Generalized Contagion

Principles of Complex Systems

CSYS/MATH 300, Fall, 2010

Prof. Peter Dodds

Department of Mathematics & Statistics
Center for Complex Systems: Vermont Advanced Computing Center
University of Vermont

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

Outline

Generalized Model of Contagion

References

Some (of many) issues

- Disease models assume independence of infectious events.
- Threshold models only involve proportions: \(\frac{3}{10} = \frac{30}{100} \).
- Threshold models ignore exact sequence of influences.
- Threshold models assume immediate polling.
- Mean-field models neglect network structure.
- Network effects only part of story: media, advertising, direct marketing.

Generalized model—ingredients

- Incorporate memory of a contagious element \([1, 2]\).
- Population of \(N \) individuals, each in state S, I, or R.
- Each individual randomly contacts another at each time step.
 - \(\phi(t) \) = fraction infected at time \(t \)
 - \(\phi \) = probability of contact with infected individual.
- With probability \(p \), contact with infective leads to an exposure.
- If exposed, individual receives a dose of size \(d \) drawn from distribution \(f \). Otherwise \(d = 0 \).

Generalized contagion model

References

Basic questions about contagion

- How many types of contagion are there?
- How can we categorize real-world contagions?
- Can we connect models of disease-like and social contagion?
Generalized model—ingredients

$I \Rightarrow R$
When $D_{t,i} < d^*_i$, individual i recovers to state R with probability r.

$R \Rightarrow S$
Once in state R, individuals become susceptible again with probability $1 - r$.

A visual explanation

Generalized model—heterogeneity, $r = 1$

Fixed point equation:

$$\phi^* = \frac{\sum_{k=1}^{T} \left(\frac{1}{k} \right) (1 - \rho^*)^{T-k} P_k}{\sum_{k=1}^{T} \left(\frac{1}{k} \right) (1 - \rho^*)^{T-k} T^k}$$

Expand around $\phi^* = 0$ to find Spread from single seed if

$$pP_1 T \geq 1$$

$$\Rightarrow \rho_c = \frac{1}{TP_1}$$

Heterogeneous case

Example configuration:

- Dose sizes are lognormally distributed with mean 1 and variance 0.433.
- Memory span: $T = 10$.
- Thresholds are uniformly set at
 1. $d_1 = 0.5$
 2. $d_2 = 1.5$
 3. $d_3 = 3$
- Spread of dose sizes matters, details are not important.

Generalized model

Important quantities:

$$P_k = \int_{d^*}^{\infty} d d^* g(d^*) P \left(\sum_{j=1}^{k} D_{t,j} \geq d^* \right) \text{ where } 1 \leq k \leq T.$$

P_k = Probability that the threshold of a randomly selected individual will be exceeded by k doses.

e.g., P_1 = Probability that one dose will exceed the threshold of a random individual = Fraction of most vulnerable individuals.

Heterogeneous case—Three universal classes

- **Epidemic threshold:** $P_1 > P_2/2, \rho_c = 1/(TP_1) < 1$
- **Vanishing critical mass:** $P_1 < P_2/2, \rho_c = 1/(TP_1) < 1$
- **Pure critical mass:** $P_1 < P_2/2, \rho_c = 1/(TP_1) > 1$
Calculations—Fixed points for $r < 1$, $d^* = 2$, and $T = 3$

F.P. Eq: $\phi^* = \Gamma(p, \phi^*; r) = \sum_{i=d^*}^{T} \phi^* (1 - \rho \phi^*)^{T-i}$.

$\Gamma(p, \phi^*; r) = (1-r)(\rho \phi^*)^2 + \sum_{m=1}^{\infty} (1-r)^m (\rho \phi^*)^2 (1-\rho \phi^*)^2 \times$

$\left[\chi_{m-1} + \chi_{m-2} + 2p(1-\rho)(\chi_{m-3} + \rho(1-\rho)^2) \right]$.

where $\chi_m(p, \phi^*) = \sum_{k=0}^{[m/3]} \binom{m-2k}{k} (1-\rho \phi^*)^{m-k} (\rho \phi^*)^k$.

Hysteresis in vanishing critical mass models

II-III transition generalizes:

$$\rho_c = 1/P_1(T + \tau)$$

where $\tau = 1/r = \text{expected recovery time}$

SIS model

Now allow $r < 1$:

II-III transition generalizes: $\rho_c = 1/P_1(T + \tau)$

(I-III transition less pleasant analytically)

More complicated models

⇒ Due to heterogeneity in individual thresholds.
⇒ Same model classification holds: I, II, and III.

Discussion

▶ Memory is crucial ingredient.
▶ Three universal classes of contagion processes:
 I. Epidemic Threshold
 II. Vanishing Critical Mass
 III. Critical Mass

▶ Dramatic changes in behavior possible.
▶ To change kind of model: ‘adjust’ memory, recovery, fraction of vulnerable individuals (T, r, ρ, P_1, and/or P_2).
▶ To change behavior given model: ‘adjust’ probability of exposure (p) and/or initial number infected (ϕ_0).
Discussion

- If \(p \geq 1 \), contagion can spread from single seed.
- Key quantity: \(p_c = 1 / [T + \tau] \)
- Depends only on:
 1. System Memory \((T + \tau) \).
 2. Fraction of highly vulnerable individuals \((P_i) \).
- Details unimportant (Universality):
 Many threshold and dose distributions give same \(P_k \).
- Most vulnerable/gullible population may be more important than small group of super-spreaders or influentials.

Future work/questions

- Do any real diseases work like this?
- Examine model’s behavior on networks
- Media/advertising + social networks model
- Classify real-world contagions

References I

Universal behavior in a generalized model of contagion.

A generalized model of social and biological contagion.