Outline

Lognormals
Empirical Confusability
Random Multiplicative Growth Model
Random Growth with Variable Lifespan

References
Outline

Lognormals and friends

Lognormals
Empirical Confusability
Random Multiplicative Growth Model
Random Growth with Variable Lifespan

References
Alternative distributions

There are other ‘heavy-tailed’ distributions:

1. The Log-normal distribution (있다)

 \[P(x) = \frac{1}{x\sqrt{2\pi\sigma}} \exp\left(-\frac{(\ln x - \mu)^2}{2\sigma^2}\right) \]

2. Weibull distributions (있다)

 \[P(x)dx = \frac{k}{\lambda} \left(\frac{x}{\lambda}\right)^{\mu-1} e^{-\left(\frac{x}{\lambda}\right)^\mu} dx \]

 CCDF = stretched exponential (있다).

3. Gamma distributions (있다), and more.
Alternative distributions

There are other ‘heavy-tailed’ distributions:

1. The Log-normal distribution (\(\mathcal{LN}\))

 \[
P(x) = \frac{1}{x\sqrt{2\pi}\sigma} \exp\left(-\frac{(\ln x - \mu)^2}{2\sigma^2}\right)
 \]

2. Weibull distributions (\(\mathcal{WE}\))

 \[
P(x)dx = \frac{k}{\lambda} \left(\frac{x}{\lambda}\right)^{\mu-1} e^{-(x/\lambda)^\mu} dx
 \]

 CCDF = stretched exponential (\(\mathcal{SE}\)).

3. Gamma distributions (\(\mathcal{GA}\)), and more.
Alternative distributions

There are other ‘heavy-tailed’ distributions:

1. The Log-normal distribution

 \[P(x) = \frac{1}{x\sqrt{2\pi\sigma}} \exp\left(-\frac{(\ln x - \mu)^2}{2\sigma^2} \right) \]

2. Weibull distributions

 \[P(x)dx = \frac{k}{\lambda} \left(\frac{x}{\lambda} \right)^{\mu-1} e^{-\left(x/\lambda \right)^\mu} dx \]

 CCDF = stretched exponential.

3. Gamma distributions, and more.
lognormals

The lognormal distribution:

\[P(x) = \frac{1}{x \sqrt{2\pi\sigma}} \exp\left(-\frac{(\ln x - \mu)^2}{2\sigma^2}\right) \]

- In \(x \) is distributed according to a normal distribution with mean \(\mu \) and variance \(\sigma \).
- Appears in economics and biology where growth increments are distributed normally.
Standard form reveals the mean μ and variance σ^2 of the underlying normal distribution:

$$P(x) = \frac{1}{x\sqrt{2\pi\sigma}} \exp\left(-\frac{(\ln x - \mu)^2}{2\sigma^2}\right)$$

For lognormals:

$$\mu_{\text{lognormal}} = e^{\mu + \frac{1}{2}\sigma^2}, \quad \text{median}_{\text{lognormal}} = e^\mu,$$

$$\sigma_{\text{lognormal}} = (e^{\sigma^2} - 1)e^{2\mu + \sigma^2}, \quad \text{mode}_{\text{lognormal}} = e^{\mu - \sigma^2}.$$

All moments of lognormals are finite.
Standard form reveals the mean μ and variance σ^2 of the underlying normal distribution:

$$P(x) = \frac{1}{x\sqrt{2\pi}\sigma} \exp\left(-\frac{(\ln x - \mu)^2}{2\sigma^2}\right)$$

For lognormals:

$$\mu_{\text{lognormal}} = e^{\mu + \frac{1}{2}\sigma^2}, \quad \text{median}_{\text{lognormal}} = e^\mu,$$

$$\sigma_{\text{lognormal}} = (e^\sigma - 1)e^{2\mu + \sigma^2}, \quad \text{mode}_{\text{lognormal}} = e^{\mu - \sigma^2}.$$

All moments of lognormals are finite.
Lognormals

- Standard form reveals the mean μ and variance σ^2 of the underlying normal distribution:

$$P(x) = \frac{1}{x\sqrt{2\pi} \sigma} \exp\left(-\frac{(\ln x - \mu)^2}{2\sigma^2}\right)$$

- For lognormals:

$$\mu_{\text{lognormal}} = e^{\mu + \frac{1}{2}\sigma^2}, \quad \text{median}_{\text{lognormal}} = e^\mu,$$

$$\sigma_{\text{lognormal}} = (e^{\sigma^2} - 1)e^{2\mu + \sigma^2}, \quad \text{mode}_{\text{lognormal}} = e^{\mu - \sigma^2}.$$

- All moments of lognormals are finite.
Derivation from a normal distribution

Take Y as distributed normally:

$$P(y)dy = \frac{1}{\sqrt{2\pi}\sigma} dy \exp \left(-\frac{(y-\mu)^2}{2\sigma^2}\right)$$

Set $Y = \ln X$:

Transform according to $P(x)dx = P(y)dy$:

$$\frac{dy}{dx} = \frac{1}{x} \Rightarrow dy = \frac{dx}{x}$$

$$P(x)dx = \frac{1}{x\sqrt{2\pi}\sigma} \exp \left(-\frac{(\ln x - \mu)^2}{2\sigma^2}\right) dx$$
Derivation from a normal distribution

Take Y as distributed normally:

$$P(y)dy = \frac{1}{\sqrt{2\pi\sigma}} dy \exp\left(-\frac{(y - \mu)^2}{2\sigma^2}\right)$$

Set $Y = \ln X$:

- Transform according to $P(x)dx = P(y)dy$

$$\frac{dy}{dx} = \frac{1}{x} \Rightarrow dy = \frac{dx}{x}$$

$$P(x)dx = \frac{1}{x\sqrt{2\pi}\sigma} \exp\left(-\frac{(\ln x - \mu)^2}{2\sigma^2}\right)$$
Derivation from a normal distribution

Take Y as distributed normally:

$$P(y)dy = \frac{1}{\sqrt{2\pi}\sigma}dy \exp\left(-\frac{(y-\mu)^2}{2\sigma^2}\right)$$

Set $Y = \ln X$:

$\Rightarrow \frac{dy}{dx} = 1/x \Rightarrow dy = dx/x$

$\Rightarrow P(x)dx = \frac{1}{x\sqrt{2\pi}\sigma} \exp\left(-\frac{(\ln x-\mu)^2}{2\sigma^2}\right)dx$
Derivation from a normal distribution

Take Y as distributed normally:

$$P(y)dy = \frac{1}{\sqrt{2\pi\sigma}} dy \exp\left(-\frac{(y - \mu)^2}{2\sigma^2}\right)$$

Set $Y = \ln X$:

Transform according to $P(x)dx = P(y)dy$:

$$\frac{dy}{dx} = 1/x \Rightarrow dy = dx/x$$

$$\Rightarrow P(x)dx = \frac{1}{x\sqrt{2\pi\sigma}} \exp\left(-\frac{(\ln x - \mu)^2}{2\sigma^2}\right) dx$$
Derivation from a normal distribution

Take \(Y \) as distributed normally:

\[
P(y)\,dy = \frac{1}{\sqrt{2\pi\sigma}}\,dy\,\exp\left(-\frac{(y - \mu)^2}{2\sigma^2}\right)
\]

Set \(Y = \ln X \):

\[
\frac{dy}{dx} = 1/x \Rightarrow dy = dx/x
\]

\[
\Rightarrow P(x)\,dx = \frac{1}{x\sqrt{2\pi\sigma}}\,\exp\left(-\frac{(\ln x - \mu)^2}{2\sigma^2}\right)\,dx
\]

References
Derivation from a normal distribution

Take \(Y \) as distributed normally:

\[
P(y) \, dy = \frac{1}{\sqrt{2\pi\sigma}} \, dy \, \exp \left(-\frac{(y - \mu)^2}{2\sigma^2} \right)
\]

Set \(Y = \ln X \):

- Transform according to \(P(x) \, dx = P(y) \, dy \):

\[
\frac{dy}{dx} = \frac{1}{x} \Rightarrow dy = \frac{dx}{x}
\]

\[
\Rightarrow P(x) \, dx = \frac{1}{x\sqrt{2\pi\sigma}} \, \exp \left(-\frac{(\ln x - \mu)^2}{2\sigma^2} \right) \, dx
\]
Confusion between lognormals and pure power laws

Near agreement over four orders of magnitude!

- For lognormal (blue), $\mu = 0$ and $\sigma = 10$.
- For power law (red), $\gamma = 1$ and $c = 0.03$.
Confusion

What’s happening:

\[
\ln P(x) = \ln \left\{ \frac{1}{x \sqrt{2\pi} \sigma} \exp \left(-\frac{(\ln x - \mu)^2}{2\sigma^2} \right) \right\}
\]

\[
= \ln x - \ln \sqrt{2\pi} - \frac{(\ln x - \mu)^2}{2\sigma^2}
\]

\[
= -\frac{1}{2\sigma^2} (\ln x)^2 + \left(\frac{\mu}{\sigma^2} - 1 \right) \ln x - \ln \sqrt{2\pi} - \frac{\mu^2}{2\sigma^2}.
\]

⇒ If \(\sigma^2 \gg 1 \) and \(\mu \),

\[
\ln P(x) \sim -\ln x - \text{const}
\]
Confusion

What's happening:

\[\ln P(x) = \ln \left\{ \frac{1}{x \sqrt{2\pi}\sigma} \exp \left(-\frac{(\ln x - \mu)^2}{2\sigma^2} \right) \right\} \]

\[= \ln x - \ln \sqrt{2\pi} - \frac{(\ln x - \mu)^2}{2\sigma^2} \]

\[= -\frac{1}{2\sigma^2} \ln x^2 + \left(\frac{\mu}{\sigma^2} - 1 \right) \ln x - \ln \sqrt{2\pi} - \frac{\mu^2}{2\sigma^2}. \]

⇒ If \(\sigma^2 \gg 1 \) and \(\mu \),

\[\ln P(x) \sim -\ln x - \text{const}. \]
Confusion

What’s happening:

\[
\ln P(x) = \ln \left\{ \frac{1}{x \sqrt{2\pi}\sigma} \exp \left(-\frac{(\ln x - \mu)^2}{2\sigma^2} \right) \right\}
\]

\[
= -\ln x - \ln \sqrt{2\pi} - \frac{(\ln x - \mu)^2}{2\sigma^2}
\]

\[
= -\frac{1}{2\sigma^2} (\ln x)^2 + \left(\frac{\mu}{\sigma^2} - 1 \right) \ln x - \ln \sqrt{2\pi} - \frac{\mu^2}{2\sigma^2}.
\]

\[
\Rightarrow \text{If } \sigma^2 \gg 1 \text{ and } \mu,
\]

\[
\ln P(x) \sim -\ln x + \text{const}
\]
Confusion

What’s happening:

\[\ln P(x) = \ln \left\{ \frac{1}{x \sqrt{2\pi} \sigma} \exp \left(-\frac{(\ln x - \mu)^2}{2\sigma^2} \right) \right\} \]

\[= - \ln x - \ln \sqrt{2\pi} - \frac{(\ln x - \mu)^2}{2\sigma^2} \]

\[= -\frac{1}{2\sigma^2} (\ln x)^2 + \left(\frac{\mu}{\sigma^2} - 1 \right) \ln x - \ln \sqrt{2\pi} - \frac{\mu^2}{2\sigma^2}. \]

⇒ If \(\sigma^2 \gg 1 \) and \(\mu \),

\[\ln P(x) \sim - \ln x - \text{const} \]
Confusion

What’s happening:

\[
\ln P(x) = \ln \left\{ \frac{1}{x \sqrt{2\pi \sigma}} \exp \left(-\frac{(\ln x - \mu)^2}{2\sigma^2} \right) \right\}
\]

\[
= -\ln x - \ln \sqrt{2\pi} - \frac{(\ln x - \mu)^2}{2\sigma^2}
\]

\[
= -\frac{1}{2\sigma^2} (\ln x)^2 + \left(\frac{\mu}{\sigma^2} - 1 \right) \ln x - \ln \sqrt{2\pi} - \frac{\mu^2}{2\sigma^2}.
\]

⇒ If \(\sigma^2 \gg 1 \) and \(\mu \),

\[
\ln P(x) \sim -\ln x - \text{const}
\]
What’s happening:

\[
\ln P(x) = \ln \left\{ \frac{1}{x \sqrt{2\pi\sigma}} \exp \left(-\frac{(\ln x - \mu)^2}{2\sigma^2} \right) \right\}
\]

\[
= -\ln x - \ln \sqrt{2\pi} - \frac{(\ln x - \mu)^2}{2\sigma^2}
\]

\[
= -\frac{1}{2\sigma^2} (\ln x)^2 + \left(\frac{\mu}{\sigma^2} - 1 \right) \ln x - \ln \sqrt{2\pi} - \frac{\mu^2}{2\sigma^2}.
\]

\[\Rightarrow \text{If } \sigma^2 \gg 1 \text{ and } \mu, \]

\[
\ln P(x) \sim -\ln x + \text{const.}
\]
Confusion

- Expect -1 scaling to hold until \((\ln x)^2\) term becomes significant compared to \((\ln x)\).

This happens when (roughly)

\[
\frac{1}{2\sigma^2} (\ln x)^2 \approx 0.05 \left(\frac{\mu}{\sigma^2} - 1 \right) \ln x
\]

\[
\Rightarrow \log_{10} x \lesssim 0.05 \times 2(\sigma^2 - \mu) \log_{10} e
\]

\[
\approx 0.05(\sigma^2 - \mu)
\]

\[\Rightarrow\] If you find a -1 exponent, you may have a lognormal distribution...
Lognormals and friends

Confusion

► Expect -1 scaling to hold until \((\ln x)^2\) term becomes significant compared to \((\ln x)\).

► This happens when (roughly)

\[
\frac{1}{2\sigma^2} (\ln x)^2 \approx 0.05 \left(\frac{\mu}{\sigma^2} - 1 \right) \ln x
\]

\[
\Rightarrow \log_{10} x \lesssim 0.05 \times 2(\sigma^2 - \mu) \log_{10} e
\]

\[
\approx 0.05(\sigma^2 - \mu)
\]

► ⇒ If you find a -1 exponent, you may have a lognormal distribution...
Expect -1 scaling to hold until \((\ln x)^2\) term becomes significant compared to \((\ln x)\).

This happens when (roughly)

\[-\frac{1}{2\sigma^2}(\ln x)^2 \approx 0.05 \left(\frac{\mu}{\sigma^2} - 1\right) \ln x\]

\[
\Rightarrow \log_{10} x \lesssim 0.05 \times 2(\sigma^2 - \mu) \log_{10} e
\]

\[
\approx 0.05(\sigma^2 - \mu)
\]

⇒ If you find a -1 exponent, you may have a lognormal distribution...
Confusion

- Expect -1 scaling to hold until \((\ln x)^2\) term becomes significant compared to \((\ln x)\).

- This happens when (roughly)

\[
- \frac{1}{2\sigma^2} (\ln x)^2 \approx 0.05 \left(\frac{\mu}{\sigma^2} - 1 \right) \ln x
\]

\[
\Rightarrow \log_{10} x \lesssim 0.05 \times 2(\sigma^2 - \mu) \log_{10} e
\]

\[
\approx 0.05(\sigma^2 - \mu)
\]

- \(\Rightarrow\) If you find a -1 exponent, you may have a lognormal distribution...
Confusion

- Expect -1 scaling to hold until \((\ln x)^2\) term becomes significant compared to \((\ln x)\).
- This happens when (roughly)

\[
- \frac{1}{2\sigma^2} (\ln x)^2 \approx 0.05 \left(\frac{\mu}{\sigma^2} - 1 \right) \ln x
\]

\[
\Rightarrow \log_{10} x \lessapprox 0.05 \times 2(\sigma^2 - \mu) \log_{10} e
\]

\[
\approx 0.05(\sigma^2 - \mu)
\]

- If you find a -1 exponent, you may have a lognormal distribution...
Confusion

- Expect -1 scaling to hold until \((\ln x)^2\) term becomes significant compared to \((\ln x)\).
- This happens when (roughly)

\[
\frac{1}{2 \sigma^2} (\ln x)^2 \approx 0.05 \left(\frac{\mu}{\sigma^2} - 1 \right) \ln x
\]

\[
\Rightarrow \log_{10} x \lesssim 0.05 \times 2(\sigma^2 - \mu) \log_{10} e
\]

\[
\approx 0.05(\sigma^2 - \mu)
\]

- \(\Rightarrow\) If you find a -1 exponent, you may have a lognormal distribution...
Lognormals and friends

Lognormals
Empirical Confusability
Random Multiplicative Growth Model
Random Growth with Variable Lifespan

References
Generating lognormals:

Random multiplicative growth:

\[x_{n+1} = r x_n \]

where \(r > 0 \) is a random growth variable

- (Shrinkage is allowed)
- In log space, growth is by addition:

\[\ln x_{n+1} = \ln r + \ln x_n \]

\[\Rightarrow \ln x_n \text{ is normally distributed} \]

\[\Rightarrow x_n \text{ is lognormally distributed} \]
Generating lognormals:

Random multiplicative growth:

\[x_{n+1} = rx_n \]

where \(r > 0 \) is a random growth variable

(Shrinkage is allowed)

In log space, growth is by addition:

\[\ln x_{n+1} = \ln r + \ln x_n \]

\[\Rightarrow \ln x_n \text{ is normally distributed} \]

\[\Rightarrow x_n \text{ is lognormally distributed} \]
Generating lognormals:

Random multiplicative growth:

\[x_{n+1} = rx_n \]

where \(r > 0 \) is a random growth variable

- (Shrinkage is allowed)
- In log space, growth is by addition:

\[\ln x_{n+1} = \ln r + \ln x_n \]

\[\Rightarrow \ln x_n \text{ is normally distributed} \]

\[\Rightarrow x_n \text{ is lognormally distributed} \]
Generating lognormals:

Random multiplicative growth:

\[x_{n+1} = rx_n \]

where \(r > 0 \) is a random growth variable

- (Shrinkage is allowed)
- In log space, growth is by addition:

\[\ln x_{n+1} = \ln r + \ln x_n \]

\[\Rightarrow \ln x_n \text{ is normally distributed} \]

\[\Rightarrow x_n \text{ is lognormally distributed} \]
Generating lognormals:

Random multiplicative growth:

\[x_{n+1} = rx_n \]

where \(r > 0 \) is a random growth variable

(Shrinkage is allowed)

In log space, growth is by addition:

\[\ln x_{n+1} = \ln r + \ln x_n \]

\[\Rightarrow \ln x_n \text{ is normally distributed} \]

\[\Rightarrow x_n \text{ is lognormally distributed} \]
Lognormals or power laws?

- Gibrat\(^2\) (1931) uses preceding argument to explain lognormal distribution of firm sizes (\(\gamma \approx 1\)).
- But Robert Axtell\(^1\) (2001) shows a power law fits the data very well with \(\gamma = 2\), not \(\gamma = 1\) (!).
- Problem of data censusing (missing small firms).

One mechanistic piece in Gibrat's model seems okay empirically: Growth rate \(r\) appears to be independent of firm size.\(^1\).
Lognormals or power laws?

- Gibrat\(^2\) (1931) uses preceding argument to explain lognormal distribution of firm sizes (\(\gamma \simeq 1\)).
- But Robert Axtell\(^1\) (2001) shows a power law fits the data very well with \(\gamma = 2\), not \(\gamma = 1\)! (1)
- Problem of data censusing (missing small firms).

One mechanistic piece in Gibrat’s model seems okay empirically: Growth rate \(r\) appears to be independent of firm size. \(^1\).
Lognormals or power laws?

- Gibrat\(^2\) (1931) uses preceding argument to explain lognormal distribution of firm sizes \((\gamma \approx 1)\).
- But Robert Axtell\(^1\) (2001) shows a power law fits the data very well with \(\gamma = 2\), not \(\gamma = 1\) (!)
- Problem of data censusing (missing small firms).

- One mechanistic piece in Gibrat’s model seems okay empirically: Growth rate \(r\) appears to be independent of firm size. \(^1\).
Lognormals or power laws?

- Gibrat [2] (1931) uses preceding argument to explain lognormal distribution of firm sizes ($\gamma \approx 1$).
- But Robert Axtell [1] (2001) shows a power law fits the data very well with $\gamma = 2$, not $\gamma = 1$ (!)
- Problem of data censusing (missing small firms).

One mechanistic piece in Gibrat’s model seems okay empirically: Growth rate r appears to be independent of firm size. [1].
Lognormals or power laws?

- Gibrat [2] (1931) uses preceding argument to explain lognormal distribution of firm sizes ($\gamma \simeq 1$).
- But Robert Axtell [1] (2001) shows a power law fits the data very well with $\gamma = 2$, not $\gamma = 1$ (!)
- Problem of data censusing (missing small firms).

\[
\text{Freq} \propto (\text{size})^{-\gamma}
\]
\[
\gamma \simeq 2
\]

- One mechanistic piece in Gibrat’s model seems okay empirically: Growth rate r appears to be independent of firm size. [1].
An explanation

- Axtel (mis?)cites Malcai et al.’s (1999) argument for why power laws appear with exponent $\gamma \approx 1$

- The set up: N entities with size $x_i(t)$

- Generally:
 $$x_i(t + 1) = r x_i(t)$$

 where r is drawn from some happy distribution

- Same as for lognormal but one extra piece.

- Each x_i cannot drop too low with respect to the other sizes:
 $$x_i(t + 1) = \max(r x_i(t), c \langle x_i \rangle)$$
An explanation

- Axtel (mis?) cites Malcai et al.’s (1999) argument \[5\] for why power laws appear with exponent \(\gamma \approx 1 \).
- The set up: \(N \) entities with size \(x_i(t) \)
- Generally:
 \[
x_i(t + 1) = r x_i(t)
 \]
 where \(r \) is drawn from some happy distribution
- Same as for lognormal but one extra piece.
- Each \(x_i \) cannot drop too low with respect to the other sizes:
 \[
x_i(t + 1) = \max(r x_i(t), c \langle x_i \rangle)
 \]
An explanation

- Axtel (mis?) cites Malcai et al.’s (1999) argument for why power laws appear with exponent $\gamma \approx 1$
- The set up: N entities with size $x_i(t)$
- Generally:
 $$x_i(t + 1) = rx_i(t)$$
 where r is drawn from some happy distribution
- Same as for lognormal, but one extra piece.
- Each x_i cannot drop too low with respect to the other sizes:
 $$x_i(t + 1) = \max(rx_i(t), c \langle x_i \rangle)$$
An explanation

- Axtel (mis?)cites Malcai et al.'s (1999) argument [5] for why power laws appear with exponent $\gamma \approx 1$
- The set up: N entities with size $x_i(t)$
- Generally:
 \[x_i(t + 1) = r x_i(t) \]
 where r is drawn from some happy distribution
- Same as for lognormal but one extra piece.
- Each x_i cannot drop too low with respect to the other sizes:
 \[x_i(t + 1) = \max(r x_i(t), c \langle x_i \rangle) \]
An explanation

- Axtel (mis?)cites Malcai et al.’s (1999) argument[5] for why power laws appear with exponent $\gamma \approx 1$
- The set up: N entities with size $x_i(t)$
- Generally:
 \[x_i(t + 1) = rx_i(t) \]
 where r is drawn from some happy distribution
- Same as for lognormal but one extra piece.
- Each x_i cannot drop too low with respect to the other sizes:
 \[x_i(t + 1) = \max(rx_i(t), c\langle x_i \rangle) \]
An explanation
Some math later... Insert question from assignment

Find $P(x) \sim x^{-\gamma}$

where γ is implicitly given by

$$N = \frac{(\gamma - 2)}{(\gamma - 1)} \left[\frac{(c/N)^{\gamma - 1}}{(c/N)^{\gamma - 1} - (c/N)} - 1 \right]$$

$N = \text{total number of firms}.$

Now, if $c/N \ll 1$, $N = \frac{(\gamma - 2)}{(\gamma - 1)} \left[\frac{1}{(c/N)} \right]$.

Which gives $\gamma \sim 1 + \frac{1}{1 - c}$

Groovy... c small $\Rightarrow \gamma \sim 2$
An explanation
Some math later...

Find $P(x) \sim x^{-\gamma}$

where γ is implicitly given by

$$N = \frac{(\gamma - 2) \left[(c/N)^{\gamma-1} - 1 \right]}{(\gamma - 1) \left[(c/N)^{\gamma-1} - (c/N) \right]}$$

$N = \text{total number of firms.}$

Now, if $c/N \ll 1$, $N = \frac{(\gamma - 2)}{(\gamma - 1)} \left[\frac{1}{(c/N)} \right]$.

Which gives $\gamma \sim 1 + \frac{1}{1 - c}$.

Groovy... c small $\Rightarrow \gamma \simeq 2$.
An explanation

Some math later... Insert question from assignment

6 (☑)

➤ Find \(P(x) \sim x^{-\gamma} \)

➤ where \(\gamma \) is implicitly given by

\[
N = \frac{(\gamma - 2)}{(\gamma - 1)} \left[\frac{(c/N)^{\gamma-1} - 1}{(c/N)^{\gamma-1} - (c/N)} \right]
\]

\(N = \) total number of firms.

➤

Now, if \(c/N \ll 1 \),

\[
N = \frac{(\gamma - 2)}{(\gamma - 1)} \left[\frac{1}{(c/N)} \right]
\]

➤ Which gives \(\gamma \sim 1 + \frac{1}{1 - c} \)

➤ Groovy... \(c \) small \(\Rightarrow \gamma \sim 2 \)
An explanation

Some math later...

Insert question from assignment

6 (□)

►

Find $P(x) \sim x^{-\gamma}$

► where γ is implicitly given by

$$N = \frac{(\gamma - 2)}{(\gamma - 1)} \left[\frac{(c/N)^{\gamma - 1} - 1}{(c/N)^{\gamma - 1} - (c/N)} \right]$$

$N = \text{total number of firms}$.

►

Now, if $c/N \ll 1$,

$$N = \frac{(\gamma - 2)}{(\gamma - 1)} \left[-\frac{1}{(c/N)} \right]$$

Which gives $\gamma \sim 1 + \frac{1}{1 - c}$

► Groovy... c small $\Rightarrow \gamma \sim 2$
Find \(P(x) \sim x^{-\gamma} \)

where \(\gamma \) is implicitly given by

\[
N = \frac{(\gamma - 2)}{(\gamma - 1)} \left[\frac{(c/N)^{\gamma-1} - 1}{(c/N)^{\gamma-1} - (c/N)} \right]
\]

\(N = \) total number of firms.

Now, if \(c/N \ll 1 \),

\[
N = \frac{(\gamma - 2)}{(\gamma - 1)} \left[-1 \right]
\]

Which gives \(\gamma \sim 1 + \frac{1}{1 - c} \)

Groovy... \(c \) small \(\Rightarrow \) \(\gamma \approx 2 \)
An explanation

Some math later... Insert question from assignment

6 (��)

- Find \(P(x) \sim x^{-\gamma} \)

- where \(\gamma \) is implicitly given by

\[
N = \frac{(\gamma - 2)}{(\gamma - 1)} \left[\frac{(c/N)^{\gamma-1} - 1}{(c/N)^{\gamma-1} - (c/N)} \right]
\]

\(N = \) total number of firms.

- Now, if \(c/N \ll 1 \),

\[
N = \frac{(\gamma - 2)}{(\gamma - 1)} \left[-1 \right]
\]

- Which gives \(\gamma \sim 1 + \frac{1}{1 - c} \)

- Groovy... \(c \) small \(\Rightarrow \gamma \approx 2 \)
The second tweak

Ages of firms/people/... may not be the same

- Allow the number of updates for each size x_i to vary
- Example: $P(t)dt = ae^{-at}dt$ where $t = \text{age}$.
- Back to no bottom limit: each x_i follows a lognormal
- Sizes are distributed as

$$P(x) = \int_{t=0}^{\infty} ae^{-at} \frac{1}{x \sqrt{2\pi t}} \exp \left(- \frac{(\ln x - \mu)^2}{2t} \right) dt$$

(Assume for this example that $\sigma \sim t$ and $\mu = \ln m$)
- Now averaging different lognormal distributions.
Ages of firms/people/... may not be the same

- Allow the number of updates for each size x_i to vary
- Example: $P(t) dt = ae^{-at} dt$ where $t = \text{age}$.
- Back to no bottom limit: each x_i follows a lognormal
- Sizes are distributed as

$$P(x) = \int_{t=0}^{\infty} ae^{-at} \frac{1}{x \sqrt{2\pi t}} \exp \left(- \frac{(\ln x - \mu)^2}{2t} \right) dt$$

(Assume for this example that $\sigma \sim t$ and $\mu = \ln m$)

- Now averaging different lognormal distributions.
The second tweak

Ages of firms/people/... may not be the same

- Allow the number of updates for each size x_i to vary
- Example: $P(t)dt = ae^{-at}dt$ where $t = age$.
- Back to no bottom limit: each x_i follows a lognormal
- Sizes are distributed as

$$P(x) = \lim_{t \to 0} \frac{1}{x \sqrt{2\pi t}} \exp \left(-\frac{(\ln x - \mu)^2}{2t} \right) dt$$

(Assume for this example that $\sigma \sim t$ and $\mu = \ln m$)

- Now averaging different lognormal distributions
Lognormals and friends

Ages of firms/people/... may not be the same

- Allow the number of updates for each size x_i to vary
- Example: $P(t)dt = ae^{-at}dt$ where $t = \text{age}$.
- Back to no bottom limit: each x_i follows a lognormal

Sizes are distributed as [6]

$$P(x) = \int_{t=0}^{\infty} ae^{-at} \frac{1}{x\sqrt{2\pi}t} \exp \left(-\frac{(\ln x - \mu)^2}{2t} \right) dt$$

(Assume for this example that $\sigma \sim t$ and $\mu = \ln m$)

- Now averaging different lognormal distributions.
The second tweak

Ages of firms/people/... may not be the same

- Allow the number of updates for each size x_i to vary
- Example: $P(t)dt = ae^{-at}dt$ where $t = \text{age}$.
- Back to no bottom limit: each x_i follows a lognormal
- Sizes are distributed as 6

$$P(x) = \int_{t=0}^{\infty} ae^{-at} \frac{1}{x \sqrt{2\pi t}} \exp \left(- \frac{(\ln x - \mu)^2}{2t} \right) dt$$

(Assume for this example that $\sigma \sim t$ and $\mu = \ln m$)

- Now averaging different lognormal distributions.
The second tweak

Ages of firms/people/... may not be the same

- Allow the number of updates for each size x_i to vary
- Example: $P(t)dt = ae^{-at}dt$ where $t = \text{age}$.
- Back to no bottom limit: each x_i follows a lognormal
- Sizes are distributed as $[6]$

$$P(x) = \int_{t=0}^{\infty} ae^{-at} \frac{1}{x \sqrt{2\pi t}} \exp \left(- \frac{(\ln x - \mu)^2}{2t} \right) dt$$

(Assume for this example that $\sigma \sim t$ and $\mu = \ln m$)

- Now averaging different lognormal distributions.
Averaging lognormals

\[P(x) = \int_{t=0}^{\infty} ae^{-at} \frac{1}{x\sqrt{2\pi t}} \exp \left(-\frac{(\ln x/m)^2}{2t} \right) dt \]

Some enjoyable suffering leads to:

\[P(x) \propto x^{-1} e^{-\sqrt{2\lambda}(\ln x/m)^2} \]
Averaging lognormals

\[P(x) = \int_{t=0}^{\infty} ae^{-at} \frac{1}{x\sqrt{2\pi t}} \exp\left(-\frac{(\ln x/m)^2}{2t}\right) dt \]

- Insert question from assignment 6
- Some enjoyable suffering leads to:

\[P(x) \propto x^{-1} e^{-\sqrt{2\lambda(\ln x/m)^2}} \]
Averaging lognormals

\[P(x) = \int_{t=0}^{\infty} ae^{-at} \frac{1}{x \sqrt{2\pi t}} \exp \left(-\frac{(\ln x/m)^2}{2t} \right) dt \]

- Insert question from assignment 6 (KeyCode)
- Some enjoyable suffering leads to:

\[P(x) \propto x^{-1} e^{-\sqrt{2\lambda(\ln x/m)^2}} \]
The second tweak

\[P(x) \propto x^{-1} e^{-\sqrt{2\lambda (\ln x/m)^2}} \]

- Depends on sign of \(\ln x/m \), i.e., whether \(x/m > 1 \) or \(x/m < 1 \).

- ‘Break in scaling’ (not uncommon)

- Double-Pareto distribution

- First noticed by Montroll and Shlesinger \([7, 8]\)

- Later: Huberman and Adamic \([3, 4]\): Number of pages per website
The second tweak

\[P(x) \propto x^{-1} e^{-\sqrt{2\lambda (\ln x/m)^2}} \]

- Depends on sign of \(\ln x/m \), i.e., whether \(x/m > 1 \) or \(x/m < 1 \).

\[P(x) \propto \begin{cases}
 x^{-1} + \sqrt{2\lambda} & \text{if } x/m < 1 \\
 x^{-1} - \sqrt{2\lambda} & \text{if } x/m > 1
\end{cases} \]

- ‘Break in scaling’ (not uncommon)
- Double-Pareto distribution
- First noticed by Montroll and Shlesinger \[7, 8\]
- Later: Huberman and Adamic \[3, 4\]: Number of pages per website
The second tweak

\[P(x) \propto x^{-1} e^{-\sqrt{2\lambda \ln(x/m)^2}} \]

- Depends on sign of \(\ln(x/m) \), i.e., whether \(x/m > 1 \) or \(x/m < 1 \).

\[P(x) \propto \begin{cases}
 x^{-1} + \sqrt{2\lambda} & \text{if } x/m < 1 \\
 x^{-1} - \sqrt{2\lambda} & \text{if } x/m > 1
\end{cases} \]

- ‘Break’ in scaling (not uncommon)
- Double-Pareto distribution (↗)
- First noticed by Montroll and Shlesinger \(^7, 8\)
- Later: Huberman and Adamic \(^3, 4\): Number of pages per website
The second tweak

\[P(x) \propto x^{-1} e^{-\sqrt{2\lambda \ln x/m}^2} \]

- Depends on sign of \(\ln x/m \), i.e., whether \(x/m > 1 \) or \(x/m < 1 \).

\[P(x) \propto \begin{cases}
 x^{-1} + \sqrt{2\lambda} & \text{if } x/m < 1 \\
 x^{-1} - \sqrt{2\lambda} & \text{if } x/m > 1
\end{cases} \]

- ‘Break’ in scaling (not uncommon)

- Double-Pareto distribution

- First noticed by Montroll and Shlesinger \([7, 8]\)

- Later: Huberman and Adamic \([3, 4]\): Number of pages per website
The second tweak

\[P(x) \propto x^{-1} e^{-\sqrt{2\lambda (\ln x/m)^2}} \]

- Depends on sign of \(\ln x/m \), i.e., whether \(x/m > 1 \) or \(x/m < 1 \).

\[P(x) \propto \begin{cases}
 x^{-1} + \sqrt{2\lambda} & \text{if } x/m < 1 \\
 x^{-1} - \sqrt{2\lambda} & \text{if } x/m > 1
\end{cases} \]

- ‘Break’ in scaling (not uncommon)
- Double-Pareto distribution

First noticed by Montroll and Shlesinger \(^{[7, 8]}\)

Later: Huberman and Adamic \(^{[3, 4]}\): Number of pages per website
The second tweak

\[P(x) \propto x^{-1} e^{-\sqrt{2\lambda (\ln x/m)^2}} \]

- Depends on sign of \(\ln x/m \), i.e., whether \(x/m > 1 \) or \(x/m < 1 \).

\[P(x) \propto \begin{cases}
 x^{-1} + \sqrt{2\lambda} & \text{if } x/m < 1 \\
 x^{-1} - \sqrt{2\lambda} & \text{if } x/m > 1
\end{cases} \]

- ‘Break’ in scaling (not uncommon)
- Double-Pareto distribution (ено)
- First noticed by Montroll and Shlesinger \([7, 8]\)
- Later: Huberman and Adamic \([3, 4]\): Number of pages per website
The second tweak

\[P(x) \propto x^{-1} e^{-\sqrt{2\lambda (\ln x/m)^2}} \]

- Depends on sign of \(\ln x/m \), i.e., whether \(x/m > 1 \) or \(x/m < 1 \).

\[P(x) \propto \begin{cases}
 x^{-1+\sqrt{2\lambda}} & \text{if } x/m < 1 \\
 x^{-1-\sqrt{2\lambda}} & \text{if } x/m > 1
\end{cases} \]

- ‘Break’ in scaling (not uncommon)
- Double-Pareto distribution
- First noticed by Montroll and Shlesinger \cite{7, 8}
- Later: Huberman and Adamic \cite{3, 4}: Number of pages per website
Summary of these exciting developments:

▶ Lognormals and power laws can be awfully similar
▶ Random Multiplicative Growth leads to lognormal distributions
▶ Enforcing a minimum size leads to a power law tail
▶ With no minimum size but a distribution of lifetimes, the double Pareto distribution appears
▶ Take-home message: Be careful out there...
Summary of these exciting developments:

- Lognormals and power laws can be awfully similar.
- Random Multiplicative Growth leads to lognormal distributions.
 - Enforcing a minimum size leads to a power law tail.
 - With no minimum size but a distribution of lifetimes, the double Pareto distribution appears.
- Take-home message: Be careful out there...
Summary of these exciting developments:

- Lognormals and power laws can be awfully similar
- Random Multiplicative Growth leads to lognormal distributions
- Enforcing a minimum size leads to a power law tail
- With no minimum size but a distribution of lifetimes, the double Pareto distribution appears
- Take-home message: Be careful out there...
Summary of these exciting developments:

- Lognormals and power laws can be awfully similar
- Random Multiplicative Growth leads to lognormal distributions
- Enforcing a minimum size leads to a power law tail
- With no minimum size but a distribution of lifetimes, the double Pareto distribution appears

Take-home message: Be careful out there...
Summary of these exciting developments:

- Lognormals and power laws can be awfully similar
- Random Multiplicative Growth leads to lognormal distributions
- Enforcing a minimum size leads to a power law tail
- With no minimum size but a distribution of lifetimes, the double Pareto distribution appears
- Take-home message: Be careful out there...
References

Zipf distribution of U.S. firm sizes.

Les inégalités économiques.

The nature of markets in the World Wide Web.
[@] O. Malcai, O. Biham, and S. Solomon.
Power-law distributions and lévy-stable intermittent fluctuations in stochastic systems of many autocatalytic elements.

[@] M. Mitzenmacher.
A brief history of generative models for power law and lognormal distributions.

[@] E. W. Montroll and M. W. Shlesinger.
On 1/f noise aned other distributions with long tails.