Random walks and diffusion on networks
Complex Networks, CSYS/MATH 303, Spring, 2010

Prof. Peter Dodds

Department of Mathematics & Statistics
Center for Complex Systems
Vermont Advanced Computing Center
University of Vermont

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.
Outline

Random walks on networks

References
Random walks on networks—basics:

- Imagine a single random walker moving around on a network.
- At $t = 0$, start walker at node j and take time to be discrete.
- **Q:** What’s the long term probability distribution for where the walker will be?
- Define $p_i(t)$ as the probability that at time step t, our walker is at node i.
- We want to characterize the evolution of $\bar{p}(t)$.
- First task: connect $\bar{p}(t + 1)$ to $\bar{p}(t)$.
- Let’s call our walker **Barry**.
- Unfortunately for Barry, he lives on a high dimensional graph and is far from home.
- Worse still: Barry is **hopelessly drunk**.
Where is Barry?

- Consider simple undirected networks with an edges either present of absent.
- Represent network by a symmetric adjacency matrix A where

 $$a_{ij} = 1 \text{ if } i \text{ and } j \text{ are connected},$$

 $$a_{ij} = 0 \text{ otherwise}.$$

- Barry is at node i at time t with probability $p_i(t)$.
- In the next time step he randomly lurches toward one of i’s neighbors.
- Equation-wise:

 $$p_j(t + 1) = \sum_{i=1}^{n} \frac{1}{k_i} a_{ji} p_i(t).$$

 where k_i is i’s degree. Note: $k_i = \sum_{j=1}^{n} a_{ij}$.
Where is Barry?

- Linear algebra-based excitement:
 \[p_j(t + 1) = \sum_{i=1}^{n} \frac{1}{k_i} a_{ji} p_i(t) \]
 is more usefully viewed as
 \[\vec{p}(t + 1) = A^T K^{-1} \vec{p}(t) \]
 where \([K_{ij}] = [\delta_{ij} k_i] \)
 has node degrees on the main diagonal and zeros everywhere else.

- So... we need to find the dominant eigenvalue of
 \(A^T K^{-1} \).

- Expect this eigenvalue will be 1 (doesn’t make sense
 for total probability to change).

- The corresponding eigenvector will be the limiting
 probability distribution (or invariant measure).

- Extra concerns: multiplicity of eigenvalue = 1, and
 network connectedness.
Where is Barry?

- By inspection, we see that

\[\vec{p}(\infty) = \frac{1}{\sum_{i=1}^{n} k_i} \vec{k} \]

satisfies \(\vec{p}(\infty) = A^T K^{-1} \vec{p}(\infty) \) with eigenvalue 1.

- We will find Barry at node \(i \) with probability proportional to its degree \(k_i \).

- Nice implication: probability of finding Barry travelling along any edge is uniform.

- Diffusion in real space smooths things out.

- On networks, uniformity occurs on edges.

- So in fact, diffusion in real space is about the edges too but we just don’t see that.
Other pieces:

- Good news: $A^T K^{-1}$ is similar to a real symmetric matrix.
- Consider the transformation $M = K^{-1/2}$:
 \[
 K^{-1/2} A^T K^{-1} K^{1/2} = K^{-1/2} A^T K^{-1/2}.
 \]
- Since $A^T = A$, we have
 \[
 (K^{-1/2} A K^{-1/2})^T = K^{-1/2} A K^{-1/2}.
 \]
- Upshot: $A^T K^{-1}$ has real eigenvalues and a complete set of orthogonal eigenvectors.
- Can also show that maximum eigenvalue magnitude is indeed 1.
- Other goodies: next time round.