Can Horton and Tokunaga be happy?

Horton and Tokunaga seem different:

- In terms of network architecture, Horton's laws appear to contain less detailed information than Tokunaga's law.
- Oddly, Horton's laws have four parameters and Tokunaga has two parameters.
- \(R_m, R_n, R_i, \) and \(R_s \) versus \(T_1 \) and \(R_T \). One simple redundancy: \(R_i = R_s \). Insert question 2, assignment 2 (**)
- To make a connection, clearest approach is to start with Tokunaga's law...
- Known result: Tokunaga \(\rightarrow \) Horton [18, 19, 20, 9, 2]

Let us make them happy

We need one more ingredient:

Space-fillingness

- A network is space-filling if the average distance between adjacent streams is roughly constant.
- Reasonable for river and cardiovascular networks
- For river networks: Drainage density \(\rho_{dd} = \text{inverse of typical distance between channels in a landscape.} \)
- In terms of basin characteristics:

\[
\rho_{dd} \approx \frac{\sum \text{stream segment lengths}}{\text{basin area}} = \frac{\sum_{\omega=1}^{\Omega} \bar{n}_{\omega} s_{\omega}}{a_\Omega}
\]

More with the happy-making thing

Start with Tokunaga's law: \(T_k = T_1 R_T^{k-1} \)

- Start looking for Horton's stream number law:

\[
\frac{n_{\omega}}{n_{\omega+1}} = R_m^n
\]

- Estimate \(n_{\omega} \), the number of streams of order \(\omega \) in terms of other \(n_{\omega'}, \omega' > \omega \).
- Observe that each stream of order \(\omega \) terminates by either:

1. Running into another stream of order \(\omega \) and generating a stream of order \(\omega + 1 \)...
 - \(2n_{\omega+1} \) streams of order \(\omega \) do this
2. Running into and being absorbed by a stream of higher order \(\omega' > \omega \)...
 - \(n_{\omega'} T_{\omega' - \omega} \) streams of order \(\omega \) do this

More with the happy-making thing

Putting things together:

- \(n_\omega = 2n_{\omega+1} + \sum_{\omega'=\omega+1}^{\Omega} T_{\omega' - \omega} n_{\omega'} \) generation absorption

- Use Tokunaga's law and manipulate expression to create \(R_m \)’s.
- Insert question 3, assignment 2 (**)
- Solution:

\[
R_m = \left(\frac{2 + R_T + T_1}{2} \right) \pm \sqrt{\left(2 + R_T + T_1\right)^2 - 8R_T}
\]

(The larger value is the one we want.)
Finding other Horton ratios

Connect Tokunaga to \(R_s \)
- Now use uniform drainage density \(\rho_{dd} \).
- Assume side streams are roughly separated by distance \(1/\rho_{dd} \).
- For an order \(\omega \) stream segment, expected length is
 \[
 \bar{s}_\omega \simeq \rho_{dd}^{-1} \left(1 + \sum_{k=1}^{\omega-1} T_k \right)
 \]
- Substitute in Tokunaga's law \(T_n = T_1 R_T^{k-1} \):
 \[
 \bar{s}_\omega \simeq \rho_{dd}^{-1} \left(1 + T_1 \sum_{k=1}^{\omega-1} R_T^{k-1} \right) \propto R_T^\omega
 \]

Horton and Tokunaga are happy

Altogether then:
- \(\bar{s}_\omega / \bar{s}_{\omega-1} = R_T \Rightarrow R_s = R_T \)

Recall \(R_1 = R_s \) so

\[
R_s = R_s = R_T
\]

And from before:

\[
R_n = \frac{(2 + R_T + T_1) + \sqrt{(2 + R_T + T_1)^2 - 8 R_T}}{2}
\]

Horton and Tokunaga are friends

Some observations:
- \(R_n \) and \(R_1 \) depend on \(T_1 \) and \(R_T \).
- Seems that \(R_s \) must as well...
- Suggests Horton's laws must contain some redundancy
- We'll in fact see that \(R_s = R_n \).
- Also: Both Tokunaga's law and Horton's laws can be generalized to relationships between non-trivial statistical distributions.\(^3\)\(^4\)

Horton and Tokunaga are happy

The other way round
- Note: We can invert the expressions for \(R_s \) and \(R_1 \) to find Tokunaga's parameters.
 \[
 R_T = R_s,
 \]
 \[
 T_1 = R_n - R_1 - 2 + 2 R_s / R_n.
 \]
- Suggests we should be able to argue that Horton's laws imply Tokunaga's laws (if drainage density is uniform)...
Horton and Tokunaga are friends

Just checking:

- Substitute Tokunaga’s law $T_i = T_1 R_i^{\ell - 1} = T_1 R_i^{k - 1}$ into

$$T_k = (R_k - 1) \left(1 + \sum_{i=1}^{k-1} T_i \right)$$

- $T_1 = (R_1 - 1) \left(1 + T_1 R_1^{k-1} - 1 \right)$

$\simeq (R_k - 1) T_1 R_1^{k-1} R_k^{k-1} = T_1 R_1^{k-1}$... yep.

Horton’s laws of area and number:

- In right plots, stream number graph has been flipped vertically.
- Highly suggestive that $R_n \equiv R_d$...

Measuring Horton ratios is tricky:

- How robust are our estimates of ratios?
- Rule of thumb: discard data for two smallest and two largest orders.

Mississippi:

<table>
<thead>
<tr>
<th>ω range</th>
<th>R_n</th>
<th>R_d</th>
<th>R_i</th>
<th>R_s</th>
<th>R_{sd}/R_n</th>
</tr>
</thead>
<tbody>
<tr>
<td>[2.3]</td>
<td>5.27</td>
<td>5.26</td>
<td>2.48</td>
<td>2.30</td>
<td>1.00</td>
</tr>
<tr>
<td>[2.5]</td>
<td>4.86</td>
<td>4.96</td>
<td>2.42</td>
<td>2.31</td>
<td>1.02</td>
</tr>
<tr>
<td>[2.7]</td>
<td>4.77</td>
<td>4.88</td>
<td>2.40</td>
<td>2.31</td>
<td>1.02</td>
</tr>
<tr>
<td>[3.4]</td>
<td>4.72</td>
<td>4.91</td>
<td>2.41</td>
<td>2.34</td>
<td>1.04</td>
</tr>
<tr>
<td>[3.6]</td>
<td>4.70</td>
<td>4.83</td>
<td>2.40</td>
<td>2.35</td>
<td>1.03</td>
</tr>
<tr>
<td>[3.8]</td>
<td>4.60</td>
<td>4.79</td>
<td>2.38</td>
<td>2.34</td>
<td>1.04</td>
</tr>
<tr>
<td>[4.6]</td>
<td>4.69</td>
<td>4.81</td>
<td>2.40</td>
<td>2.36</td>
<td>1.02</td>
</tr>
<tr>
<td>[4.8]</td>
<td>4.57</td>
<td>4.77</td>
<td>2.38</td>
<td>2.34</td>
<td>1.05</td>
</tr>
<tr>
<td>[5.7]</td>
<td>4.68</td>
<td>4.83</td>
<td>2.36</td>
<td>2.29</td>
<td>1.03</td>
</tr>
<tr>
<td>[6.7]</td>
<td>4.63</td>
<td>4.76</td>
<td>2.30</td>
<td>2.16</td>
<td>1.03</td>
</tr>
<tr>
<td>[7.8]</td>
<td>4.16</td>
<td>4.67</td>
<td>2.41</td>
<td>2.56</td>
<td>1.12</td>
</tr>
</tbody>
</table>

- Mean μ: 4.69, 4.85, 2.40, 2.33, 1.04
- Std dev σ: 0.21, 0.13, 0.04, 0.07, 0.03

Amazon:

<table>
<thead>
<tr>
<th>ω range</th>
<th>R_n</th>
<th>R_d</th>
<th>R_i</th>
<th>R_s</th>
<th>R_{sd}/R_n</th>
</tr>
</thead>
<tbody>
<tr>
<td>[2.3]</td>
<td>4.78</td>
<td>4.71</td>
<td>2.47</td>
<td>2.08</td>
<td>0.99</td>
</tr>
<tr>
<td>[2.5]</td>
<td>4.55</td>
<td>4.58</td>
<td>2.32</td>
<td>2.12</td>
<td>1.01</td>
</tr>
<tr>
<td>[2.7]</td>
<td>4.42</td>
<td>4.53</td>
<td>2.24</td>
<td>2.10</td>
<td>1.02</td>
</tr>
<tr>
<td>[3.5]</td>
<td>4.45</td>
<td>4.52</td>
<td>2.26</td>
<td>2.14</td>
<td>1.01</td>
</tr>
<tr>
<td>[3.7]</td>
<td>4.35</td>
<td>4.49</td>
<td>2.20</td>
<td>2.10</td>
<td>1.03</td>
</tr>
<tr>
<td>[4.6]</td>
<td>4.38</td>
<td>4.54</td>
<td>2.22</td>
<td>2.18</td>
<td>1.03</td>
</tr>
<tr>
<td>[5.6]</td>
<td>4.38</td>
<td>4.62</td>
<td>2.22</td>
<td>2.21</td>
<td>1.06</td>
</tr>
<tr>
<td>[6.7]</td>
<td>4.08</td>
<td>4.27</td>
<td>2.05</td>
<td>1.83</td>
<td>1.05</td>
</tr>
</tbody>
</table>

- Mean μ: 4.42, 4.53, 2.25, 2.10, 1.02
- Std dev σ: 0.17, 0.10, 0.10, 0.09, 0.02

Reducing Horton’s laws:

Rough first effort to show $R_n \equiv R_d$:

- $a_\Omega \propto$ sum of all stream segment lengths in an order Ω basin (assuming uniform drainage density)

So:

$$a_\Omega \simeq \sum_{\omega=1}^{\Omega} n_\omega / \rho a$$

$$\propto \sum_{\omega=1}^{\Omega} R_\omega^{\Omega-\omega} R_{\omega-1} = R_\omega^{\Omega-\omega} R_{\omega-1}$$

$$= \frac{R_\omega^{\Omega-\omega}}{R_s} R_{\omega-1} \sum_{\omega=1}^{\Omega} (R_s / R_n)^\omega$$
Reducing Horton’s laws:

Continued ...

\[a_\omega \propto \frac{R_{\Omega}^2}{R_a} \bar{s}_1 \sum_{\omega \geq 1} \left(\frac{R_s}{R_a} \right)^\omega \]

\[= \frac{R_{\Omega}^2}{R_a} \bar{s}_1 \left(\frac{R_s}{R_a} \right) \frac{1}{1 - \left(\frac{R_s}{R_a} \right)^\omega} \]

\[\sim R_{\Omega}^{\omega-1} \bar{s}_1 \frac{1}{1 - \left(\frac{R_s}{R_a} \right)} \text{ as } \Omega \]

\[\Rightarrow a_\omega \text{ is growing like } R_{\Omega}^\omega \text{ and therefore: } R_{\Omega} \equiv R_a \]

Equipartitioning:

Intriguing division of area:

- Observe: Combined area of basins of order \(\omega \) independent of \(\omega \).
- Not obvious: basins of low orders not necessarily contained in basis on higher orders.

Story:

\[R_{\Omega} \equiv R_a \Rightarrow n_\omega \bar{a}_\omega = \text{const} \]

Reason:

\[n_\omega \propto (R_a)^{\omega} \]

\[\bar{a}_\omega \propto (R_s)^{\omega} \propto n_\omega^{-1} \]

Scaling laws

A little further...

- Ignore stream ordering for the moment
- Pick a random location on a branching network \(p \).
- Each point \(p \) is associated with a basin and a longest stream length

Q: What is probability that the \(p \)'s drainage basin has area \(a \)?

\[P(a) \propto a^{-\gamma} \text{ for large } a \]

Q: What is probability that the longest stream from \(p \) has length \(\ell \)?

\[P(\ell) \propto \ell^{-\gamma} \text{ for large } \ell \]

Roughly observed: \(1.3 \leq \gamma \leq 1.5 \) and \(1.7 \leq \gamma \leq 2.0 \)
Scaling laws

Probability distributions with power-law decays
► We see them everywhere:
 ► Earthquake magnitudes (Gutenberg-Richter law)
 ► City sizes (Zipf’s law)
 ► Word frequency (Zipf’s law)\(^{[21]}\)
 ► Wealth (maybe not—at least heavy tailed)
 ► Statistical mechanics (phase transitions)\(^{[5]}\)
► A big part of the story of complex systems
► Arise from mechanisms: growth, randomness, optimization, ...
► Our task is always to illuminate the mechanism...

Finding γ:
► The connection between \(P(x)\) and \(P_\geq(x)\) when \(P(x)\) has a power law tail is simple:

\[
P_\geq(\ell_\ast) = \int_{\ell=\ell_\ast}^{\ell_{\text{max}}} P(\ell) \, d\ell
\]

\[
\sim \int_{\ell=\ell_\ast}^{\ell_{\text{max}}} \ell^{-\gamma} \, d\ell
\]

\[
= \frac{\ell^{-\gamma+1}}{-\gamma+1} \int_{\ell=\ell_\ast}^{\ell_{\text{max}}} \ell \, d\ell
\]

\[
\propto \ell^{-\gamma+1} \text{ for } \ell_{\text{max}} \gg \ell_\ast
\]

Scaling laws

Connecting exponents
► We have the detailed picture of branching networks (Tokunaga and Horton)
► Plan: Derive \(P(a) \propto a^{-\gamma}\) and \(P(\ell) \propto \ell^{-\gamma}\) starting with Tokunaga/Horton story\(^{[17, 1, 2]}\)
► Let’s work on \(P(\ell)\)...
► Our first fudge: assume Horton’s laws hold throughout a basin of order \(\Omega\).
 (We know they deviate from strict laws for low \(\omega\) and high \(\omega\) but not too much.)
► Next: place stick between teeth. Bite stick. Proceed.

Finding γ:
► Aim: determine probability of randomly choosing a point on a network with main stream length \(> \ell_\ast\)
► Assume some spatial sampling resolution \(\Delta\)
► Landscape is broken up into grid of \(\Delta \times \Delta\) sites
► Approximate \(P_\geq(\ell_\ast)\) as

\[
P_\geq(\ell_\ast) = \frac{N_\ast(\ell_\ast; \Delta)}{N_\ast(0; \Delta)}
\]

where \(N_\ast(\ell_\ast; \Delta)\) is the number of sites with main stream length \(> \ell_\ast\).
► Use Horton’s law of stream segments:

\[
\frac{n_\omega}{n_{\omega-1}} = R_\ell...
\]

Scaling laws

Finding γ:
► Often useful to work with cumulative distributions, especially when dealing with power-law distributions.
► The complementary cumulative distribution turns out to be most useful:

\[
P_\geq(\ell_\ast) = P(\ell > \ell_\ast) = \int_{\ell=\ell_\ast}^{\ell_{\text{max}}} P(\ell) \, d\ell
\]

\[
P_\geq(\ell_\ast) = 1 - P(\ell < \ell_\ast)
\]

Also known as the exceedance probability.

Finding γ:
► Set \(\ell_\ast = \ell_\omega\) for some \(1 \ll \omega \ll \Omega\).

\[
P_\geq(\ell_\omega) = \frac{N_\ast(\ell_\omega; \Delta)}{N_\ast(0; \Delta)} = \frac{\sum_{\omega'\omega=\omega+1} n_{\omega'} s_{\omega'}}{\sum_{\omega'=1}^{\Omega} n_{\omega'} s_{\omega'}}
\]

\(\Delta\)’s cancel
► Denominator is a \(\text{const} \times a_{100}\Delta\), a constant.
► So... using Horton’s laws...

\[
P_\geq(\ell_\omega) \propto \sum_{\omega'=\omega+1} n_{\omega'} s_{\omega'} = \sum_{\omega'=\omega+1} \left(1 - R_0^{\omega'-\omega}\right)(\Omega_1 R_0^{-\omega'-1})
\]
Scaling laws

Finding γ:

- We are here:
 \[P_x(\ell) \propto \sum_{\omega=1}^{\Omega} (1 \cdot R_n^{\Omega-\omega})(\bar{s}_1 \cdot R_s^{\omega-1}) \]
- Cleaning up irrelevant constants:
 \[P_x(\ell) \propto \sum_{\omega=\omega+1}^{\Omega} \left(\frac{R_s}{R_n} \right)^{\omega} \]
- Change summation order by substituting
 \[\omega'' = \Omega - \omega' \]
- Sum is now from \(\omega'' = 0 \) to \(\omega'' = \Omega - \omega - 1 \) (equivalent to \(\omega' = \Omega \) down to \(\omega' = \omega + 1 \))

Scaling laws

Finding γ:

- Since \(R_n > R_s \) and \(1 < \omega \ll \Omega \),
 \[P_x(\ell) \propto \left(\frac{R_n}{R_s} \right)^{\Omega-\omega} \left(\frac{R_n}{R_s} \right)^{-\omega} \]
 again using \(\sum_{\omega=0}^{\Omega-1} a' = (a^n - 1)/(a - 1) \)

Hack's law:[6]

- Typically observed that \(0.5 \lesssim h \lesssim 0.7 \).
 - Use Horton laws to connect \(h \) to Horton ratios:
 \[\ell_\omega \propto R_s^{\omega} \quad \text{and} \quad a_\omega \propto R_n^{\omega} \]
 - Observe:
 \[\ell_\omega \propto e^{\omega \ln R_n} \propto \left(\frac{R_n^{\omega}}{R_s^{\omega}} \right)^{\ln R_n/\ln R_s} \]
 \[\propto \left(\frac{R_n^{\omega}}{R_s^{\omega}} \right)^{\ln R_n/\ln R_s} \propto a_\omega^{R_n/\ln R_s} \Rightarrow h = \ln R_s/\ln R_n \]
Connecting exponents
Only 3 parameters are independent: e.g., take d, R_n, and R_s

<table>
<thead>
<tr>
<th>relation</th>
<th>scaling relation/parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\ell \sim L^d$</td>
<td>d</td>
</tr>
<tr>
<td>$T_k = T_1(R_T)^{k-1}$</td>
<td>$T_1 = R_n = R_s - 2 + 2R_s/R_R$</td>
</tr>
<tr>
<td>$n_a/n_{a+1} = R_n$</td>
<td>R_n</td>
</tr>
<tr>
<td>$n_{a+1} - n_a = R_s$</td>
<td>$R_s = R_n$</td>
</tr>
<tr>
<td>$\ell \sim a^\gamma$</td>
<td>$h = \log(R_u)/\log(R_0)$</td>
</tr>
<tr>
<td>$\ell \sim L^D$</td>
<td>$D = d/h$</td>
</tr>
<tr>
<td>$L_{\perp} \sim L_H$</td>
<td>$H = d/h - 1$</td>
</tr>
<tr>
<td>$P(a) \sim a^{-\tau}$</td>
<td>$\tau = 2 - h$</td>
</tr>
<tr>
<td>$P(\ell) \sim \ell^{-\gamma}$</td>
<td>$\gamma = 1/h$</td>
</tr>
<tr>
<td>$\lambda \sim a^\beta$</td>
<td>$\beta = 1 + h$</td>
</tr>
<tr>
<td>$\lambda \sim L^\omega$</td>
<td>$\omega = d$</td>
</tr>
</tbody>
</table>

Fluctuations

Moving beyond the mean:
- Both Horton’s laws and Tokunaga’s law relate average properties, e.g.,
 \[\bar{a}_u/\bar{a}_{u-1} = R_s \]
- Natural generalization to consideration relationships between probability distributions
- Yields rich and full description of branching network structure
- See into the heart of randomness...

A toy model—Scheidegger’s model

Directed random networks \[\text{[11, 12]}\]

- $P(\perp) = P(\perp) = 1/2$
- Flow is directed downwards
- Useful and interesting test case—more later...

Generalizing Horton’s laws

- $\ell_u \propto (R_i)^\omega \Rightarrow N(\ell|\omega) = (R_u/R_i)^{-\omega} F(r/R_i)$
- $a_u \propto (R_a)^\omega \Rightarrow N(a|\omega) = (R_u^2)^{-\omega} F(a/R_u)$
- Scaling collapse works well for intermediate orders
- All moments grow exponentially with order

Equipmentapping reexamined:
Recall this story:

Mississippi basin partitioning

Amazon basin partitioning

Mississippi length distributions

Amazon length distributions

References
- Models
- Nutshell
- Tokunaga
- Horton
- Scaling relations

References
- Models
- Nutshell
- Tokunaga
- Horton
- Scaling relations

References
- Models
- Nutshell
- Tokunaga
- Horton
- Scaling relations

References
- Models
- Nutshell
- Tokunaga
- Horton
- Scaling relations

References
- Models
- Nutshell
- Tokunaga
- Horton
- Scaling relations

References
- Models
- Nutshell
- Tokunaga
- Horton
- Scaling relations
Generalizing Horton’s laws

- How well does overall basin fit internal pattern?
 - Actual length = 4920 km (at 1 km res)
 - Predicted Mean length = 11100 km
 - Predicted Std dev = 5600 km
 - Actual length/Mean length = 44%
 - Okay.

Comparison of predicted versus measured main stream lengths for large scale river networks (in 10^3 km):

<table>
<thead>
<tr>
<th>basin</th>
<th>l_0</th>
<th>l_0</th>
<th>σ_l</th>
<th>l_0/σ_l</th>
<th>l_0/σ_l</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mississippi</td>
<td>4.92</td>
<td>11.10</td>
<td>5.60</td>
<td>0.44</td>
<td>0.51</td>
</tr>
<tr>
<td>Amazon</td>
<td>5.75</td>
<td>9.18</td>
<td>6.85</td>
<td>0.63</td>
<td>0.75</td>
</tr>
<tr>
<td>Nile</td>
<td>6.49</td>
<td>2.66</td>
<td>2.20</td>
<td>2.44</td>
<td>0.83</td>
</tr>
<tr>
<td>Congo</td>
<td>5.07</td>
<td>10.13</td>
<td>5.75</td>
<td>0.50</td>
<td>0.57</td>
</tr>
<tr>
<td>Kansas</td>
<td>1.07</td>
<td>2.37</td>
<td>1.74</td>
<td>0.45</td>
<td>0.73</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>a</th>
<th>a/ℓ₀</th>
<th>σ_a/σ_ℓ₀</th>
<th>a/ℓ₀</th>
<th>σ_a/σ_ℓ₀</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mississippi</td>
<td>2.74</td>
<td>7.55</td>
<td>5.58</td>
<td>0.36</td>
</tr>
<tr>
<td>Amazon</td>
<td>5.40</td>
<td>9.07</td>
<td>8.04</td>
<td>0.60</td>
</tr>
<tr>
<td>Nile</td>
<td>3.08</td>
<td>0.96</td>
<td>0.79</td>
<td>3.19</td>
</tr>
<tr>
<td>Congo</td>
<td>3.70</td>
<td>10.09</td>
<td>8.28</td>
<td>0.37</td>
</tr>
<tr>
<td>Kansas</td>
<td>0.14</td>
<td>0.49</td>
<td>0.42</td>
<td>0.28</td>
</tr>
</tbody>
</table>

Combining stream segments distributions:

- Stream segments sum to give main stream lengths
 \(l_\omega = \sum_{\mu=1}^{\mu} s_\mu \)
- \(P(l_\omega) \) is a convolution of distributions for the \(s_\mu \)

Next level up: Main stream length distributions must combine to give overall distribution for stream length

- \(P(l) \sim l^{-\gamma} \)
- Another round of convolutions

Nutshell: \(\xi \simeq 900 \) m.

Number and area distributions for the Scheidegger model \(P(n_\delta) \) versus \(P(a_\delta) \).
Generalizing Tokunaga’s law

Scheidegger:

- Observe exponential distributions for $T_{\mu,\nu}$
- Scaling collapse works using R_s

Generalizing Tokunaga’s law

Mississippi:

- Same data collapse for Mississippi...

Generalizing Tokunaga’s law

So

$$P(T_{\mu,\nu}) = (R_s)^{\mu-\nu-1} P_{\mu} \left[\frac{T_{\mu,\nu}}{(R_s)^{\mu-1}} \right]$$

where

$$P_{\mu}(z) = \frac{1}{\xi} e^{-z/\xi}.$$

$$P(s_{\nu}) \equiv P(T_{\mu,\nu})$$

- Exponentials arise from randomness.
- Look at joint probability $P(s_{\nu}, T_{\mu,\nu})$.

Generalizing Tokunaga’s law

Network architecture:

- Inter-tributary lengths exponentially distributed
- Leads to random spatial distribution of stream segments

Generalizing Tokunaga’s law

- Follow streams segments down stream from their beginning
- Probability (or rate) of an order μ stream segment terminating is constant:
 $$\tilde{p}_\mu \approx \frac{1}{(R_s)^{\mu-1}\xi_s}$$
- Probability decays exponentially with stream order
- Inter-tributary lengths exponentially distributed
- \Rightarrow random spatial distribution of stream segments

Generalizing Tokunaga’s law

- Joint distribution for generalized version of Tokunaga’s law:
 $$P(s_{\nu}, T_{\mu,\nu}) = \tilde{p}_\mu \left(\frac{s_{\nu}}{T_{\mu,\nu}} \right) \rho_{\nu-1}^{T_{\mu,\nu}-1} (1 - \tilde{p}_\nu)$$

where

- ρ_{ν} = probability of absorbing an order ν stream
- \tilde{p}_μ = probability of an order μ stream terminating
- Approximation: depends on distance units of s_{ν}
- In each unit of distance along stream, there is one chance of a side stream entering or the stream terminating.
Generalizing Tokunaga’s law

- Now deal with thing:
 \[P(s_\mu, \mu) = \tilde{P}_\nu(\frac{S_\mu}{T_\mu}) \rho_T T_\nu (1 - \rho_T - \tilde{P}_\nu)^{\eta_T - 1} \]
- Set \((x, y) = (s_\mu, \mu)\) and \(q = 1 - \rho_T - \tilde{P}_\nu\), approximate liberally.
- Obtain
 \[P(x, y) = Nx^{-1/2} [F(y/x)]^{-x} \]
 where
 \[F(v) = \left(\frac{1 - v}{q}\right)^{-1} \left(\frac{v}{\rho}\right)^{-v}. \]

Generalizing Tokunaga’s law

- Checking form of \(P(s_\mu, \mu)\) works:
 Scheidegger:

Generalizing Tokunaga’s law

- Checking form of \(P(s_\mu, \mu)\) works:
 Mississippi:

Models

- Random subnetworks on a Bethe lattice
 - Dominant theoretical concept for several decades.
 - Bethe lattices are fun and tractable.
 - Led to idea of “Statistical inevitability” of river network statistics
 - But Bethe lattices unconnected with surfaces.
 - In fact, Bethe lattices \(\simeq\) infinite dimensional spaces (oops).
 - So let’s move on...
Branching Networks II

Horton ⇔ Tokunaga
Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References

61 of 74

Scheidegger's model

Directed random networks \[11, 12\]

\[P(\downarrow) = P(\uparrow) = 1/2 \]

Functional form of all scaling laws exhibited but exponents differ from real world \[15, 16, 14\]

A toy model—Scheidegger's model

Random walk basins:

- Boundaries of basins are random walks

Optimal channel networks

Rodríguez-Iturbe, Rinaldo, et al. \[10\]

- Landscapes \(h(x) \) evolve such that energy dissipation \(\dot{\varepsilon} \) is minimized, where

\[
\dot{\varepsilon} \propto \int d\vec{r} (\text{flux}) \times (\text{force}) \sim \sum_i a_i \nabla h_i \sim \sum_i a_i^h
\]

- Landscapes obtained numerically give exponents near that of real networks.

- But: numerical method used matters.

- And: Maritan et al. find basic universality classes are that of Scheidegger, self-similar, and a third kind of random network \[8\]

Theoretical networks

Summary of universality classes:

<table>
<thead>
<tr>
<th>network</th>
<th>(h)</th>
<th>(d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-convergent flow</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Directed random</td>
<td>2/3</td>
<td>1</td>
</tr>
<tr>
<td>Undirected random</td>
<td>5/8</td>
<td>5/4</td>
</tr>
<tr>
<td>Self-similar</td>
<td>1/2</td>
<td>1</td>
</tr>
<tr>
<td>OCN's (I)</td>
<td>1/2</td>
<td>1</td>
</tr>
<tr>
<td>OCN's (II)</td>
<td>2/3</td>
<td>1</td>
</tr>
<tr>
<td>OCN's (III)</td>
<td>3/5</td>
<td>1</td>
</tr>
<tr>
<td>Real rivers</td>
<td>0.5–0.7</td>
<td>1.0–1.2</td>
</tr>
</tbody>
</table>

\(h \Rightarrow \ell \propto a^h \) (Hack's law).

\(d \Rightarrow \ell \propto L_d^d \) (stream self-affinity).
Nutshell

Branching networks II Key Points:
- Horton’s laws and Tokunaga law all fit together.
- nb. for 2-d networks, these laws are ‘planform’ laws and ignore slope.
- Abundant scaling relations can be derived.
- Can take R_n, R_ℓ, and d as three independent parameters necessary to describe all 2-d branching networks.
- For scaling laws, only $h = \ln R_\ell / \ln R_n$ and d are needed.
- Laws can be extended nicely to laws of distributions.
- Numerous models of branching network evolution exist: nothing rock solid yet.

References I

References II

References III

References IV

References V

References VI

References VII
