Fundamental Theorem of Linear Algebra

Now we see:
- Each of the four fundamental subspaces has a ‘best’ orthonormal basis
 - The \(\tilde{v}_i \) span \(\mathbb{R}^n \)
 - We find the \(\hat{v}_i \) as eigenvectors of \(A^T A \).
 - The \(\hat{u}_i \) span \(\mathbb{R}^m \)
 - We find the \(\hat{u}_i \) as eigenvectors of \(AA^T \).

Happy bases
- \(\{ \hat{v}_1, \ldots, \hat{v}_r \} \) span Row space
- \(\{ \hat{v}_{r+1}, \ldots, \hat{v}_n \} \) span Null space
- \(\{ \hat{u}_1, \ldots, \hat{u}_r \} \) span Column space
- \(\{ \hat{u}_{r+1}, \ldots, \hat{u}_m \} \) span Left Null space

Fundamental Theorem of Linear Algebra

How \(A \hat{x} \) works:
- \(A \hat{v}_i = \sigma_i \hat{u}_i \) for \(i = 1, \ldots, r \)
- \(A \hat{u}_i = 0 \) for \(i = r+1, \ldots, n \)
- Matrix version:
 \[
 A = U \Sigma V^T
 \]
- \(A \) sends each \(\hat{u}_i \in C(A^T) \) to its partner \(\hat{v}_i \in C(A) \) with a positive stretch/shrink factor \(\sigma_i > 0 \).
- \(A \) is diagonal with respect to these bases.
- When viewed in the right way, every \(A \) is a diagonal matrix \(\Sigma \).

Fundamental Theorem of Linear Algebra

Outline
- The Fundamental Theorem of Linear Algebra
- Approximating matrices with SVD

Fundamental Theorem of Linear Algebra

- Applies to any \(m \times n \) matrix \(A \).
- Symmetry of \(A \) and \(A^T \).

Where \(\hat{x} \) lives:
- Row space \(C(A^T) \subset \mathbb{R}^n \).
- (Right) Nullspace \(N(A) \subset \mathbb{R}^n \).
- \(\dim C(A^T) + \dim N(A) = r + (n-r) = n \)
- Orthogonality: \(C(A^T) \perp N(A) = \mathbb{R}^m \)

Where \(\hat{b} \) lives:
- Column space \(C(A) \subset \mathbb{R}^m \).
- Left Nullspace \(N(A^T) \subset \mathbb{R}^m \).
- \(\dim C(A) + \dim N(A^T) = r + (m-r) = m \)
- Orthogonality: \(C(A) \perp N(A^T) = \mathbb{R}^m \)
The complete big picture:

Image approximation (80x60)

Idea: use SVD to approximate images

- Interpret elements of matrix A as color values of an image.
- Truncate series SVD representation of A:
 $$A = U \Sigma V^T = \sum_{i=1}^{r} \sigma_i \hat{u}_i \hat{v}_i^T$$
- Use fact that $\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_r > 0$.
- Rank $r = \min(m, n)$.
- Rank r = # of pixels on shortest side (usually).
- For color: approximate 3 matrices (RGB).

From assignment 10

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$

$$A = U \Sigma V^T = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \end{bmatrix} \begin{bmatrix} \sqrt{3} & 0 & 0 \\ 0 & \sqrt{2} & 0 \\ 0 & 0 & \sqrt{1} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \end{bmatrix}$$