The law of first digits

Benford's Law: \(P(\text{first digit} = d) \propto \log_b (1 + 1/d) \)

- for certain sets of 'naturally' occurring numbers in base \(b \)
- Around 30.1% of first digits are '1', compared to only 4.6% for '9'.
- First observed by Simon Newcomb \(^2\) in 1881
 "Note on the Frequency of Use of the Different Digits in Natural Numbers"
- Independently discovered in 1938 by Frank Benford \(^3\).
- Newcomb almost always noted but Benford gets the stamp.

Benford's Law—The Law of First Digits

Observed for
- Fundamental constants (electron mass, charge, etc.)
- Utility bills
- Numbers on tax returns (ha!)
- Death rates
- Street addresses
- Numbers in newspapers
- Cited as evidence of fraud \(\text{(III)} \) in the 2009 Iranian elections.

References

The Amusing Law of Benford
Principles of Complex Systems
CSYS/MATH 300, Fall, 2010

Prof. Peter Dodds
Department of Mathematics & Statistics
Center for Complex Systems
Vermont Advanced Computing Center
University of Vermont

Benford's law
Benford's Law
References

Outline

Benford's Law

Benford's Law

Real data

Benford's Law

Physical constants of the universe:

Taken from here \(\text{III} \).

\(^1\) T. P. Hill (1998)
\(^2\) Simon Newcomb
\(^3\) Frank Benford
Benford's Law

Population of countries:

![Bar chart showing population distribution.]

Taken from [here](#).

Essential story

\[
P(\text{first digit} = d) \propto \log_b \left(\frac{d + 1}{d} \right) = \log_b (d + 1) - \log_b (d)
\]

- Observe this distribution if numbers are distributed uniformly in log-space:
 \[
P(\ln x) d(\ln x) \propto 1 - d(\ln x) = x^{-1} dx
\]
- Power law distributions at work again...
- Extreme case of \(\gamma \approx 1 \).

Benford's law

![Graph showing Benford's law distribution.]

Taken from [here](#).

References