Introduction

Branching networks are useful things:

- Fundamental to material supply and collection
- Supply: From one source to many sinks in 2- or 3-d.

Ex
Geomorphological networks

Definitions
- Drainage basin for a point \(p \) is the complete region of land from which overland flow drains through \(p \).
- Definition most sensible for a point in a stream.
- Recursive structure: Basins contain basins and so on.
- In principle, a drainage basin is defined at every point on a landscape.
- On flat hillslopes, drainage basins are effectively linear.
- We treat subsurface and surface flow as following the gradient of the surface.
- Okay for large-scale networks...

Basic basin quantities: \(a, l, L_\parallel, L_\perp \):

- \(a \) = drainage basin area
- \(l \) = length of longest (main) stream (which may be fractal)
- \(L = L_\parallel \) = longitudinal length of basin
- \(L = L_\perp \) = width of basin

Allometry

- Isometry: dimensions scale linearly with each other.
- Allometry: dimensions scale nonlinearly.

Basin allometry

Allometric relationships:

- \(\ell \propto a^h \)
 reportedly \(0.5 < h < 0.7 \)
- \(\ell \propto L^d \)
 reportedly \(1.0 < d < 1.1 \)
- Basin allometry:
 \[L_\perp \propto a^{h/d} \equiv a^{1/D} \]

'Laws'

- Hack's law (1957)\(^2\):
 \[\ell \propto a^h \]
 reportedly \(0.5 < h < 0.7 \)
- Scaling of main stream length with basin size:
 \[\ell \propto L^d \]
 reportedly \(1.0 < d < 1.1 \)
- Basin allometry:
 \[L_\perp \propto a^{h/d} \equiv a^{1/D} \]

There are a few more 'laws'\(^1\):

Relation: Name or description:

- \(T_k = T_k(R_T)^k \) Tokunaga's law
- \(\ell \sim L^d \) self-affinity of single channels
- \(n_0/n_{n+1} = R_0 \) Horton's law of stream numbers
- \(L_{n+1}/L_n = R_1 \) Horton's law of main stream lengths
- \(\bar{a}_n/\bar{a}_{n+1} = R_0 \) Horton's law of basin areas
- \(\bar{s}_n/\bar{s}_{n+1} = R_0 \) Horton's law of stream segment lengths
- \(L_\perp \sim L^H \) scaling of basin widths
- \(P(a) \sim a^{-\gamma} \) probability of basin areas
- \(P(l) \sim l^{-\gamma} \) probability of stream lengths
- \(\ell \sim a^h \) Hack's law
- \(a \sim L^D \) scaling of basin areas
- \(\Lambda \sim a^d \) Langbein's law
- \(\lambda \sim L^2 \) variation of Langbein's law
Reported parameter values: [1]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Real networks:</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_n</td>
<td>3.0–5.0</td>
</tr>
<tr>
<td>R_a</td>
<td>3.0–6.0</td>
</tr>
<tr>
<td>$R_l = R_T$</td>
<td>1.5–3.0</td>
</tr>
<tr>
<td>T_1</td>
<td>1.0–1.5</td>
</tr>
<tr>
<td>d</td>
<td>1.1 ± 0.01</td>
</tr>
<tr>
<td>D</td>
<td>1.8 ± 0.1</td>
</tr>
<tr>
<td>h</td>
<td>0.50–0.70</td>
</tr>
<tr>
<td>τ</td>
<td>1.43 ± 0.05</td>
</tr>
<tr>
<td>γ</td>
<td>1.8 ± 0.1</td>
</tr>
<tr>
<td>H</td>
<td>0.75–0.80</td>
</tr>
<tr>
<td>β</td>
<td>0.50–0.70</td>
</tr>
<tr>
<td>φ</td>
<td>1.05 ± 0.05</td>
</tr>
</tbody>
</table>

Stream Ordering:

Some definitions:

- A channel head is a point in landscape where flow becomes focused enough to form a stream.
- A source stream is defined as the stream that reaches from a channel head to a junction with another stream.
- Roughly analogous to capillary vessels.
- Use symbol $\omega = 1, 2, 3, \ldots$ for stream order.

Kind of a mess...

Order of business:

1. Find out how these relationships are connected.
2. Determine most fundamental description.
3. Explain origins of these parameter values

For (3): Many attempts: not yet sorted out...

Stream Ordering:

Method for describing network architecture:

- Introduced by Horton (1945) [3]
- Modified by Strahler (1957) [6]
- Can be seen as iterative trimming of a network.
Stream Ordering:

Another way to define ordering:

- As before, label all source streams as order $\omega = 1$.
- Follow all labelled streams downstream.
- Whenever two streams of the same order (ω) meet, the resulting stream has order incremented by 1 ($\omega + 1$).
- If streams of different orders ω_1 and ω_2 meet, then the resultant stream has order equal to the largest of the two.
- Simple rule:
 \[\omega_3 = \max(\omega_1, \omega_2) + \delta_{\omega_1, \omega_2} \]
 where δ is the Kronecker delta.

Stream Ordering:

One problem:

- Resolution of data messes with ordering
- Micro-description changes (e.g., order of a basin may increase)
- ... but relationships based on ordering appear to be robust to resolution changes.

Stream Ordering:

Utility:

- Stream ordering helpfully discretizes a network.
- Goal: understand network architecture.

Horton’s laws

Self-similarity of river networks

- First quantified by Horton (1945)\(^3\), expanded by Schumm (1956)\(^5\)

Three laws:

- Horton’s law of stream numbers:
 \[\frac{n_\omega}{n_{\omega+1}} = R_n > 1 \]
- Horton’s law of stream lengths:
 \[\frac{\ell_{\omega+1}}{\ell_\omega} = R_\ell > 1 \]
- Horton’s law of basin areas:
 \[\frac{a_{\omega+1}}{a_\omega} = R_a > 1 \]

Horton’s Ratios

Horton’s laws are defined by three ratios:

- R_n, R_ℓ, and R_a.
- Horton’s laws describe exponential decay or growth:
 \[n_\omega = \frac{n_{\omega-1}}{R_n} = \frac{n_{\omega-2}}{R_n^2} = \cdots = \frac{n_1}{R_n^{\omega-1}} = n_1 \ e^{-(\omega-1) \ln R_n} \]
Horton's laws

Similar story for area and length:

\[\overline{a}_\omega = \overline{a}_1 \theta^{(\omega - 1)} \ln \overline{R}_\omega \]
\[\overline{\ell}_\omega = \overline{\ell}_1 \theta^{(\omega - 1)} \ln \overline{R}_\omega \]

As stream order increases, number drops and area and length increase.

Horton's laws

A few more things:

- Horton's laws are laws of averages.
- Averaging for number is across basins.
- Averaging for stream lengths and areas is within basins.
- Horton's ratios go a long way to defining a branching network...
- But we need one other piece of information...

Horton's laws

A bonus law:

- Horton's law of stream segment lengths:

\[\overline{s}_{\omega+1}/\overline{s}_\omega = R_s > 1 \]

- Can show that \(R_s = R_\ell \).

Insert question 2, assignment 2 (II)

Horton's laws in the real world:

Blood networks:

- Horton's laws hold for sections of cardiovascular networks.
- Measuring such networks is tricky and messy...
- Vessel diameters obey an analogous Horton's law.

Data from real blood networks

<table>
<thead>
<tr>
<th>Network</th>
<th>(R_0)</th>
<th>(R_\ell^{-1})</th>
<th>(R_s^{-1})</th>
<th>(\ln \overline{R}_\ell/\overline{R}_s)</th>
<th>(\ln \overline{R}\ell/\overline{R}\ell)</th>
<th>(\alpha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>West et al.</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>1/2</td>
<td>1/3</td>
<td>3/4</td>
</tr>
<tr>
<td>rat (PAT)</td>
<td>2.76</td>
<td>1.58</td>
<td>1.60</td>
<td>0.45</td>
<td>0.46</td>
<td>0.73</td>
</tr>
<tr>
<td>cat (PAT)</td>
<td>3.67</td>
<td>1.71</td>
<td>1.78</td>
<td>0.41</td>
<td>0.44</td>
<td>0.79</td>
</tr>
<tr>
<td>(Turcotte et al.(^{10}))</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>dog (PAT)</td>
<td>3.69</td>
<td>1.67</td>
<td>1.52</td>
<td>0.39</td>
<td>0.32</td>
<td>0.90</td>
</tr>
<tr>
<td>pig (LCX)</td>
<td>3.57</td>
<td>1.89</td>
<td>2.20</td>
<td>0.50</td>
<td>0.62</td>
<td>0.62</td>
</tr>
<tr>
<td>pig (RCA)</td>
<td>3.50</td>
<td>1.81</td>
<td>2.12</td>
<td>0.47</td>
<td>0.60</td>
<td>0.65</td>
</tr>
<tr>
<td>pig (LAD)</td>
<td>3.51</td>
<td>1.84</td>
<td>2.02</td>
<td>0.49</td>
<td>0.56</td>
<td>0.65</td>
</tr>
<tr>
<td>human (PAT)</td>
<td>3.03</td>
<td>1.60</td>
<td>1.49</td>
<td>0.42</td>
<td>0.36</td>
<td>0.83</td>
</tr>
<tr>
<td>human (PAT)</td>
<td>3.36</td>
<td>1.56</td>
<td>1.49</td>
<td>0.37</td>
<td>0.33</td>
<td>0.94</td>
</tr>
</tbody>
</table>
Horton’s laws

Observations:

- Horton’s ratios vary:
 - R_n: 3.0–5.0
 - R_a: 3.0–6.0
 - R_v: 1.5–3.0

- No accepted explanation for these values.
- Horton’s laws tell us how quantities vary from level to level ...
- ... but they don’t explain how networks are structured.

Tokunaga’s law

Delving deeper into network architecture:

- Tokunaga (1968) identified a clearer picture of network structure [7, 8, 9]
- As per Horton-Strahler, use stream ordering.
- Focus: describe how streams of different orders connect to each other.
- Tokunaga’s law is also a law of averages.

Network Architecture

Tokunaga’s law

- Property 1: Scale independence—depends only on difference between orders:
 \[T_{\mu,\nu} = T_{\mu-\nu} \]

- Property 2: Number of side streams grows exponentially with difference in orders:
 \[T_{\mu,\nu} = T_1(R_T)^{\mu-\nu-1} \]

- We usually write Tokunaga’s law as:
 \[T_k = T_1(R_T)^{k-1} \]
 where $R_T \simeq 2$

The Mississippi

A Tokunaga graph:
Nutshell:

Branching networks I:
- Show remarkable self-similarity over many scales.
- There are many interrelated scaling laws.
- Horton-Strahler stream ordering gives one useful way of getting at the architecture of branching networks.
- Horton’s laws reveal self-similarity.
- Horton’s laws can be misinterpreted as suggesting a pure hierarchy.
- Tokunaga’s laws neatly describe network architecture.
- Branching networks exhibit a mixed hierarchical structure.
- Horton and Tokunaga can be connected analytically (next up).

References I

References II

References III

References IV