Random walks and diffusion on networks
Complex Networks, CSYS/MATH 303, Spring, 2010

Prof. Peter Dodds

Department of Mathematics & Statistics
Center for Complex Systems
Vermont Advanced Computing Center
University of Vermont

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.
Outline

Random walks on networks
Random walks on networks—basics:

- Imagine a single random walker moving around on a network.
- At $t = 0$, start walker at node j and take time to be discrete.
- Q: What’s the long term probability distribution for where the walker will be?
- Define $p_i(t)$ as the probability that at time step t, our walker is at node i.
- We want to characterize the evolution of $\bar{p}(t)$.
- First task: connect $\bar{p}(t + 1)$ to $\bar{p}(t)$.
Random walks on networks—basics:

- Imagine a single random walker moving around on a network.
- At $t = 0$, start walker at node j and take time to be discrete.
- Q: What’s the long term probability distribution for where the walker will be?
- Define $p_i(t)$ as the probability that at time step t, our walker is at node i.
- We want to characterize the evolution of $\vec{p}(t)$.
- First task: connect $\vec{p}(t + 1)$ to $\vec{p}(t)$.
Random walks on networks—basics:

- Imagine a single random walker moving around on a network.
- At $t = 0$, start walker at node j and take time to be discrete.
- Q: What’s the long term probability distribution for where the walker will be?
- Define $p_i(t)$ as the probability that at time step t, our walker is at node i.
- We want to characterize the evolution of $\bar{p}(t)$.
- First task: connect $\bar{p}(t + 1)$ to $\bar{p}(t)$.
Random walks on networks—basics:

- Imagine a single random walker moving around on a network.
- At $t = 0$, start walker at node j and take time to be discrete.
- Q: What’s the long term probability distribution for where the walker will be?
- Define $p_i(t)$ as the probability that at time step t, our walker is at node i.
- We want to characterize the evolution of $\vec{p}(t)$.
- First task: connect $\vec{p}(t + 1)$ to $\vec{p}(t)$.
Random walks on networks—basics:

- Imagine a single random walker moving around on a network.
- At $t = 0$, start walker at node j and take time to be discrete.
- Q: What’s the long term probability distribution for where the walker will be?
- Define $p_i(t)$ as the probability that at time step t, our walker is at node i.
- We want to characterize the evolution of $\bar{p}(t)$.
- First task: connect $\bar{p}(t + 1)$ to $\bar{p}(t)$.
Random walks on networks—basics:

- Imagine a single random walker moving around on a network.
- At $t = 0$, start walker at node j and take time to be discrete.
- **Q:** What’s the long term probability distribution for where the walker will be?
- Define $p_i(t)$ as the probability that at time step t, our walker is at node i.
- We want to characterize the evolution of $\bar{p}(t)$.
- First task: connect $\bar{p}(t + 1)$ to $\bar{p}(t)$.
Random walks on networks—basics:

- Imagine a single random walker moving around on a network.
- At $t = 0$, start walker at node j and take time to be discrete.
- **Q:** What’s the long term probability distribution for where the walker will be?
- Define $p_i(t)$ as the probability that at time step t, our walker is at node i.
- We want to characterize the evolution of $\bar{p}(t)$.
- First task: connect $\bar{p}(t + 1)$ to $\bar{p}(t)$.
- Let’s call our walker Barry.
Random walks on networks—basics:

- Imagine a single random walker moving around on a network.
- At $t = 0$, start walker at node j and take time to be discrete.
- Q: What’s the long term probability distribution for where the walker will be?
- Define $p_i(t)$ as the probability that at time step t, our walker is at node i.
- We want to characterize the evolution of $\bar{p}(t)$.
- First task: connect $\bar{p}(t + 1)$ to $\bar{p}(t)$.
- Let’s call our walker Barry.
- Unfortunately for Barry, he lives on a high dimensional graph and is far from home.
Random walks on networks—basics:

- Imagine a single random walker moving around on a network.
- At $t = 0$, start walker at node j and take time to be discrete.
- **Q:** What’s the long term probability distribution for where the walker will be?
- Define $p_i(t)$ as the probability that at time step t, our walker is at node i.
- We want to characterize the evolution of $\bar{p}(t)$.
- First task: connect $\bar{p}(t + 1)$ to $\bar{p}(t)$.
- Let’s call our walker **Barry**.
- Unfortunately for Barry, he lives on a high dimensional graph and is far from home.
- Worse still: Barry is **hopelessly drunk**.
Where is Barry?

- Consider simple directed, ergodic (strongly connected) networks.
- As usual, represent network by adjacency matrix A where

$$a_{ij} = 1 \text{ if } i \text{ has an edge leading to } j,$$

$$a_{ij} = 0 \text{ otherwise.}$$

- Barry is at node i at time t with probability $p_i(t)$.
- In the next time step he randomly lurches toward one of i’s neighbors.
- Equation-wise:

$$p_i(t + 1) = \sum_{j=1}^{n} \frac{1}{k_i} a_{ij} p_j(t).$$

where k_i is i’s degree.
Where is Barry?

- Consider simple directed, ergodic (strongly connected) networks.
- As usual, represent network by adjacency matrix A where

$$a_{ij} = 1 \text{ if } i \text{ has an edge leading to } j,$$
$$a_{ij} = 0 \text{ otherwise}.$$

- Barry is at node i at time t with probability $p_i(t)$.
- In the next time step he randomly lurches toward one of i’s neighbors.
- Equation-wise:

$$p_i(t + 1) = \sum_{j=1}^{n} \frac{1}{k_i} a_{ji} p_j(t).$$

where k_i is i’s degree.
Where is Barry?

- Consider simple directed, ergodic (strongly connected) networks.
- As usual, represent network by adjacency matrix A where

 \[a_{ij} = 1 \text{ if } i \text{ has an edge leading to } j, \]

 \[a_{ij} = 0 \text{ otherwise}. \]

- Barry is at node i at time t with probability $p_i(t)$.
- In the next time step he randomly lurches toward one of i‘s neighbors.
- Equation-wise:

 \[
 p_i(t + 1) = \sum_{j=1}^{n} \frac{1}{k_i} a_{ji} p_j(t).
 \]

 where k_i is i‘s degree.
Where is Barry?

- Consider simple directed, ergodic (strongly connected) networks.
- As usual, represent network by adjacency matrix A where

\[
 a_{ij} = 1 \text{ if } i \text{ has an edge leading to } j, \\
 a_{ij} = 0 \text{ otherwise.}
\]

- Barry is at node i at time t with probability $p_i(t)$.
- In the next time step he randomly lurches toward one of i’s neighbors.
- Equation-wise:

\[
 p_i(t + 1) = \sum_{j=1}^{n} \frac{1}{k_i} a_{ji} p_j(t).
\]

where k_i is i’s degree.
Where is Barry?

- Consider simple directed, ergodic (strongly connected) networks.
- As usual, represent network by adjacency matrix A where

 $$a_{ij} = 1 \text{ if } i \text{ has an edge leading to } j,$$
 $$a_{ij} = 0 \text{ otherwise.}$$

- Barry is at node i at time t with probability $p_i(t)$.
- In the next time step he randomly lurches toward one of i’s neighbors.
- Equation-wise:

 $$p_i(t + 1) = \sum_{j=1}^{n} \frac{1}{k_i} a_{ji} p_j(t).$$

where k_i is i’s degree.
Where is Barry?

- Consider simple directed, ergodic (strongly connected) networks.
- As usual, represent network by \textit{adjacency matrix} \(A \) where

\[
a_{ij} = \begin{cases}
1 & \text{if } i \text{ has an edge leading to } j, \\
0 & \text{otherwise.}
\end{cases}
\]

- Barry is at node \(i \) at time \(t \) with probability \(p_i(t) \).
- In the next time step he \textit{randomly lurches} toward one of \(i \)'s neighbors.

- Equation-wise:

\[
p_i(t+1) = \sum_{j=1}^{n} \frac{1}{k_i} a_{ji} p_j(t).
\]

where \(k_i \) is \(i \)'s degree. Note: \(k_i = \sum_{j=1}^{n} a_{ij} \).
Where is Barry?

- Linear algebra-based excitement:
 \[p_i(t + 1) = \sum_{j=1}^{n} a_{ji} \frac{1}{k_j} p_j(t) \]
 is more usefully viewed as
 \[\vec{p}(t + 1) = A^T K^{-1} \vec{p}(t) \]

 where \([K_{ij}] = [\delta_{ij} k_i]\) has node degrees on the main diagonal and zeros everywhere else.

- So... we need to find the dominant eigenvalue of \(A^T K^{-1}\).

- Expect this eigenvalue will be 1 (doesn’t make sense for total probability to change).

- The corresponding eigenvector will be the limiting probability distribution (or invariant measure).

- Extra concerns: multiplicity of eigenvalue = 1, and network connectedness.
Where is Barry?

- Linear algebra-based excitement:
 \[p_i(t + 1) = \sum_{j=1}^{n} a_{ji} \frac{1}{k_j} p_j(t) \]
 is more usefully viewed as

 \[\vec{p}(t + 1) = A^T K^{-1} \vec{p}(t) \]

 where \([K_{ij}] = [\delta_{ij} k_i]\) has node degrees on the main diagonal and zeros everywhere else.

- So... we need to find the dominant eigenvalue of \(A^T K^{-1}\).

 - Expect this eigenvalue will be 1 (doesn’t make sense for total probability to change).

 - The corresponding eigenvector will be the limiting probability distribution (or invariant measure).

 - Extra concerns: multiplicity of eigenvalue = 1, and network connectedness.
Where is Barry?

- Linear algebra-based excitement:

 \[p_i(t + 1) = \sum_{j=1}^{n} a_{ji} \frac{1}{k_j} p_j(t) \]

 is more usefully viewed as

 \[\tilde{p}(t + 1) = A^T K^{-1} \tilde{p}(t) \]

 where \([K_{ij}] = [\delta_{ij} k_i]\) has node degrees on the main diagonal and zeros everywhere else.

- So... we need to find the dominant eigenvalue of \(A^T K^{-1}\).

- Expect this eigenvalue will be 1 (doesn’t make sense for total probability to change).

- The corresponding eigenvector will be the limiting probability distribution (or invariant measure).

- Extra concerns: multiplicity of eigenvalue = 1, and network connectedness.
Where is Barry?

- Linear algebra-based excitement:
 \[p_i(t + 1) = \sum_{j=1}^{n} a_{ji} \frac{1}{k_j} p_j(t) \]
is more usefully viewed as

\[
\vec{p}(t + 1) = A^T K^{-1} \vec{p}(t)
\]

where \([K_{ij}] = [\delta_{ij}k_i]\) has node degrees on the main diagonal and zeros everywhere else.

- So... we need to find the dominant eigenvalue of \(A^T K^{-1}\).

- Expect this eigenvalue will be 1 (doesn’t make sense for total probability to change).

- The corresponding eigenvector will be the limiting probability distribution (or invariant measure).

- Extra concerns: multiplicity of eigenvalue = 1, and network connectedness.
Where is Barry?

- Linear algebra-based excitement:
 \[p_i(t + 1) = \sum_{j=1}^{n} a_{ji} \frac{1}{k_j} p_j(t) \] is more usefully viewed as
 \[\vec{p}(t + 1) = A^T K^{-1} \vec{p}(t) \]

 where \([K_{ij}] = [\delta_{ij}k_i]\) has node degrees on the main diagonal and zeros everywhere else.

- So... we need to find the dominant eigenvalue of \(A^T K^{-1}\).

- Expect this eigenvalue will be 1 (doesn’t make sense for total probability to change).

- The corresponding eigenvector will be the limiting probability distribution (or invariant measure).

- Extra concerns: multiplicity of eigenvalue = 1, and network connectedness.
Where is Barry?

- By inspection, we see that

$$\tilde{p}(\infty) = \frac{1}{\sum_{i=1}^{n} k_i} \tilde{k}$$

satisfies $$\tilde{p}(\infty) = A^T K^{-1} \tilde{p}(\infty)$$ with eigenvalue 1.

- We will find Barry at node i with probability proportional to its degree k_i.

- Nice implication: probability of finding Barry travelling along any edge is uniform.

- Diffusion in real space smooths things out.

- On networks, uniformity occurs on edges.

- So in fact, diffusion in real space is about the edges too but we just don’t see that.
Where is Barry?

- By inspection, we see that

\[\bar{p}(\infty) = \frac{1}{\sum_{i=1}^{n} k_i} \bar{k} \]

satisfies \(\bar{p}(\infty) = A^T K^{-1} \bar{p}(\infty) \) with eigenvalue 1.

- We will find Barry at node \(i \) with probability proportional to its degree \(k_i \).

- Nice implication: probability of finding Barry travelling along any edge is uniform.

- Diffusion in real space smooths things out.

- On networks, uniformity occurs on edges.

- So in fact, diffusion in real space is about the edges too but we just don’t see that.
Where is Barry?

- By inspection, we see that

\[
\vec{p}(\infty) = \frac{1}{\sum_{i=1}^{n} k_i} \vec{k}
\]

satisfies \(\vec{p}(\infty) = A^T K^{-1} \vec{p}(\infty) \) with eigenvalue 1.

- We will find Barry at node \(i \) with probability proportional to its degree \(k_i \).

- Nice implication: probability of finding Barry travelling along any edge is uniform.

- Diffusion in real space smooths things out.

- On networks, uniformity occurs on edges.

- So in fact, diffusion in real space is about the edges too but we just don’t see that.
Where is Barry?

- By inspection, we see that
 \[\bar{p}(\infty) = \frac{1}{\sum_{i=1}^{n} k_i} \vec{k} \]
 satisfies \(\bar{p}(\infty) = A^T K^{-1} \bar{p}(\infty) \) with eigenvalue 1.

- We will find Barry at node \(i \) with probability proportional to its degree \(k_i \).

- Nice implication: probability of finding Barry travelling along any edge is uniform.

- Diffusion in real space smooths things out.

- On networks, uniformity occurs on edges.

- So in fact, diffusion in real space is about the edges too but we just don’t see that.
Where is Barry?

- By inspection, we see that

\[\vec{p}(\infty) = \frac{1}{\sum_{i=1}^{n} k_i} \vec{k} \]

satisfies \(\vec{p}(\infty) = A^T K^{-1} \vec{p}(\infty) \) with eigenvalue 1.

- We will find Barry at node \(i \) with probability proportional to its degree \(k_i \).

- Nice implication: probability of finding Barry travelling along any edge is uniform.

- Diffusion in real space smooths things out.

- On networks, uniformity occurs on edges.

- So in fact, diffusion in real space is about the edges too but we just don’t see that.
Where is Barry?

- By inspection, we see that

\[\vec{p}(\infty) = \frac{1}{\sum_{i=1}^{n} k_i} \vec{k} \]

satisfies \(\vec{p}(\infty) = A^T K^{-1} \vec{p}(\infty) \) with eigenvalue 1.

- We will find Barry at node \(i \) with probability proportional to its degree \(k_i \).

- Nice implication: probability of finding Barry travelling along any edge is uniform.

- Diffusion in real space smooths things out.

- On networks, uniformity occurs on edges.

- So in fact, diffusion in real space is about the edges too but we just don’t see that.
Other pieces:

- **Goodness:** $A^T K^{-1}$ is similar to a real symmetric matrix if $A = A^T$.

- Consider the transformation $M = K^{-1/2}$:

 $$K^{-1/2} A^T K^{-1} K^{1/2} = K^{-1/2} A^T K^{-1/2}.$$

- Since $A^T = A$, we have

 $$(K^{-1/2} A K^{-1/2})^T = K^{-1/2} A K^{-1/2}.$$

- **Upshot:** $A^T K^{-1} = A K^{-1}$ has real eigenvalues and a complete set of orthogonal eigenvectors.

- Can also show that maximum eigenvalue magnitude is indeed 1.

- Other goodies: next time round.
Other pieces:

- Goodness: $A^T K^{-1}$ is similar to a real symmetric matrix if $A = A^T$.

- Consider the transformation $M = K^{-1/2}$:

$$K^{-1/2} A^T K^{-1} K^{1/2} = K^{-1/2} A^T K^{-1/2}.$$

- Since $A^T = A$, we have

$$(K^{-1/2} A K^{-1/2})^T = K^{-1/2} A K^{-1/2}.$$

- Upshot: $A^T K^{-1} = A K^{-1}$ has real eigenvalues and a complete set of orthogonal eigenvectors.

- Can also show that maximum eigenvalue magnitude is indeed 1.

- Other goodies: next time round.
Other pieces:

- Goodness: $A^T K^{-1}$ is similar to a real symmetric matrix if $A = A^T$.
- Consider the transformation $M = K^{-1/2}$:
 \[K^{-1/2} A^T K^{-1} K^{1/2} = K^{-1/2} A^T K^{-1/2}. \]
- Since $A^T = A$, we have
 \[(K^{-1/2} A K^{-1/2})^T = K^{-1/2} A K^{-1/2}. \]
- Upshot: $A^T K^{-1} = A K^{-1}$ has real eigenvalues and a complete set of orthogonal eigenvectors.
- Can also show that maximum eigenvalue magnitude is indeed 1.
- Other goodies: next time round.
Other pieces:

- **Goodness:** $A^T K^{-1}$ is similar to a real symmetric matrix if $A = A^T$.

- **Consider the transformation** $M = K^{-1/2}$:
 \[
 K^{-1/2} A^T K^{-1} K^{1/2} = K^{-1/2} A^T K^{-1/2}.
 \]

- **Since** $A^T = A$, we have
 \[
 (K^{-1/2} A K^{-1/2})^T = K^{-1/2} A K^{-1/2}.
 \]

- **Upshot:** $A^T K^{-1} = A K^{-1}$ has real eigenvalues and a complete set of orthogonal eigenvectors.

- Can also show that maximum eigenvalue magnitude is indeed 1.

- Other goodies: next time round.
Other pieces:

- Goodness: $A^T K^{-1}$ is similar to a real symmetric matrix if $A = A^T$.
- Consider the transformation $M = K^{-1/2}$:

$$K^{-1/2} A^T K^{-1} K^{1/2} = K^{-1/2} A^T K^{-1/2}.$$

- Since $A^T = A$, we have

$$(K^{-1/2} A K^{-1/2})^T = K^{-1/2} A K^{-1/2}.$$

- Upshot: $A^T K^{-1} = A K^{-1}$ has real eigenvalues and a complete set of orthogonal eigenvectors.
- Can also show that maximum eigenvalue magnitude is indeed 1.
- Other goodies: next time round.
Other pieces:

- **Goodness:** $A^T K^{-1}$ is similar to a real symmetric matrix if $A = A^T$.
- **Consider the transformation** $M = K^{-1/2}$:

\[K^{-1/2} A^T K^{-1} K^{1/2} = K^{-1/2} A^T K^{-1/2}. \]

- **Since** $A^T = A$, we have

\[(K^{-1/2} AK^{-1/2})^T = K^{-1/2} AK^{-1/2}. \]

- **Upshot:** $A^T K^{-1} = AK^{-1}$ has real eigenvalues and a complete set of orthogonal eigenvectors.
- **Can also show that maximum eigenvalue magnitude is indeed 1.**
- **Other goodies:** next time round.