something...
 6. Values of x_i to mean something
 (what does an observation that $x_3 = 5x_7$ mean?)
 (maybe only ordering is informative...)
 7. λ to equal 1 would be nice...
 8. Ordering of \vec{x} entries to be robust to reasonable modifications of linear assumption
Important nodes have important friends:

- So... solve $A^T \vec{x} = \lambda \vec{x}$.
- But which eigenvalue and eigenvector?
- We, the people, would like:
 1. A unique solution.
 2. λ to be real.
 3. Entries of \vec{x} to be real.
 4. Entries of \vec{x} to be non-negative.
 5. λ to actually mean something...
 6. Values of x_i to mean something
 (what does an observation that $x_3 = 5x_7$ mean?)
 (maybe only ordering is informative...)
 7. λ to equal 1 would be nice...
 8. Ordering of \vec{x} entries to be robust to reasonable modifications of linear assumption
Important nodes have important friends:

- So... solve $A^T \vec{x} = \lambda \vec{x}$.
- But which eigenvalue and eigenvector?
- We, the people, would like:
 1. A unique solution.
 2. λ to be real.
 3. Entries of \vec{x} to be real.
 4. Entries of \vec{x} to be non-negative.
 5. λ to actually mean something...
 6. Values of x_i to mean something
 (what does an observation that $x_3 = 5x_7$ mean?)
 (maybe only ordering is informative...)
 7. λ to equal 1 would be nice...
 8. Ordering of \vec{x} entries to be robust to reasonable modifications of linear assumption.
Important nodes have important friends:

- So... solve $A^T\vec{x} = \lambda \vec{x}$.
- But which eigenvalue and eigenvector?
- We, the people, would like:
 1. A unique solution.
 2. λ to be real.
 3. Entries of \vec{x} to be real.
 4. Entries of \vec{x} to be non-negative.
 5. λ to actually mean something...
 6. Values of x_i to mean something
 (what does an observation that $x_3 = 5x_7$ mean?)
 (maybe only ordering is informative...)
 7. λ to equal 1 would be nice...
 8. Ordering of \vec{x} entries to be robust to reasonable modifications of linear assumption.
Important nodes have important friends:

- So... solve $\mathbf{A}^T \mathbf{x} = \lambda \mathbf{x}$.
- But which eigenvalue and eigenvector?
- **We, the people, would like:**
 1. A unique solution.
 2. λ to be real.
 3. Entries of \mathbf{x} to be real.
 4. Entries of \mathbf{x} to be non-negative.
 5. λ to actually mean something...
 6. Values of x_i to mean something
 (what does an observation that $x_3 = 5x_7$ mean?)
 (maybe only ordering is informative...)
 7. λ to equal 1 would be nice...
 8. Ordering of \mathbf{x} entries to be robust to reasonable modifications of linear assumption
Important nodes have important friends:

- So... solve $\mathbf{A}^T \mathbf{x} = \lambda \mathbf{x}$.
- But which eigenvalue and eigenvector?
- We, the people, would like:
 1. A unique solution.
 2. λ to be real.
 3. Entries of \mathbf{x} to be real.
 4. Entries of \mathbf{x} to be non-negative.
 5. λ to actually mean something... (maybe too much)
 6. Values of x_i to mean something
 (what does an observation that $x_3 = 5x_7$ mean?)
 (maybe only ordering is informative...)
 (maybe too much)
 7. λ to equal 1 would be nice... (maybe too much)
 8. Ordering of \mathbf{x} entries to be robust to reasonable
 modifications of linear assumption (maybe too much)
Important nodes have important friends:

▶ So... solve $A^T \vec{x} = \lambda \vec{x}$.
▶ But which eigenvalue and eigenvector?
▶ We, the people, would like:
 1. A unique solution.
 2. λ to be real.
 3. Entries of \vec{x} to be real.
 4. Entries of \vec{x} to be non-negative.
 5. λ to actually mean something... (maybe too much)
 6. Values of x_i to mean something
 (what does an observation that $x_3 = 5x_7$ mean?)
 (maybe only ordering is informative...)
 (maybe too much)
 7. λ to equal 1 would be nice... (maybe too much)
 8. Ordering of \vec{x} entries to be robust to reasonable
 modifications of linear assumption (maybe too much)
▶ We rummage around in bag of tricks and pull out the
 Perron-Frobenius theorem...
Important nodes have important friends:

- So... solve $A^T \vec{x} = \lambda \vec{x}$.
- But which eigenvalue and eigenvector?
- We, the people, would like:
 1. A unique solution. ✓
 2. λ to be real. ✓
 3. Entries of \vec{x} to be real. ✓
 4. Entries of \vec{x} to be non-negative. ✓
 5. λ to actually mean something... (maybe too much)
 6. Values of x_i to mean something
 (what does an observation that $x_3 = 5x_7$ mean?)
 (maybe only ordering is informative...)
 (maybe too much)
 7. λ to equal 1 would be nice... (maybe too much)
 8. Ordering of \vec{x} entries to be robust to reasonable
 modifications of linear assumption (maybe too much)

- We rummage around in bag of tricks and pull out the
 Perron-Frobenius theorem...
Perron-Frobenius theorem: (⑦)

If an $N \times N$ matrix A has non-negative entries then:

1. A has a real eigenvalue $\lambda_1 \geq |\lambda_i|$ for $i = 2, \ldots, N$.
2. λ_1 corresponds to left and right 1-d eigenspaces for which we can choose a basis vector that has non-negative entries.
3. The dominant real eigenvalue λ_1 is bounded by the minimum and maximum row sums of A:

 $$\min_j \sum_{i=1}^{N} a_{ij} \leq \lambda_1 \leq \max_i \sum_{j=1}^{N} a_{ij}$$

4. All other eigenvectors have one or more negative entries.

References

Degree centrality
Closeness centrality
Betweenness
Eigenvalue centrality
Hubs and Authorities
Perron-Frobenius theorem: (田)

If an $N \times N$ matrix A has non-negative entries then:

1. A has a real eigenvalue $\lambda_1 \geq |\lambda_i|$ for $i = 2, \ldots, N$.
2. λ_1 corresponds to left and right 1-d eigenspaces for which we can choose a basis vector that has non-negative entries.
3. The dominant real eigenvalue λ_1 is bounded by the minimum and maximum row sums of A:

\[\min_{i} \sum_{j=1}^{N} a_{ij} \leq \lambda_1 \leq \max_{i} \sum_{j=1}^{N} a_{ij} \]

4. All other eigenvectors have one or more negative entries.

5. Note: Proof is relatively short for symmetric matrices that are strictly positive \cite{6} and just non-negative \cite{3}.

References
Perron-Frobenius theorem: (碁)

If an $N \times N$ matrix A has non-negative entries then:

1. A has a real eigenvalue $\lambda_1 \geq |\lambda_i|$ for $i = 2, \ldots, N$.
2. λ_1 corresponds to left and right 1-d eigenspaces for which we can choose a basis vector that has non-negative entries.
3. The dominant real eigenvalue λ_1 is bounded by the minimum and maximum row sums of A:
 \[\min_j \sum_{i=1}^{N} a_{ij} \leq \lambda_1 \leq \max_i \sum_{j=1}^{N} a_{ij} \]
4. All other eigenvectors have one or more negative entries.
6. Note: Proof is relatively short for symmetric matrices that are strictly positive [6] and just non-negative [3].
Perron-Frobenius theorem: (□)

If an \(N \times N \) matrix \(A \) has non-negative entries then:

1. \(A \) has a real eigenvalue \(\lambda_1 \geq |\lambda_i| \) for \(i = 2, \ldots, N \).
2. \(\lambda_1 \) corresponds to left and right 1-d eigenspaces for which we can choose a basis vector that has non-negative entries.
3. The dominant real eigenvalue \(\lambda_1 \) is bounded by the minimum and maximum row sums of \(A \):
 \[
 \min_i \sum_{j=1}^{N} a_{ij} \leq \lambda_1 \leq \max_i \sum_{j=1}^{N} a_{ij}
 \]
4. All other eigenvectors have one or more negative entries.
5. Note: Proof is relatively short for symmetric matrices that are strictly positive\(^6\) and just non-negative\(^3\).
Perron-Frobenius theorem: \((\square) \)

If an \(N \times N \) matrix \(A \) has non-negative entries then:

1. \(A \) has a real eigenvalue \(\lambda_1 \geq |\lambda_i| \) for \(i = 2, \ldots, N \).
2. \(\lambda_1 \) corresponds to left and right 1-d eigenspaces for which we can choose a basis vector that has non-negative entries.
3. The dominant real eigenvalue \(\lambda_1 \) is bounded by the minimum and maximum row sums of \(A \):
 \[
 \min_i \sum_{j=1}^{N} a_{ij} \leq \lambda_1 \leq \max_i \sum_{j=1}^{N} a_{ij}
 \]
4. All other eigenvectors have one or more negative entries.
5. Note: Proof is relatively short for symmetric matrices that are strictly positive \(^6\) and just non-negative \(^3\).
Perron-Frobenius theorem: \((\square) \)

If an \(N \times N \) matrix \(A \) has non-negative entries then:

1. \(A \) has a real eigenvalue \(\lambda_1 \geq |\lambda_i| \) for \(i = 2, \ldots, N \).
2. \(\lambda_1 \) corresponds to left and right 1-d eigenspaces for which we can choose a basis vector that has non-negative entries.
3. The dominant real eigenvalue \(\lambda_1 \) is bounded by the minimum and maximum row sums of \(A \):

\[
\min_i \sum_{j=1}^N a_{ij} \leq \lambda_1 \leq \max_i \sum_{j=1}^N a_{ij}
\]

4. All other eigenvectors have one or more negative entries.
5. The matrix \(A \) can make toast.
6. Note: Proof is relatively short for symmetric matrices that are strictly positive \(^6\) and just non-negative \(^3\).
Perron-Frobenius theorem: ((Matrices)

If an $N \times N$ matrix A has non-negative entries then:

1. A has a real eigenvalue $\lambda_1 \geq |\lambda_i|$ for $i = 2, \ldots, N$.
2. λ_1 corresponds to left and right 1-d eigenspaces for which we can choose a basis vector that has non-negative entries.
3. The dominant real eigenvalue λ_1 is bounded by the minimum and maximum row sums of A:

$$\min_i \sum_{j=1}^{N} a_{ij} \leq \lambda_1 \leq \max_i \sum_{j=1}^{N} a_{ij}$$

4. All other eigenvectors have one or more negative entries.
5. The matrix A can make toast.
6. Note: Proof is relatively short for symmetric matrices that are strictly positive [6] and just non-negative [3].
Other Perron-Frobenius aspects:

- Assuming our network is irreducible, meaning there is only one component, is reasonable: just consider one component at a time if more than one exists.
- Irreducibility means largest eigenvalue's eigenvector has strictly non-negative entries.
- Analogous to notion of ergodicity: every state is reachable.
- (Another term: Primitive graphs and matrices.)
Other Perron-Frobenius aspects:

- Assuming our network is **irreducible**, meaning there is only one component, is reasonable: just consider one component at a time if more than one exists.
 - Irreducibility means largest eigenvalue’s eigenvector has strictly non-negative entries.
 - Analogous to notion of ergodicity: every state is reachable.
 - (Another term: Primitive graphs and matrices.)
Other Perron-Frobenius aspects:

- Assuming our network is **irreducible** (있는 정의), meaning there is only one component, is reasonable: just consider one component at a time if more than one exists.

- Irreducibility means largest eigenvalue’s eigenvector has strictly non-negative entries.

- Analogous to notion of ergodicity: every state is reachable.

- (Another term: Primitive graphs and matrices.)
Other Perron-Frobenius aspects:

- Assuming our network is **irreducible** (reallocating resources), meaning there is only one component, is reasonable: just consider one component at a time if more than one exists.

- Irreducibility means largest eigenvalue’s eigenvector has strictly non-negative entries.

- Analogous to notion of ergodicity: every state is reachable.

 (Another term: **Primitive graphs and matrices**.)
Other Perron-Frobenius aspects:

- Assuming our network is **irreducible**, meaning there is only one component, is reasonable: just consider one component at a time if more than one exists.
- Irreducibility means largest eigenvalue’s eigenvector has strictly non-negative entries.
- Analogous to notion of ergodicity: every state is reachable.
- (Another term: **Primitive** graphs and matrices.)
Outline

Background

Centrality measures
Degree centrality
Closeness centrality
Betweenness
Eigenvalue centrality
Hubs and Authorities

References
Generalize eigenvalue centrality to allow nodes to have two attributes:

1. **Authority**: how much knowledge, information, etc., held by a node on a topic.
2. **Hubness** (or **Hubosity** or **Hubbishness**): how well a node ‘knows’ where to find information on a given topic.

- Original work due to the legendary Jon Kleinberg.\(^2\)
- Best hubs point to best authorities.
- **Recursive**: nodes can be both hubs and authorities.
- **More**: look for dense links between sets of good hubs pointing to sets of good authorities.
- Known as the **HITS algorithm** (Hyperlink-Induced Topics Search).
Generalize eigenvalue centrality to allow nodes to have two attributes:

1. **Authority**: how much knowledge, information, etc., held by a node on a topic.
2. **Hubness** (or **Hubosity** or **Hubbishness**): how well a node 'knows' where to find information on a given topic.

Original work due to the legendary Jon Kleinberg. [2]

Best hubs point to best authorities.

Recursive: nodes can be both hubs and authorities.

More: look for dense links between sets of good hubs pointing to sets of good authorities.

Known as the **HITS algorithm** (Hyperlink-Induced Topics Search).
Hubs and Authorities

- Generalize eigenvalue centrality to allow nodes to have two attributes:
 1. **Authority**: how much knowledge, information, etc., held by a node on a topic.
 2. **Hubness (or Hubosity or Hubbishness)**: how well a node ‘knows’ where to find information on a given topic.

- Original work due to the legendary Jon Kleinberg. [2]
- Best hubs point to best authorities.
- Recursive: nodes can be both hubs and authorities.
- More: look for dense links between sets of good hubs pointing to sets of good authorities.
- Known as the HITS algorithm (Hyperlink-Induced Topics Search).
Hubs and Authorities

- Generalize eigenvalue centrality to allow nodes to have two attributes:
 1. **Authority**: how much knowledge, information, etc., held by a node on a topic.
 2. **Hubness (or Hubosity or Hubbishness)**: how well a node ‘knows’ where to find information on a given topic.

- Original work due to the legendary Jon Kleinberg. [2]
- Best hubs point to best authorities.
- Recursive: nodes can be both hubs and authorities.
- More: look for dense links between sets of good hubs pointing to sets of good authorities.
- Known as the HITS algorithm (Hyperlink-Induced Topics Search).
Hubs and Authorities

- Generalize eigenvalue centrality to allow nodes to have two attributes:
 1. **Authority**: how much knowledge, information, etc., held by a node on a topic.
 2. **Hubness (or Hubosity or Hubbishness)**: how well a node ‘knows’ where to find information on a given topic.

- Original work due to the legendary Jon Kleinberg. [2]

- Best hubs point to best authorities.

- Recursive: nodes can be both hubs and authorities.

- More: look for dense links between sets of good hubs pointing to sets of good authorities.

- Known as the HITS algorithm (Hyperlink-Induced Topics Search).
Hubs and Authorities

 ► Generalize eigenvalue centrality to allow nodes to have two attributes:
 1. **Authority**: how much knowledge, information, etc., held by a node on a topic.
 2. **Hubness (or Hubosity or Hubbishness)**: how well a node ‘knows’ where to find information on a given topic.

 ► Original work due to the legendary Jon Kleinberg. [2]

 ► Best hubs point to best authorities.

 ► **Recursive**: nodes can be both hubs and authorities.

 ► More: look for dense links between sets of good hubs pointing to sets of good authorities.

 ► Known as the HITS algorithm (Hyperlink-Induced Topics Search).
Hubs and Authorities

- Generalize eigenvalue centrality to allow nodes to have two attributes:
 1. **Authority**: how much knowledge, information, etc., held by a node on a topic.
 2. **Hubness (or Hubosity or Hubbishness)**: how well a node ‘knows’ where to find information on a given topic.

- Original work due to the legendary Jon Kleinberg. [2]
- Best hubs point to best authorities.
- **Recursive**: nodes can be both hubs and authorities.
- **More**: look for dense links between sets of good hubs pointing to sets of good authorities.

- Known as the HITS algorithm (Hyperlink-Induced Topics Search).
Hubs and Authorities

- Generalize eigenvalue centrality to allow nodes to have two attributes:
 1. **Authority**: how much knowledge, information, etc., held by a node on a topic.
 2. **Hubness (or Hubosity or Hubbishness)**: how well a node ‘knows’ where to find information on a given topic.

- Original work due to the legendary Jon Kleinberg. \[2\]
- Best hubs point to best authorities.
- **Recursive**: nodes can be both hubs and authorities.
- **More**: look for dense links between sets of good hubs pointing to sets of good authorities.
- Known as the HITS algorithm (Hyperlink-Induced Topics Search).
Hubs and Authorities

- Give each node two scores:
 1. \(x_i \) = authority score for node \(i \)
 2. \(y_i \) = hubtasticness score for node \(i \)

- As for eigenvector centrality, we connect the scores of neighboring nodes.

- New story I: a good authority is linked to by good hubs.
- Means \(x_i \) should increase as \(\sum_{j=1}^{N} a_{ji} y_j \) increases.
- Note: indices are \(ji \) meaning \(j \) has a directed link to \(i \).

- New story II: good hubs point to good authorities.
- Means \(y_i \) should increase as \(\sum_{j=1}^{N} a_{ij} x_j \) increases.

- Linearity assumption:
 \[\hat{x} \propto A^T \hat{y} \text{ and } \hat{y} \propto A \hat{x} \]
Hubs and Authorities

- Give each node two scores:
 1. $x_i = \text{authority score}$ for node i
 2. $y_i = \text{hubtasticness score}$ for node i

- As for eigenvector centrality, we connect the scores of neighboring nodes.

- New story I: a good authority is linked to by good hubs.
 - Means x_i should increase as $\sum_{j=1}^{N} a_{ji} y_j$ increases.

- Note: indices are ji meaning j has a directed link to i.

- New story II: good hubs point to good authorities.
 - Means y_i should increase as $\sum_{j=1}^{N} a_{ij} x_j$ increases.

- Linearity assumption:
 $$\vec{x} \propto A^T \vec{y} \text{ and } \vec{y} \propto A \vec{x}$$
Hubs and Authorities

- Give each node two scores:
 1. \(x_i = \text{authority score} \) for node \(i \)
 2. \(y_i = \text{hubtasticness score} \) for node \(i \)

- As for eigenvector centrality, we connect the scores of neighboring nodes.

- New story I: a good authority is linked to by good hubs.
 - Means \(x_i \) should increase as \(\sum_{j=1}^{N} a_{ji} y_j \) increases.

- Note: indices are \(ji \) meaning \(j \) has a directed link to \(i \).

- New story II: good hubs point to good authorities.
 - Means \(y_i \) should increase as \(\sum_{j=1}^{N} a_{ij} x_j \) increases.

- Linearity assumption:
 \[\vec{x} \propto A^T \vec{y} \text{ and } \vec{y} \propto A \vec{x} \]
Hubs and Authorities

- Give each node two scores:
 1. $x_i =$ authority score for node i
 2. $y_i =$ hubtasticness score for node i

- As for eigenvector centrality, we connect the scores of neighboring nodes.

- New story I: a good authority is linked to by good hubs.
 - Means x_i should increase as $\sum_{j=1}^{N} a_{ji} y_j$ increases.
 - Note: indices are ji meaning j has a directed link to i.

- New story II: good hubs point to good authorities.
 - Means y_i should increase as $\sum_{j=1}^{N} a_{ij} x_j$ increases.

- Linearity assumption:
 \[\vec{x} \propto A^T \vec{y} \text{ and } \vec{y} \propto A \vec{x} \]
Hubs and Authorities

- Give each node two scores:
 1. \(x_i \) = authority score for node \(i \)
 2. \(y_i \) = hubtasticness score for node \(i \)

- As for eigenvector centrality, we connect the scores of neighboring nodes.

- New story I: a good authority is linked to by good hubs.
 - Means \(x_i \) should increase as \(\sum_{j=1}^{N} a_{ji} y_j \) increases.
 - Note: indices are \(ji \) meaning \(j \) has a directed link to \(i \).

- New story II: good hubs point to good authorities.
 - Means \(y_i \) should increase as \(\sum_{j=1}^{N} a_{ij} x_j \) increases.

- Linearity assumption:
 \[\vec{x} \propto A^T \vec{y} \text{ and } \vec{y} \propto A \vec{x} \]
Hubs and Authorities

- Give each node two scores:
 1. $x_i = \text{authority score}$ for node i
 2. $y_i = \text{hubtasticness score}$ for node i

- As for eigenvector centrality, we connect the scores of neighboring nodes.

- New story I: a good authority is linked to by good hubs.
- Means x_i should increase as $\sum_{j=1}^{N} a_{ji} y_j$ increases.
 - Note: indices are ji meaning j has a directed link to i.

- New story II: good hubs point to good authorities.
- Means y_i should increase as $\sum_{j=1}^{N} a_{ij} x_j$ increases.
 - Linearity assumption:
 $$\vec{x} \propto A^T \vec{y} \text{ and } \vec{y} \propto A \vec{x}$$
Hubs and Authorities

► Give each node two scores:
1. $x_i =$ authority score for node i
2. $y_i =$ hubtasticness score for node i

► As for eigenvector centrality, we connect the scores of neighboring nodes.

► New story I: a good authority is linked to by good hubs.

► Means x_i should increase as $\sum_{j=1}^{N} a_{ji} y_j$ increases.

► Note: indices are ji meaning j has a directed link to i.

► New story II: good hubs point to good authorities.

► Means y_i should increase as $\sum_{j=1}^{N} a_{ij} x_j$ increases.

► Linearity assumption:
$\vec{x} \propto A^T \vec{y}$ and $\vec{y} \propto Ax$
Hubs and Authorities

► Give each node two scores:
 1. $x_i = \text{authority score}$ for node i
 2. $y_i = \text{hubtasticness score}$ for node i

► As for eigenvector centrality, we connect the scores of neighboring nodes.

► New story I: a good authority is linked to by good hubs.

► Means x_i should increase as $\sum_{j=1}^{N} a_{ji} y_j$ increases.

► Note: indices are ji meaning j has a directed link to i.

► New story II: good hubs point to good authorities.

► Means y_i should increase as $\sum_{j=1}^{N} a_{ij} x_j$ increases.

► Linearity assumption:

$$\hat{x} \propto A^T \hat{y} \text{ and } \hat{y} \propto A \hat{x}$$
Hubs and Authorities

- Give each node two scores:
 1. $x_i =$ authority score for node i
 2. $y_i =$ hubtasticness score for node i

- As for eigenvector centrality, we connect the scores of neighboring nodes.

- New story I: a good authority is linked to by good hubs.
 - Means x_i should increase as $\sum_{j=1}^{N} a_{ji} y_j$ increases.
 - Note: indices are ji meaning j has a directed link to i.

- New story II: good hubs point to good authorities.
 - Means y_i should increase as $\sum_{j=1}^{N} a_{ij} x_j$ increases.

- Linearity assumption:
 $\vec{x} \propto A^T \vec{y}$ and $\vec{y} \propto A \vec{x}$
Hubs and Authorities

- Give each node two scores:
 1. $x_i =$ authority score for node i
 2. $y_i =$ hubtasticness score for node i

- As for eigenvector centrality, we connect the scores of neighboring nodes.

- New story I: a good authority is linked to by good hubs.
 - Means x_i should increase as $\sum_{j=1}^{N} a_{ji}y_j$ increases.
 - Note: indices are ji meaning j has a directed link to i.

- New story II: good hubs point to good authorities.
 - Means y_i should increase as $\sum_{j=1}^{N} a_{ij}x_j$ increases.

- Linearity assumption:
 $$\vec{x} \propto A^T\vec{y} \text{ and } \vec{y} \propto Ax$$
So let’s say we have
\[\vec{x} = c_1 A^T \vec{y} \] and \[\vec{y} = c_2 A \vec{x} \]
where \(c_1 \) and \(c_2 \) must be positive.

Above equations combine to give
\[\vec{x} = c_1 A^T c_2 A \vec{x} = \lambda A^T A \vec{x} \]
where \(\lambda = c_1 c_2 > 0 \).

It’s all good: we have the heart of singular value decomposition before us...
Hubs and Authorities

- So let’s say we have

\[\tilde{x} = c_1 A^T \tilde{y} \text{ and } \tilde{y} = c_2 A \tilde{x} \]

where \(c_1 \) and \(c_2 \) must be positive.

- Above equations combine to give

\[\tilde{x} = c_1 A^T c_2 A \tilde{x} = \lambda A^T A \tilde{x}. \]

where \(\lambda = c_1 c_2 > 0. \)

- It’s all good: we have the heart of singular value decomposition before us...
So let’s say we have

\[\vec{x} = c_1 A^T \vec{y} \text{ and } \vec{y} = c_2 A \vec{x} \]

where \(c_1 \) and \(c_2 \) must be positive.

Above equations combine to give

\[\vec{x} = c_1 A^T c_2 A \vec{x} = \lambda A^T A \vec{x}. \]

where \(\lambda = c_1 c_2 > 0. \)

It’s all good: we have the heart of singular value decomposition before us...
We can do this:

- $A^T A$ is symmetric.
- $A^T A$ is semi-positive definite so its eigenvalues are all ≥ 0.
- $A^T A$’s eigenvalues are the square of A’s singular values.
- $A^T A$’s eigenvectors form a joyful orthogonal basis.
- Perron-Frobenius tells us that only the dominant eigenvalue’s eigenvector can be chosen to have non-negative entries.
- So: linear assumption leads to a solvable system.
- What would be very good: find networks where we have independent measures of node ‘importance’ and see how importance is actually distributed.
We can do this:

- $A^T A$ is symmetric.
- $A^T A$ is semi-positive definite so its eigenvalues are all ≥ 0.
- $A^T A$’s eigenvalues are the square of A’s singular values.
- $A^T A$’s eigenvectors form a joyful orthogonal basis.
- Perron-Frobenius tells us that only the dominant eigenvalue’s eigenvector can be chosen to have non-negative entries.
- So: linear assumption leads to a solvable system.
- What would be very good: find networks where we have independent measures of node ‘importance’ and see how importance is actually distributed.
We can do this:

- A^TA is symmetric.
- A^TA is semi-positive definite so its eigenvalues are all ≥ 0.
- A^TA's eigenvalues are the square of A's singular values.
- A^TA's eigenvectors form a joyful orthogonal basis.
- Perron-Frobenius tells us that only the dominant eigenvalue's eigenvector can be chosen to have non-negative entries.
- So: linear assumption leads to a solvable system.
- What would be very good: find networks where we have independent measures of node 'importance' and see how importance is actually distributed.
We can do this:

- A^TA is symmetric.
- A^TA is semi-positive definite so its eigenvalues are all ≥ 0.
- A^TA's eigenvalues are the square of A's singular values.
- A^TA's eigenvectors form a joyful orthogonal basis.
- Perron-Frobenius tells us that only the dominant eigenvalue's eigenvector can be chosen to have non-negative entries.
- So: linear assumption leads to a solvable system.
- What would be very good: find networks where we have independent measures of node 'importance' and see how importance is actually distributed.
We can do this:

- $A^T A$ is symmetric.
- $A^T A$ is semi-positive definite so its eigenvalues are all ≥ 0.
- $A^T A$'s eigenvalues are the square of A's singular values.
- $A^T A$'s eigenvectors form a joyful orthogonal basis.
- Perron-Frobenius tells us that only the dominant eigenvalue’s eigenvector can be chosen to have non-negative entries.

So: linear assumption leads to a solvable system.

What would be very good: find networks where we have independent measures of node ‘importance’ and see how importance is actually distributed.
We can do this:

- $A^T A$ is symmetric.
- $A^T A$ is semi-positive definite so its eigenvalues are all ≥ 0.
- $A^T A$’s eigenvalues are the square of A’s singular values.
- $A^T A$’s eigenvectors form a joyful orthogonal basis.
- Perron-Frobenius tells us that only the dominant eigenvalue’s eigenvector can be chosen to have non-negative entries.
- So: linear assumption leads to a solvable system.
- What would be very good: find networks where we have independent measures of node ‘importance’ and see how importance is actually distributed.
We can do this:

- \(A^T A \) is symmetric.
- \(A^T A \) is semi-positive definite so its eigenvalues are all \(\geq 0 \).
- \(A^T A \)'s eigenvalues are the square of \(A \)'s singular values.
- \(A^T A \)'s eigenvectors form a joyful orthogonal basis.
- Perron-Frobenius tells us that only the dominant eigenvalue’s eigenvector can be chosen to have non-negative entries.
- So: linear assumption leads to a solvable system.
- What would be very good: find networks where we have independent measures of node ‘importance’ and see how importance is actually distributed.
References I

A faster algorithm for betweenness centrality.

Authoritative sources in a hyperlinked environment.
Proc. 9th ACM-SIAM Symposium on Discrete Algorithms, 1998. pdf (isEnabled)

An elementary proof of the perron-frobenius theorem for non-negative symmetric matrices.
References II

Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality.

Finding and evaluating community structure in networks.

A simple proof of the Perron-Frobenius theorem for positive symmetric matrices.

Social Network Analysis: Methods and Applications.