Applications of Random Networks
Complex Networks, CSYS/MATH 303, Spring, 2010

Prof. Peter Dodds

Department of Mathematics & Statistics
Center for Complex Systems
Vermont Advanced Computing Center
University of Vermont

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.
Outline

Analysis of real networks
 How to build revisited
 Motifs

References
More on building random networks

- **Problem**: How much of a real network’s structure is non-random?
- **Key elephant in the room**: the degree distribution P_k.
- **First observe** departure of P_k from a Poisson distribution.
- **Next**: measure the departure of a real network with a degree frequency N_k from a random network with the same degree frequency.
- **Degree frequency** $N_k = \text{observed frequency of degrees for a real network}$.
- **What we now need to do**: Create an ensemble of random networks with degree frequency N_k and then compare.
Building random networks: Stubs

Phase 1:

- **Idea:** start with a soup of unconnected nodes with stubs (half-edges):

- Randomly select stubs (not nodes!) and connect them.
- Must have an even number of stubs.
- Initially allow self- and repeat connections.
Building random networks: First rewiring

Phase 2:

- Now find any (A) self-loops and (B) repeat edges and randomly rewire them.

- Being careful: we can’t change the degree of any node, so we can’t simply move links around.

- Simplest solution: randomly rewire two edges at a time.
General random rewiring algorithm

- Randomly choose two edges. (Or choose problem edge and a random edge)
- Check to make sure edges are disjoint.

- Rewire one end of each edge.
- Node degrees do not change.
- Works if e_1 is a self-loop or repeated edge.
- Same as finding on/off/on/off 4-cycles. and rotating them.
Sampling random networks

Phase 2:

- Use rewiring algorithm to remove all self and repeat loops.

Phase 3:

- Randomize network wiring by applying rewiring algorithm liberally.
- Rule of thumb: # Rewirings $\sim 10 \times$ # edges\(^1\).
Random sampling

- **Problem**: with only joining up stubs is **failure** to randomly sample from all possible networks.

- **Example from Milo et al. (2003)**[^1]:

[^1]: Reference to be added.
Sampling random networks

- What if we have P_k instead of N_k?
- Must now create nodes before start of the construction algorithm.
- Generate N nodes by sampling from degree distribution P_k.
- Easy to do exactly numerically since k is discrete.
- **Note:** not all P_k will always give nodes that can be wired together.
Network motifs

- Idea of **motifs** \(^2\) introduced by Shen-Orr, Alon et al. in 2002.
- Looked at gene expression within full context of transcriptional regulation networks.
- Specific example of Escherichia coli.
- Directed network with 577 interactions (edges) and 424 operons (nodes).
- Used network randomization to produce ensemble of alternate networks with same degree frequency \(N_k\).
- Looked for **certain subnetworks** (**motifs**) that appeared more or less often than expected.
Network motifs

- Z only turns on in response to sustained activity in X.
- Turning off X rapidly turns off Z.
- Analogy to elevator doors.
Network motifs

▶ Master switch.
Network motifs

dense overlapping regulons (DOR)

X₁ X₂ X₃ ... Xₙ
Z₁ Z₂ Z₃ Z₄ ... Zₘ

Applications of Random Networks

Analysis of real networks
How to build revisited
Motifs

References

Network motifs in the transcriptional regulation network of Escherichia coli (stationary phase response).

1. Feedforward loop: a transcription factor X regulates one or more operons Z.
2. Single input module (SIM): a single transcription factor X regulates a set of operons Z.
3. Dense overlapping regulons (DOR): a set of operons Z are regulated by a combination of a set of input transcription factors X.
4. Random Networks

We compiled a data set of direct transcriptional interactions between transcription factors and the operons they regulate (an example of operons is given by the arginine biosynthesis system). No other transcription factor regulates the operons.

Analysis of real networks

We define 'network motifs' as patterns of interactions in a network that recur at frequencies much higher than those found in randomized networks. We apply new algorithms for systematically detecting network motifs to one of the best-characterized regulatory networks of E. coli (arginine biosynthesis).

We find that much of the network is composed of repeated appearances of three highly significant motifs, widely used for sequence analysis, to the level of networks. We generalize the notion of motifs, previously used for sequence analysis, to the level of elements of other biological networks.

Little is known about the design principles underlying gene regulation networks. To understand these networks, we sought to break down such networks into basic building blocks, the network motifs, which are each composed of repeated appearances of three highly significant motifs.

We generalized the notion of motifs, previously used for sequence analysis, to the level of elements of other biological networks. This approach may help define the basic computational units of transcriptional regulation networks that control gene expression in cells. Recent advances in data collection and analysis are generating unprecedented amounts of information about gene regulation networks. To understand these networks, we sought to break down such networks into basic building blocks, the network motifs, which are each composed of repeated appearances of three highly significant motifs.

How to build revisited motifs

Networks into basic building blocks

For a network into a basic building block

Applications of random networks

How to build revisited motifs

References

Frame 15/17
Network motifs

- Note: selection of motifs to test is reasonable but nevertheless ad-hoc.
- For more, see work carried out by Wiggins et al. at Columbia.