1. In Simon’s original model, the expected total number of distinct groups at time t is ρt. Recall that each group is made up of elements of a particular flavor.

In class, we derived the fraction of groups containing only 1 element, finding

$$n_1^{(g)} = \frac{N_1(t)}{\rho t} = \frac{1}{2 - \rho}.$$

(a) Find the form of $n_2^{(g)}$ and $n_3^{(g)}$, the fraction of groups that are of size 2 and size 3.

(b) Using data for James Joyce’s Ulysses (see below), first show that Simon’s estimate for the innovation rate $\rho_{est} \simeq 0.115$ is reasonably accurate for the version of the text’s word counts given below. You should find $\rho_{est} \simeq 0.119$

(c) Now compare your theoretical estimates for $n_1^{(g)}$, $n_3^{(g)}$, and $n_3^{(g)}$, with empirical values you obtain for Ulysses.

The data (links are clickable):

- Matlab file (sortedcounts = word frequency f in descending order, sortedwords = ranked words): http://www.uvm.edu/~pdodds/teaching/courses/2010-08UVM-300/docs/ulysses.mat
- Colon-separated text file (first column = word count f, second column = word): http://www.uvm.edu/~pdodds/teaching/courses/2010-08UVM-300/docs/ulysses.txt
2. **Zipfarama via Optimization:**

Complete the Mandelbrotian derivation of Zipf’s law by minimizing the function

$$\Psi(p_1, p_2, \ldots, p_n) = F(p_1, p_2, \ldots, p_n) + \lambda G(p_1, p_2, \ldots, p_n)$$

where the ‘cost over information’ function is

$$F(p_1, p_2, \ldots, p_n) = \frac{C}{H} = \frac{\sum_{i=1}^{n} p_i \ln(i + a)}{-g \sum_{i=1}^{n} p_i \ln p_i}$$

and the constraint function is

$$G(p_1, p_2, \ldots, p_n) = \sum_{i=1}^{n} p_i - 1 = 0$$

to find

$$p_j = (j + a)^{-\alpha}$$

where $$\alpha = H/gC$$.

Note: We have now allowed the cost factor to be $$(j + a)$$ rather than $$(j + 1)$$. Exciting!

Hint: when finding $$\lambda$$, find an expression connecting $$\lambda$$, $$g$$, $$C$$, and $$H$$. Extra hint: one way may be to substitute the form you find for $$\ln p_i$$ into $$H$$’s definition (but do not replace $$p_i$$).

3. (a) For $$n \to \infty$$, use some computation tool (e.g., Matlab, an abacus, but not a clever friend who’s really into computers) to determine that $$\alpha \simeq 1.73$$ for $$a = 1$$. (Recall: we expect $$\alpha < 1$$.)

(b) For finite $$n$$, find an approximate estimate of $$a$$ in terms of $$n$$ that yields $$\alpha = 1$$.

 (Hint: use an integral approximation for the relevant sum.)

(c) What happens to $$a$$ as $$n \to \infty$$?