Power Law Size Distributions
Principles of Complex Systems
CSYS/MATH 300, Fall, 2010

Prof. Peter Dodds
Department of Mathematics & Statistics
Center for Complex Systems
Vermont Advanced Computing Center
University of Vermont

Overview
Introduction
Examples
Wild vs. Mild
CCDFs
Zipf's law
Zipf ⇔ CCDF

References

Outline
Power Law Size Distributions
Overview
Introduction
Examples
Wild vs. Mild
CCDFs
Zipf's law
Zipf ⇔ CCDF

References

Add section on stable distributions
Add an assignment question or two
convolve distributions
Cauchy

Add section on stable distributions
Add an assignment question or two
convolve distributions
Cauchy

Size distributions—Assignment 1 recap:

The sizes of many systems' elements appear to obey an inverse power-law size distribution:

\[P(\text{size} = x) \sim c x^{-\gamma} \]

where \(x_{\text{min}} < x < x_{\text{max}} \)
and \(\gamma > 1 \)

- \(x_{\text{min}} \) = lower cutoff
- \(x_{\text{max}} \) = upper cutoff
- Negative linear relationship in log-log space:

\[\log P(x) = \log c - \gamma \log x \]

Size distributions

- Usually, only the tail of the distribution obeys a power law:

\[P(x) \sim c x^{-\gamma} \text{ for } x \text{ large.} \]

- Still use term 'power law distribution'

Size distributions

Many systems have discrete sizes \(k \):

- Word frequency
- Node degree (as we have seen): # hyperlinks, etc.
- number of citations for articles, court decisions, etc.

\[P(k) \sim c k^{-\gamma} \]

where \(k_{\text{min}} \leq k \leq k_{\text{max}} \)
Size distributions

Power law size distributions are sometimes called Pareto distributions after Italian scholar Vilfredo Pareto.

- Pareto noted wealth in Italy was distributed unevenly (80–20 rule).
- Term used especially by economists

Devilish power law distribution details:

From assignment 1, we know many nasty things.

Exhibit A:

Given \(P(x) = cx^{-\gamma} \) with \(0 < x_{\text{min}} < x < x_{\text{max}} \), the mean is:

\[
\langle x \rangle = \frac{c}{2-\gamma} \left(x_{\text{max}}^{2-\gamma} - x_{\text{min}}^{2-\gamma} \right).
\]

- Mean 'blows up' with upper cutoff if \(\gamma < 2 \).
- Mean depends on lower cutoff if \(\gamma > 2 \).
- \(\gamma < 2 \): Typical sample is large.
- \(\gamma > 2 \): Typical sample is small.

And in general...

Moments:

- All moments depend only on cutoffs.
- No internal scale that dominates/matters.
- Compare to a Gaussian, exponential, etc.

For many real size distributions: \(2 < \gamma < 3 \)

- Mean is finite (depends on lower cutoff)
- \(\sigma^2 \) = variance is 'infinite' (depends on upper cutoff)
- Width of distribution is 'infinite'
- If \(\gamma > 3 \), distribution is less terrifying and may be easily confused with other kinds of distributions.

How sample sizes grow...

Given \(P(x) \sim cx^{-\gamma} \):

- We can show that after \(n \) samples, we expect the largest sample to be
 \[
x_1 \gtrsim c' n^{1/(\gamma-1)}.
\]
- Sampling from a finite-variance distribution gives a much slower growth with \(n \).
- e.g., for \(P(x) = \lambda e^{-\lambda x} \), we find
 \[
x_1 \gtrsim \frac{1}{\lambda} \ln n.
\]

Size distributions

Examples:

- Earthquake magnitude (Gutenberg Richter law):
 \(P(M) \propto M^{-1.5} \)
- Number of war deaths: \(P(d) \propto d^{-1.8} \)
- Sizes of forest fires
- Sizes of cities: \(P(n) \propto n^{-2.1} \)
- Number of links to and from websites
Size distributions

Examples:

- Number of citations to papers: \(P(k) \propto k^{-3} \).
- Individual wealth (maybe): \(P(W) \propto W^{-2} \).
- Distributions of tree trunk diameters: \(P(d) \propto d^{-2} \).
- The gravitational force at a random point in the universe: \(P(F) \propto F^{-5/2} \).
- Diameter of moon craters: \(P(d) \propto d^{-3} \).
- Word frequency: e.g., \(P(k) \propto k^{-2.2} \) (variable)

Note: Exponents range in error; see M.E.J. Newman

Turkeys...

![Figure 1: One Thousand and One Days of History](image)

A turkey before and after Thanksgiving, the history of a process over a thousand days tells you nothing about what is to happen next. This naive projection of the future from the past can be applied to anything.

From "The Black Swan" [1]

Taleb’s table [1]

Mediocristan/Extremistan

- Most typical member is mediocre/Most typical is either giant or tiny
- Winners get a small segment/Winner take almost all effects
- When you observe for a while, you know what’s going on/It takes a very long time to figure out what’s going on
- Prediction is easy/Prediction is hard
- History crawls/History makes jumps
- Tyranny of the collective/Tyranny of the rare and accidental

Complementary Cumulative Distribution Function:

CCDF:

\[P_>(x) = P(x' > x) = 1 - P(x' < x) \]

\[= \int_{x'=x}^{\infty} P(x')dx' \]

\[\propto \int_{x'=x}^{\infty} (x')^{\gamma+1}dx' \]

\[= \frac{1}{\gamma + 1} [(x')^{\gamma+1}]_{x'=x}^{\infty} \]

\[\propto x^{\gamma+1} \]
Complementary Cumulative Distribution Function:

CCDF:
- \(P_C(x) \propto x^{-1+1} \)
- Use when tail of \(P \) follows a power law.
- Increases exponent by one.
- Useful in cleaning up data.

Complementary Cumulative Distribution Function:

- **Discrete variables:**
 \[P_{\geq k} = P(k') \geq k) = \sum_{k'=k}^{\infty} P(k) \propto k^{-1+1} \]
- Use integrals to approximate sums.

Zipfian rank-frequency plots

Zipf’s way:
- \(s_r \) = the size of the \(r \)th ranked object.
- \(r = 1 \) corresponds to the largest size.
- Example: \(s_r \) could be the frequency of occurrence of the most common word in a text.
- Zipf’s observation:
 \[s_r \propto r^{-\alpha} \]

Size distributions

Brown Corpus (1,015,945 words):

CCDF:

- The, of, and, to, a, ... = ‘objects’
- ‘Size’ = word frequency
- **Beep:** CCDF and Zipf plots are related...

Brown Corpus (1,015,945 words):

Zipf:

- The, of, and, to, a, ... = ‘objects’
- ‘Size’ = word frequency
- **Beep:** CCDF and Zipf plots are related...
Size distributions

Observe:

- \(N P_\geq(x) \) = the number of objects with size at least \(x \) where \(N \) = total number of objects.
- If an object has size \(x_r \), then \(NP_\geq(x_r) \) is its rank \(r \).
- So

\[
x_r \propto r^{-\alpha} = (NP_\geq(x_r))^{-\alpha}
\]

\[
\propto x_r^{(\gamma+1)(-\alpha)}
\]

Since \(P_\geq(x) \sim x^{-\gamma+1} \),

\[
\alpha = \frac{\gamma - 1}{\gamma - 2}
\]

- A rank distribution exponent of \(\alpha = 1 \) corresponds to a size distribution exponent \(\gamma = 2 \).

The Don

Extreme deviations in test cricket

Don Bradman's batting average = 166% next best.

References

The Black Swan.

Human Behaviour and the Principle of Least-Effort.
Addison-Wesley, Cambridge, MA, 1949.