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To my parents.

The mind is not a vessel to be filled,
but a fire to be kindled.

— after Plutarch [78]
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A B S T R A C T

The network topologies on which many natural and synthetic systems
are built provide ideal settings for the emergence of complex phenomena.
One well-studied manifestation of this, called a cascade or avalanche, is
observed when interactions between the components of a system allow an
initially localized effect to propagate globally. For example, the malfunction
of technological systems like email networks or electrical power grids
is often attributable to a cascade of failures triggered by some isolated
event. Similarly, the transmission of infectious diseases and the adoption of
innovations or cultural fads may induce cascades among people in society.

In recent years, it has been extensively demonstrated that the dynamics
of cascades depends sensitively on the patterns of interaction laid out in
the underlying network. One of the goals of network theory is to provide a
solid theoretical basis for this dependence. In order to do this it is necessary,
first, to construct network models that are both mathematically sound and
capture the salient features of their real-world counterparts. So far, there
has been limited success in this direction. The primary shortcoming of most
existing network models in this regard is their lack of realistic structural
motifs, in particular the absence of significant levels of clustering, which
refers to the propensity of triples of connected vertices to form triangles,
and is a prominent feature of networked systems across multiple settings.

In this thesis we investigate the interplay between network structure and
cascade dynamics. Beginning with dynamics, we consider an analytically
tractable technique to determine the expected cascade size in a broad
range of dynamical models on locally tree-like networks of arbitrary degree
distribution. We validate this approach by demonstrating its excellent
agreement with the results of extensive numerical simulations, and closely
examine its applicability to real socio-technological systems. Here we focus
particularly on problems relating to social influence and opinion formation,
and we develop a number of important modifications of the basic theory.

Following this, we turn our attention to the structural characterization
of networks. We investigate the properties of a new generation of network
models that incorporate clustering by embedding cliques of fully connected
vertices within a locally tree-like topology, and that thus directly extend
the classical configuration model construction. In one such model, devised by
a member of our group, the sizes of these cliques may vary, allowing one
to prescribe a clustering spectrum to match empirically measured values.

Finally, we significantly extend the theory of dynamics on tree-like net-
works to these new, more structurally realistic ones. From this we uncover
answers to some important questions, which have earned considerable
recent attention, concerning the effects of increased clustering on cascades.
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1I N T R O D U C T I O N

1.1 cascades and complexity

We have all heard it said that we live in a connected age, an age in which
our fate, for better or worse, is becoming ever more bound up in the
contingencies of accumulated individual actions. Owing in part to the
proliferation of interactive technologies such as Web-based social media
much of our contemporary popular discourse is driven by the notion that
each of us has an important part to play in shaping not just our immediate
environments but the world at large; however, while few deny the moral
imperative to confront the criticality of our times, a cynic may note the
convenience of the dictum we are all in this together as means for the truly
powerful and culpable to reapportion blame.

Wherever the truth may lie in respect to the extent to which each of us
can effect change, the narrative of connectivity and accumulated action does
have a genuine basis in reality. From mass political uprisings and global
financial crises, to infectious disease epidemics and ecological catastrophes,
the potentiality of localized phenomena to very quickly accrue global
significance is perhaps greater today than ever before. We call events of this
type cascades or avalanches. The task of providing a scientific explanation
as to why they seem to occur so often nowadays is far from a trivial one;
however, there is a broad appreciation that they are a symptom of the
increasing complexity of our world.

What is complexity? It can be roughly defined as the degree of difficulty
in predicting the global behaviours of a system, given that the properties of
each of its constituent parts are known. Evidently, any system that scores
highly in this regard may be termed complex. Notwithstanding its current
vogue, when expressed in this simplified manner we see that it is not such a
novel concept after all but rather one that has been with us from the earliest
days of Western intellectual thought: recall Aristotle’s famous line, “. . . the
totality is not as it were a mere heap but the whole is something besides the
parts” [79]. In fact, throughout history many of the most eminent thinkers
have addressed various manifestations of complexity, though they lacked
our modern vocabulary: Adam Smith’s invisible hand [131]; and Charles
Darwin’s natural selection [36] are just two prominent examples.

If this is true, then what need of a so-called new science of complexity,
of which so much is written? The conventional argument goes that ever

1



2 introduction

since its germination in the philosophy of Descartes and the mechanics of
Galileo the modern scientific method has been engaged in a sort of brute
reductionism that does well at explaining the workings of the fundamental
cogs of the universe but does not tell us how these all fit together to form
not a unified, but rather a diversified, evolving, and chaotic whole. This
picture somewhat misses the point. Despite the inflated rhetoric, when
confronted with the legacy of the past four hundred years of scientific
enquiry no one is seriously prepared for a wholesale abandonment of
the basic reductionist principles. Furthermore, it is hard to conceive of a
framework that could stand up to the measure of this legacy that has not
been built from the bottom up.

Nevertheless, there is an important sense in which the new paradigm
is timely and correct. Though in reality we may have been studying com-
plex systems all along, traditional scientific taxonomies have served to
conceal this fact from view, like the proverbial ghost in the machine [126].
The (supposed) hierarchy of knowledge that leads from the ivory towers of
mathematics and physics, through the teeming citadels of chemistry and
biology, right down to the dank mire of psychology and sociology is no
longer adequate. In order to describe our connected age we are compelled
to knit these fields together in a variegated tapestry of axioms, observations
and metaphors, and although the final picture that will emerge from this
endeavour is not yet clear it is well understood that the study of networks
will be a unifying theme.1

1.2 the rise of network theory

There are many systems of interest to scientists that are composed of
individually functioning parts connected together in networks. Examples
range across multiple disciplines and scales, from the neural circuitry of
nematode worms [148] to the hyperlinks and webpages of the World Wide
Web [89]. Over the past decade or so, with the advent of cheap and powerful
personal computers, the measurement and analysis of these networked
systems has revealed that many of them share unifying structural traits. In
turn, it has been shown that these traits can strongly determine the various
complex phenomena that these systems exhibit, including cascades.

This synthesis of structure and process is the cornerstone of the bur-
geoning field of network theory. In its broadest terms this new field is
an interdisciplinary framework for the study of complex systems, whose
practitioners utilize a diverse array of tools and techniques from condensed

1 In the vanguard of this kind of thinking is the Santa Fe Institute in New Mexico, USA
[http://santafe.edu/]. For a lively account of its founding vision see [66].

http://santafe.edu/


1.2 the rise of network theory 3

matter physics and discrete mathematics to behavioural psychology and
beyond. In essence, however, it is a form of advanced applied graph theory,
the historical development of which, as we will briefly sketch, can be traced
through the augmentation of the basic graph theoretic modelling technique.

1.2.1 The Origin of Graphs

A simple graph of nine
vertices and ten edges.

Recall, first, that a graph is simply a collection of points connected by
lines. More formally, we call the points of a graph vertices, or nodes, and
the lines edges. To model a complex system as a graph is to filter out the
functional details of each of its components, and the idiosyncrasies of
their interactions with each other, and to focus instead on the underlying
structure (topology) as an inert mathematical construct. Although this
technique is central also to network theory, the word network, in contrast,
usually carries with it connotations of the context in which the overarching
system exists, particularly when that system displays any sort of nonlinear
dynamics. For example, when investigating the spread of infectious disease
on a human sexual contact network it makes sense to consider the relevant
sociological parameters as well as the abstract topology, and it is in such
settings that the interdisciplinary aspect that distinguishes network theory
comes to the fore.

It is vitally important, however, to not underestimate the value of the
graphical abstraction. In many instances it provides the key to understand-
ing the emergence of global system behaviours. In this regard we often
find that ostensibly simple structural characteristics, such as the density of
edges present and the way these edges are distributed between vertices, can
play a non-trivial role. The first person to realize this was the progenitor of
the theory of graphs, the Swiss mathematician, Leonhard Euler (1707–1783).
His famous solution to the Seven Bridges of Königsberg problem, presented
to the St. Petersburg Academy on August 26 1735, and later published
in 1741 [60], is commonly cited as the earliest example of the use of this
technique in a mathematical proof.

The city of Königsberg (now called Kaliningrad) was built on four land
masses connected by seven bridges. The puzzle, which had allegedly
stumped all of the townsfolk, asked for a walking route through the city
that would cross each bridge exactly once.2 When presented with the
problem, Euler, in his genius, saw that all of the information necessary to
solve it was contained within the abstract topology of the city’s network
of bridges. He, therefore, recast this network as a graph of four vertices

2 In graph theory such a route is now called an Eulerian walk or path. An alternative form of
the problem asked for a route that would cross each bridge once, starting and finishing on
the same land mass. This is an example of what is now called an Eulerian circuit or tour.
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Figure 1.1: The river Pregel (blue) divides Königsberg into four land masses,
labelled A to D. In Euler’s time, the city was connected by a network of
seven bridges, labelled a to g. Euler thought of these bridges as edges
(red) connecting the vertices (green) of a graph.

connected by seven edges (see Fig. 1.1). This then enabled him to make the
key observation that the walk being sought for would require a traveller
to enter and leave each non-terminal vertex an equal number of times. In
addition, if every bridge was to be traversed exactly once, it followed that
the number of edges attached to each vertex, except possibly for the start
and end vertices, must be even. Thus, a necessary condition for such a
route to exist is that at most two vertices are attached to an odd number of
edges. In Königsberg, however, all four land masses were touched by an
odd number of bridges, rendering the walk impossible. It turns out that
this condition is also sufficient; a result stated by Euler but not proven until
much later, c. 1871, by Carl Hierholzer [88].

From this grounding the theory of graphs developed steadily over the
next 220 years or so with mathematicians asking, and uncovering answers
to, more and more intricate questions as their knowledge increased (see
[14] and references therein). Throughout this time, however, graph theory
became increasingly embedded in pure mathematics; its practical under-
pinnings falling victim to the scholastic disdain for applications that has
so often characterized the latter. In fact, one might say that the appeal of
the theory, as it progressed, was purely esoteric since only those mathe-
maticians with a strong taste for rigour and abstraction tended to succeed
in proving, or for that matter even deciphering, the outstanding conjec-
tures of the day. The questions that tended to be asked about graphs
typically concerned route finding; graph colouring; vertex covering; and
graph enumeration [86, 117]. All of these problems were strictly deter-
ministic; however, a watershed moment would occur around the middle
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of 20th century when the prolific Hungarian mathematician Paul Erdös
(1913–1996) would focus his attention on graph theory and, in a series of
papers co-authored with Alfréd Rényi (1921–1970), develop the concept of
a random graph.

1.2.2 From Order to Randomness

In the late 1950s interest in the statistical aspects of graphs reached critical
mass; to the extent that a flood of publications all broadly related to this
topic appeared in a very short period of time. In the space of only four
years several authors, namely Gilbert [67], Ford and Uhlenbeck [63], Austin
et al. [9] and Erdös and Rényi [56], all offered seminal contributions to what
we now call the theory of random graphs.

Historically the consensus has been that each of these authors should be
equally credited with the foundation of the theory; however, this view is
overly conciliatory. The reality is that Erdös had considered the statistical
properties of graphs at least as early as 1947 [54], when he first demon-
strated the application of probabilistic methods to extremal problems [28].
Béla Bollobás, in his essential book [15], insists that the honour of having
founded the theory should belong exclusively to Erdös and Rényi [56].
He argues that while each of the aforementioned authors helped shift the
focus towards statistical considerations in general, it is only in [56] that
we find the probabilistic treatment of graphs which is the true core of the
theory as we know it today. According to Bollobás, “the other authors
were all concerned with enumeration problems and their techniques were
essentially deterministic” [15]. On the other hand, the approach of Erdös
and Rényi “has only the slightest connection with enumeration” [15]. They
were “not interested in exact formulae but rather in approximating a va-
riety of exact values by appropriate probability distributions and using
probabilistic ideas, whenever possible” [15].

In their probabilistic approach — introduced in [56] and extended further
in [57, 58, 59] — Erdös and Rényi considered the properties of a typical
graph in a probability space, or ensemble, Gn,M, which consists of all graphs
with a given set of n labelled vertices and M edges. Each random graph
realization is drawn from this ensemble with equal probability 1/

(
N
M

)
,

where N =
(
n
2

)
; and, if we allow n to vary we have ensembles of graphs

corresponding to each natural number n.
By extending this latter idea to the limit n → ∞ Erdös and Rényi

found that many interesting graphical properties, such as the presence of
subgraphs of particular sizes and configurations, are dependent on the
density of edges between vertices. Specifically, if we choose a function
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M = M(n), and we are interested in the existence of some property Q
as n → ∞, then in many cases a critical point exists in the evolution of
M(n) at which a swift transition from Q being very unlikely to it being
very likely occurs. Following the conventional nomenclature, if Q→ 1 as
n→∞, we say that almost every graph has property Q, otherwise, almost
every graph fails to have it.

Armed with this notion of probability spaces of graphs, succeeding
theorists were able to provide answers to numerous questions that would
have remained inaccessible to a strictly deterministic approach. Erdös
and Rényi themselves extended the main results of [56] to prove other
important theorems relating to the presence of cycles of connected vertices
and connected subgraphs containing no short cycles called trees [55, 57, 59].

From the point of view of the emergence of modern network theory the
introduction of probabilistic methods opened the doors to the mathematical
treatment of problems of a more applied nature, concerning the complex
networks found in the real world, many of which are extremely large and
evolving. However, Erdös and Rényi were not interested in the practical
application of such methods (they were the purest of mathematicians).
Instead, that work was left to others in more grounded, though perhaps
less rigorous, fields of study such as biology, sociology and even psychology.
In many cases these other researchers touched upon ideas that today we
recognize as fundamental network theoretic concepts; however, as discussed
earlier, the traditional compartmentalization of scientific disciplines, has
meant that the significance of these studies has not been fully appreciated
(by mathematicians at least) until very recently.

1.2.3 Networks in the Real World

Perhaps the most innovative research in this first, and for many years
overlooked, wave of network oriented investigations was conducted by the
trailblazing Russian-born mathematical biologist Anatol Rapoport (1911-
2007). In a work predating the publications of Erdös and Rényi, Rapoport,
with his collaborator Ray Solomonoff (1926-2009), [133] considered a type
of bond percolation process in which edges (or axons in their neurological
vernacular) are added at random between pairs of vertices in an infinitely
large set (n → ∞). They were particularly interested in the size and fre-
quency of connected components in the resulting random graphs (or nets)
as the average number of edges attached to each vertex, the mean degree,
z, is increased, and predicted that as the value of z increases beyond z = 1,
a single giant connected component (GCC) would emerge wherein a finite
fraction of the vertices in the graph would be connected. Such a component
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is now known in the parlance of percolation theory as a percolating cluster.
Below that critical value, we can expect to see only isolated small compo-
nents and no component that spans the graph.3 The most extraordinary
aspect of this paper, however, is that the authors then proceeded to discuss
what implications these findings might have for (i) a network of neurons,
(ii) the spread of an epidemic disease through a society, and (iii) a problem
relating to genetic diversity. Such concern with real-world applications was
remarkably prescient of far more recent studies.

Inspired by Rapoport’s pioneering work the political scientist Ithiel de
Sola Pool (1917-1984) and the mathematician Manfred Kochen (1928-1989)
began, in the mid to late 1950s, to consider the application of probabilistic
methods to interpersonal contact networks. In this endeavour they were
perhaps the first to formally model individual people and their acquain-
tanceships with one another (sans any particular dynamics) as vertices and
edges in a graph. It is widely accepted (see [12, 110, 145]) that de Sola Pool
and Kochen’s major paper on this topic [37] was distributed amongst their
peers in the social sciences in a preprint form as early as 1958 (around
the time when Erdös and Rényi were first formulating random graphs);
however, the authors, apparently dissatisfied with the treatment they had
given, did not consent to the publication of this work until 1978. Despite
their misgivings, the questions raised in this paper are some of the most
profoundly influential ever considered in the field of social networks and
continue to be of interest to researchers to this day. For example, they were
the first to ask:

i) How much contact is there between people in different social strata
and community groupings?

ii) Does having a greater number of direct acquaintanceships; i.e., a
higher degree, imply greater personal influence?

iii) What is the expected length of the shortest chain of intermediaries
between two people chosen at random?

They were also the first to recognise the importance of the distribution of
degrees, and the shape and mean of this distribution in addressing such
questions.

Of all the conclusions de Sola Pool and Kochen drew from their extensive
analysis the most surprising was that there are on average only two interme-
diaries between pairs of randomly chosen individuals anywhere on Earth,
and furthermore that social stratification does not significantly affect this
result. At the time this must have seemed highly implausible; and this may

3 This result is sometimes misattributed to Erdös and Rényi who independently discovered
it almost a decade later [56].
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be the reason why the authors delayed publication for so long. However,
while they were deliberating over the validity of their assumptions one of
the people they had shown their preprint to went ahead and carried out a
series of experiments to see if they were right.

The iconoclastic American social psychologist Stanley Milgram (1933-
1984) was the first person to provide strong empirical evidence for what is
now known as the small-world phenomenon. In slightly more general terms
than those in which it is expressed in [37], this is the hypothesis that any
two randomly chosen individuals, from any corner of the earth, can be
connected by a short chain of acquaintances — the average length of this
chain is still a matter of contention.

In the most famous of his experiments Milgram, with the aid of his
collaborator Travers, [100, 139] sent letters to 296 people chosen at random
from the joint populations of Nebraska and Boston. Those who received
letters were asked to pass them on to another randomly chosen target
individual located in Massachusetts. The crux of the experiment was the
condition imposed on the carriers that they could only pass their letter
on to a first name acquaintance who, for whatever reason, they felt was
closer to the target than they themselves. Only 64 out of the original batch
of 296 letters reached the target individual. Travers and Milgram [139]
calculated that those letters that did arrive at the target took an average
of 5.2 steps.4 Although this is slightly higher than the value predicted
in [37], this result still seemed to provide some minor evidence at least
that we do indeed live in a small world. Certainly it propelled the idea of
social connectivity into the popular consciousness, and more importantly
provided the first tangible demonstration of the potentially fascinating role
played by network topology in real world complex systems. The flaws in
the experiment, not least of which being the bias that was almost certainly
introduced in Travers and Milgram’s calculations, are well documented
[94, 112]; however, its landmark status remains as it continues to stimulate
important research [45, 93].

Milgram’s work also foreshadowed how technological barriers would
hamper progress in the direction of empirical verification. For much of the
20th century data sets remained difficult to compile and were generally
too small to be the subjects of any meaningful statistical analysis. As
alluded to earlier, the availability of relatively cheap personal computers
capable of storing and quickly analysing vast amounts of data has been
crucial in facilitating the recent explosion of interest in networks in general.
The limitations imposed on the investigations of earlier researchers, like

4 The phrase six degrees of separation was coined in reference to this many years later in the
play of that name by John Guare [82].
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Milgram and Rapoport, no longer exist for today’s network scientists.
Systems as diverse as the co-appearance network of Hollywood actors
[8, 147]; scientific citation networks [81, 106, 123]; the electrical power
grids of the United States [8, 42]; metabolic [90, 143] and genetic [103, 132]
regulatory networks; and email logs [53, 140] and telephone call records
[2, 4], amongst others, have all been measured and analysed, to a greater
or lesser extent, over the past decade or so.5

Of course, the World Wide Web [6, 22, 95] and its underlying hardware,
the Internet [62, 98, 120], have also been the subjects of intense scrutiny in
this regard.6 Since their respective inceptions both of these networks have
grown at astonishingly fast rates, and in largely unplanned and unregu-
lated manners [1, 68]. These features have made them both unfathomably
complex and, therefore, the ideal objects of study for network scientists
looking to test their theories. However, the significance of these particu-
lar systems extends far beyond academia. Nothing so characterizes our
socio-technical era as the increasing pervasiveness of the Web and related
technologies, such as search engines, social networking websites, and VoIP

communication services, in our everyday lives. Undoubtedly, our aware-
ness of such developments and our concerns for where they might lead
contribute to our renewed interest in networks and our eager reappraisal
of the once outlandish hypotheses of the social scientists of the 1950s.7

Finally, it is not unfair to say that the novelty and long-term value (if there
is to be any) of the new wave of network based analyses hinges on the ability
and willingness of its practitioners to combine the rigour of graph theory
and other branches of mathematics and physics with the perceptiveness of
studies in the so-called soft sciences. As we have attempted to convey in
this historical sketch, for many years there has been an artificial disjunction
imposed upon the study of networks by the confrontation of different
academic cultures. The highest goal of the new endeavour, in our view,
is to provide fundamental theoretical arguments to explain the structural
and dynamical commonalities, or (slightly more optimistically) unifying
traits, observed in the networked systems all around us, whatever their
categorization. It is in this spirit that the research presented in this thesis
concerning the phenomenon of cascades has been conducted.

5 See the review articles [5, 48, 110] and books [18, 23, 46, 49, 112, 113] for comprehensive
lists of references.

6 Ibid.
7 For instance, when one considers that the 44th President of the United States, Barack

Obama, has both Facebook and Twitter accounts the idea of a small world does not seem so
implausible after all.
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1.3 thesis organization

This thesis will provide an account of the research carried out by me over
the past three years as a member of Prof. James Gleeson’s SDCS research
group. The focus of this work has been to model cascading processes on
complex networks by extending, in a number of different ways, the analyti-
cal framework of Gleeson and Cahalane [73]. For much of our presentation
it will be helpful for the reader to think of these cascades as taking place on
social networks, and the terms in which we express our analyses will often
reflect this. However, all of our results are based solely on mathematical
arguments, and their applicability is not limited to any one domain: sociol-
ogy, epidemiology, technology, and finance all present network-oriented
problems for which our results may be relevant.

There are two broad themes in this thesis. The first concerns the mod-
elling of cascade dynamics on locally tree-like random graphs (Chapter 3).
The second concerns the modelling of cascade dynamics on random graphs
with realistically high levels of clustering (Chapters 4 and 5).

Having established, in our opening review, the historical context against
which to gauge our contribution to the study of networks, in Chapter 2

we provide an account of the definitions and concepts fundamental to
contemporary work in the field. This includes a partial glossary of im-
portant mathematical terms and reviews of some of the major theoretical
developments in modelling both network structure and dynamics.

In Chapter 3 we introduce the tree-based approach of [73] for calculating
the expected cascade size and the position of the cascade threshold. We
offer an extension of this approach as part of a detailed investigation into
the role of so-called influentials in the spread of information in society.
We also discuss the broader effectiveness of the tree-like approximation
of network structure for modelling real-world processes. This includes a
review of some of our recently published work on the subject [99].

In Chapter 4 we discuss at length the phenomenon of clustering. We
review two recent structural models which have presented methods of creat-
ing ensembles of highly clustered random graphs [71, 111]. Our comparison
of these two models contains details of a publication of ours concerning
the effects of clustering on cascades [76]. This sets the scene for Chapter 5,
where we will demonstrate how the framework of [73] can be extended
once again to create analytical models of cascade dynamics on each of the
clustered graph ensembles of [71] and [111]. These models contain within
their scope a range of processes including Watts’s model, SIR contagion dy-
namics, and site and bond percolation. One of these models has appeared
previously in publication [85]. The other is currently in preparation [83].

Finally, Chapter 6 offers a summary of our work, and overall conclusions.



2
D E F I N I T I O N S A N D C O N C E P T S

We begin this review chapter with a glossary of some important terminol-
ogy in the contemporary study of networks. These terms will be part of
our vocabulary throughout our presentation, and we will refer back to this
section in order to clarify our meaning, whenever it is deemed necessary.

2.1 some network terminology

Vertex: The fundamental unit of a graph. An abstract mathematical entity
which we use to represent some distinct part of a networked system; e.g.,
a person in society, or a page on the Web. Each vertex is given a label
i ∈ {1, . . . ,n}, where n is the total number of vertices in the graph. We refer
to n as the size of the graph. Other field-specific terms for vertex are node
(computer science), site (physics), and agent (sociology).

Edge: A line between two vertices used to represent a connection between
the corresponding parts of the networked system; e.g., an acquaintanceship
between two people in society, or a hyperlink leading from one webpage to
another. The terms link (computer science), bond (physics), and tie (sociol-
ogy) are also sometimes used.

Adjacency matrix: A matrix representation of a graph indicating which
vertices are adjacent to which others. The elements of the matrix are de-
noted aij, where i, j ∈ {1, . . . ,n}. For the most part in this thesis, aij ∈ {0, 1},
and signifies the simple presence or absence of an edge between vertices i
and j. Furthermore, the link is usually symmetric: aij = aji. This means
that the relationship that j bears to i is the same as that which i bears to j.
However, there are some more intricate possibilities; for example, weighted
edges, where bonds of different strength are represented by letting aij take
values on the real number line, and/or directed edges, which allow for
non-reciprocal relationships between vertices. Unless stated otherwise, we
ignore the possibility of self-edges (or loops).

Degree: The degree ki of a vertex i is the number of edges incident to
i. For directed graphs (or digraphs); i.e., graphs with directed edges, we de-
fine the out-degree, kout

i , as the number of edges rooted at i, pointing away

11



12 definitions and concepts

from i, and the in-degree, kin
i , as the number of edges pointing towards i.

Mean degree: The average degree of the vertices in the graph: z = 1
n

∑n
i=1 ki.

That is, the average number of connections per vertex. Also, the first mo-
ment of the degree distribution.

Degree distribution: For a given network topology, the degree distribu-
tion prescribes the probability, pk, that a vertex, chosen at random, has
degree k. In- and out-degree distributions are similarly defined for directed
graphs. Power-law degree distributions are often observed in empirical
data.

Degree-degree correlation: A measure of the correlation in the degrees of
the vertices at either end of a randomly selected edge. This gives us an
insight into the extent to which two vertices of certain degrees are related
to each other. It is usually measured by a version of the Pearson correlation
coefficient for vertex degrees, defined as

r =
〈kk ′〉e − 〈(k+ k ′)/2〉2e

〈(k2 + k ′2)/2〉e − 〈(k+ k ′)/2〉2e
, (2.1)

where 〈·〉e denotes the average over all edges and (k,k ′) denotes the de-
grees of the two vertices at either end of an edge [107].

Geodesic path: This quantity, usually denoted Lij, is the minimum number
of edges one must traverse in reaching a specified target vertex j from a
given starting vertex i. The average geodesic path length, or mean interver-
tex distance, taken over all pairs {i, j} is given by

L =
1

1
2n(n+ 1)

∑
i>j

Lij. (2.2)

Average geodesic path lengths tend to be much longer on very regular
graphs, like lattices, than they are on more random topologies, in which it
is often possible to find shortcuts from one vertex to another.

By convention, the term small-world network (SWN) designates those net-
works in which the average geodesic distance scales as L ∼ log(n) or slower
as the size of the network, n, diverges (n→∞). This logarithmic scaling
can be proved for a variety of real and model networks (see [16]).

Connected component: A connected subgraph; that is, a subset of the vertices
of a graph such that there exists some path through the graph connecting
any two vertices in this subset. If it exists, the component that contains
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the majority of the vertices is called the giant connected component (GCC).
In practice we tend to think of graphs as dynamic entities, evolving over
time by the addition of new vertices and edges. Hence, the GCC is more
commonly defined as a connected component that spans a finite fraction of
the vertices in an infinitely large graph (n→∞). This definition is closer
to the idea of a percolating cluster.

Clique: A fully connected subgraph. That is, a subset of the vertices of
a graph in which each vertex is connected to all of the others. A clique
of c vertices is called a c-clique; triangles are 3-cliques. Cliques are, by
definition, maximally clustered.

Clustering: This refers to the propensity for vertex triples to be fully con-
nected. Real-world networks tend to have very high levels of clustering
in comparison to classical random graphs. This is often one of the most
distinguishing features of real network topologies. For example, it is a well
known feature of social networks, in general, that if agent A is connected
to agent B, by a bond of friendship for instance, and agent B is in turn
connected to agent C, then it is highly probable that agents A and C are also
connected. Sociologists call this phenomenon transitivity or triadic closure.

Clustering coefficient: A natural way to measure clustering is as the proba-
bility that a randomly chosen connected triple of vertices, {i, j,k}, form a
triangle. This probability is called the clustering coefficient and is given by

C1 =
3× number of triangles in the graph

number of connected triples of vertices
. (2.3)

This is a global measure of the clustering in a graph [114].

Local clustering coefficient: An alternative definition introduced by Watts
and Strogatz [147]. This is a measure of clustering on a local level. We
define this as the probability that a triple connected to a randomly chosen
vertex, i, form a triangle:

ci =
number of triangles connected to vertex i

number of triples centered on vertex i
. (2.4)

The average of the local clustering coefficient over the entire graph provides
a second global measure: C2 = 1

n

∑
i ci.
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Degree-dependent clustering coefficient: The average of the local clustering
coefficient over the class of vertices of degree k [129, 142]:

ck =
1

nk

∑
i∈Υ(k)

ci, (2.5)

where nk is the number of vertices of degree k in our graph and Υ(k) is the
set of such vertices. If we calculate ck for each degree k we can construct a
clustering spectrum.

Generating function: A formal power series, whose coefficients correspond to
a specific sequence of numbers [149]. For example, the ordinary generating
function of the sequence an, where n ∈N, is

G(an; x) =
∞∑
n=0

anx
n. (2.6)

Similarly, the ordinary generating function of a two dimensional array of
numbers am,n, where m,n ∈N, is G(am,n; x,y) =

∑∞
m,n=0 am,nx

myn.
If the coefficients in Eq. (2.6) are a sequence of normalized probabilities

qk, such that
∑∞
k=0 qk = 1, then G(qk; x) is the probability generating

function of the probability mass function (PMF) qk = Pr(K = k), where K is a
discrete random variable. Similarly, G(qk,j; x,y) can encode the joint PMF

qk,j = Pr(K = k and J = j), for discrete random variables K and J.
The probability generating function of the degree distribution of a graph,

G(pk; x), has been used extensively in network-based analyses [24, 114,
144]. Some useful features of this representation are the following [114]:

Derivatives. The probability pk of a random vertex having degree k, is
given by the kth derivative of G(pk; x) evaluated at x = 0:

pk =
1

k!
dkG(pk; x)

dxk

∣∣∣∣∣
x=0

. (2.7)

Moments. The moments of the degree distribution, 〈kn〉, are given by

〈kn〉 =

[(
x
d

dx

)n
G(pk; x)

]
x=1

. (2.8)

For example, the first moment z = 〈k〉 = G ′(1).
Powers. The distribution of the sum of the degrees of the vertices in

a randomly selected subset of size m is generated by
[
G(pk; x)

]m. For
example, the coefficients of

[
G(pk; x)

]2 are the probabilities that the degrees
of two vertices sum to 0, 1, 2, etc.
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2.2 network models

In network theory, a model is a prescription for the creation of an ensemble
of graphs, usually with a view to capturing the structure of some networked
system. In this section we review, in order of publication what are, from
our perspective, the most important models to date. We begin with the one
that pointed the direction towards the study of real-world networks in the
first place: the Poisson random graph model of Erdös and Rényi.

2.2.1 Poisson Random Graphs

We have seen previously how, in a series of papers published in the late
1950s and early 1960s, Erdös and Rényi introduced probabilistic methods
to graph theory, thereby creating the theory of random graphs. As part
of this major contribution they also created one of the earliest, and most
comprehensively studied, random graph models [57], the basic formulation
of which can be given as follows: Starting with n disconnected vertices, add
edges between each possible pairing of these vertices with independent
probability, p.1 The ensemble of graphs created in this way is called Gn,p.2

Since there are n− 1 choices for the set of edges incident to any vertex,
the average degree of a Gn,p graph is z = p(n− 1), and it can be shown
that as the size of such a graph diverges (n→∞) its degree distribution
converges to a Poisson distribution with mean z (hence the name):

pk =
zke−z

k!
. (2.9)

Average geodesic path lengths in Gn,p graphs scale as L = log(n)/ log(z)
as n→∞ [110]. This logarithmic, or small-world, scaling is a property that
they share in common with many real networks (see Section 2.2.3 below).
However, the similarities end here.

Poisson random graphs are, in fact, poor models of networked systems.
This should come as no surprise since, as we have seen, despite the signifi-
cance of their work in bridging the gap between traditional graph theory
and the empirical study of networks, Erdös and Rényi had not intended
to create a realistic network model. Instead, their graphs represent com-
pletely random structures in which the presence of connections between

1 While a graph constructed in this way shares similarities with those investigated by
Solomonoff and Rapoport in [133]. The analytical approach adopted by those authors was
by no means as rigorous as that of Erdös and Rényi, and they are, for the most part, not
credited with the creation of this model.

2 This ensemble is not the same as the Gn,M ensemble, discussed earlier, which contains all
graphs that can be created having n vertices and exactly M edges. For further clarification
of the precise distinctions between the two see [15].
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Figure 2.1: A Poisson random graph with n = 100 and z = 4.

components is entirely down to chance. In principle, such graphs should
serve us no better as models of the structure of real-world systems than
simple lattices, especially since we are interested in systems that exhibit the
hallmarks of complexity. Concerning this point, it is important to recognize
that the complexity of a system is commensurate to the degree of difficulty
in uncovering and understanding the fundamental principles that govern
its behaviours, and not to how complicated those behaviours may appear.3

Therefore, while the graph presented in Fig. 2.1 certainly looks complicated,
considering the simplicity of its construction, we cannot call it complex.

In the sociological domain, our everyday experience indicates that be-
neath the apparent chaos of social interactions there must be rules that
determine the formation and dissolution of ties. While, of course, most
of these rules are as yet to be discovered; nevertheless, we can all ap-
preciate that things like bonds of friendship, for example, do not come
about entirely by chance. Setting aside for a moment the implications of
the small-world hypothesis, it seems intuitively obvious that one is much
more likely to be acquainted with those from one’s own socio-economic
background, workplace, geographical locality, or race. Related to this is the
phenomenon of high transitivity, or clustering (see Section 2.1); a feature
conspicuously absent from the Poisson random graph model since the

3 In this sense complexity is as distinct from complete randomness as it is from strictly
determined order.
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probability of an edge connecting two of the neighbours of a randomly
chosen vertex, i, in a Gn,p graph is p, regardless of the fact that they share
a mutual neighbour in i. Thus, the clustering coefficient of these graphs is
simply C1 = p = z/(n− 1) which, for fixed z, falls off as n−1 as n→∞.

2.2.2 The Configuration Model

In addition to producing graphs with vanishing clustering coefficients,
another obvious shortcoming of Erdös-Rényi’s model is the inflexibility
of the Poisson degree distributions that it creates. Evidently, there is no
such a priori restriction on the structure of a real network. A realistic model
ought to be able to produce a broader range of distributions, or at least
something with greater variability about its mean. In 1995 Molloy and Reed
offered a very elegant solution to this problem, with the publication of their
configuration model [104] for the creation of ensembles of random graphs of
arbitrary degree distribution.

To construct a random graph using this model our first step is to actually
pick a desired degree distribution, p̂k. From this, we then draw a degree
sequence {ki}, prescribing the degree of each individual vertex, i ∈ {1 . . . n}.
Using this sequence we create another list in which the label, i, of each ver-
tex appears exactly ki times. Finally, to construct a realisation of a random
graph we pair up the elements of this list uniformly at random and place
the number 1 (for an undirected unweighted edge) in an adjacency matrix
in the positions indexed by these pairs.4 The simplest way to visualise
this process is as connecting together half-edges, or stubs of edges, to form
complete edges between pairs of vertices. (Hence, the list of labels which we
have just referred to is more commonly called a stubslist.) The actual degree
distribution of the resulting random graph, pk, will not be precisely the
same as p̂k. However, the match between the two improves as n increases,
and they become indistinguishable as n→∞.

In theory, the configuration model can produce graphs fitting any well-
defined degree distribution including those drawn from real networks. This
makes it very powerful. Many of the most successful network models seen
in recent years have been built around its basic framework. In fact, it is
difficult to imagine much of the recent progress in this area having occurred
without it. It is rather unfortunate, then, that it suffers from precisely the
same drawback as the Poisson random graph model in that the level of
clustering vanishes as n→∞. This is true regardless of the choice of degree
distribution and, therefore, this significantly diminishes its usefulness as a
model of real networks. That is, of course, unless some modification can be

4 Any entries that are not set to 1 at this step are set to 0, indicating the absence of an edge.
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devised to bring clustering into the model. Some progress has been made
on this front in recent years by ourselves and others, and we will discuss
this topic in great detail later in Chapters 4 and 5 when we present our
work concerning highly clustered networks.

Despite the lack of clustering, the configuration model has continued to
be of interest to network scientists and many of its properties, including, for
example, the criterion for the appearance of the giant connected component,
have been identified and analysed. Some of the results pertaining to these
properties were derived rigorously like in [29], while others were found
using heuristics and approximations. Newman et al. [114], for example,
exploited the lack of clustering in configuration model graphs to derive a
generating function formalism from which they obtained quite a number
of fundamental insights.

2.2.3 Small-World Networks

The fundamental shortcoming of both Erdös-Rényi and configuration
model random graphs is their lack of structure. As we have already pointed
out, complex networks are not entirely random. On the other hand, nor
are they completely ordered. By their very nature, they contain elements of
both regimes. One of the most conspicuous ways in which order manifests
itself is through the phenomenon of high clustering. Unfortunately, both of
the aforementioned models lack this important feature.

To address this problem, in 1998 Watts and Strogatz introduced the
small-world network (actually, a new class random graphs) [147]. This has
proven to be one of the most influential publications of modern network
theory, inspiring much of the current wave of interest in the area.5 An
appealing feature of this model is the fact that it allows one to interpolate
continuously between ordered and random topologies simply by tuning a
single parameter. The original algorithm is remarkably simple:

i) Arrange n vertices in a ring; i.e., a 1-dimensional lattice with periodic
boundary conditions.

ii) Join each vertex to its nearest neighbours within a specified range
d ∈N such that all vertices have the same degree z = k = 2d.

iii) Rewire a fraction p of the edges. Rewiring is achieved by discon-
necting one end of an edge and reconnecting it to a different vertex,
chosen at random (see Fig. 2.2).6

5 As of October 3 2011, the Science Citation Index counted 6, 298 citations of this paper.
6 Multiple edges between pairs of vertices, and edges with both ends connected to the same

vertex (loops), are not allowed.
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(a) (b)

Figure 2.2: In (a) we have a ring of 15 vertices, each connected to its nearest
and second nearest neighbours (z = 4). In (b) some edges have been
randomly rewired to create a small-world network.

The value assigned to the parameter p determines the complexity of the
resulting graph topology. At p = 0 we have a perfectly ordered ring
lattice. This type of structure is essentially the polar opposite of a Poisson
random graph: it has both a long average geodesic path length and a
high clustering coefficient. A straightforward analysis [110] shows that
C1 = (3k− 3)/(4k− 2), which scales as C1 ' 3

4 as k gets large, and also
that L ∼ n/4k as n→∞. Increasing the value of p introduces edges between
vertices outside of the original range, d. Doing this quickly destroys the
lattice structure, dramatically reducing the values of C1 and L. At p = 1 we
achieve a fully randomised graph with a degree distribution similar, but
not identical, to a Poisson distribution with mean z. (We will discuss this
issue further below.)

Naturally, Watts and Strogatz were particularly interested in the structure
of their graphs in the intermediate region between p = 0 and p = 1.
Relying primarily on numerical simulations, they discovered an entire
range of p values for which both high clustering and short average geodesic
path lengths could coexist. Specifically, they found that rewiring between
p = 0.01 and p = 0.05 of the edges decimated the value of L, while
maintaining close to maximal C1.

They then presented an argument suggesting that these are the two
fundamental ingredients underlying the complexity of real-world networks.
In other words, that most networks can be accurately modelled by graphs
constructed in or around this parameter regime. This claim was bolstered by
empirical evidence derived from (i) a co-appearance network of Hollywood
film actors (actors who appeared in the same film were directly linked); (ii)
the power-grid of the Western U.S.; and (iii) the neuronal network of the
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nematode C. elegans. All three were found to have measurably short L and
high C1. That is, they were all highly clustered small-worlds. The authors
predicted (not unreasonably) that many other networks would be found to
share the same characteristics. And so, for a fleeting moment it looked as if
the problem of creating a realistic network model had been solved.

Of course, the reality of the situation would turn out to be much more
complicated. The Watts-Strogatz model, like any other, suffers from a
number of significant drawbacks. Firstly, the rewiring process used is
not particularly amenable to a mathematical analysis; most of the results
given in [147] were found through numerical simulations. The difficulty
arises primarily because removing existing edges can result in the graph
fragmenting into disconnected components. To combat this a number of
variants of the original algorithm have been suggested. The first, and
most popular, solution was offered by Newman [115]. In his version of
the model instead of rewiring existing edges one simply adds extra ones
between randomly chosen vertices. Graphs produced in this way have
similar properties to those produced by Watts and Strogatz but are also
guaranteed to consist of a single connected component.

Secondly, as mentioned above, the degree distributions obtained at p = 1

are not quite right. The problem is that they are too narrow; i.e., they lack
variance. Given that we have a delta spike p = 0, and that the variance
increases as p is increased, until it reaches its maximum at p = 1, it is not
too difficult to see that the degree distributions generated by this model
will never be broader than a Poisson distribution for any p ∈ [0, 1] [110].
One may justifiably ask: Is this really such a problem? Certainly, at the time
few could have predicted the next dramatic twist in the tale of network
theory: the discovery that many networks (perhaps even most) have broadly
heterogeneous degree distributions, which are more accurately fitted by
various types of power law than by any kind of Poisson-like distribution.
Thus, despite possessing the realistic features of high clustering and short
path lengths, the Watts-Strogatz model would soon be outmoded.

2.2.4 The Barabási-Albert Model

Around the turn of the millennium strong empirical evidence began to
emerge [6, 8, 123] that real degree distributions do not adhere to the simple
centrally-peaked form which had hitherto been the archetype. Instead, it
was revealed that they are often heavily right-skewed, with many vertices
of very low degree and a few of very high degree. More than that, in
between these two extremes they quite often lack any easily identifiable
peak by which to characterise the majority of vertices. In other words, the
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distribution of degrees can be so heterogeneous that the mean value z is
virtually useless as a descriptor of the graph topology. This heterogeneity is
typically of such an extent that a large portion of the data, usually located
towards the tail of the distribution, can be accurately fitted by a power law
of the general form

pk ∼ L(k)k−γ, (2.10)

where γ > 1, and the coefficient L(k) is a slowly varying function satisfying
limk→∞ L(tk)/L(k) = 1, with t constant. (In many cases L(k) is defined as
some simple normalization factor C [30].)

In 1998 Redner [123] carried out a study of scientific citation networks
which revealed that the probability of a journal article being cited by k
others decayed as k−γ with an exponent γ ≈ 3. In graph theoretical terms,
treating articles as vertices and drawing directed edges from each article to
those it cites, we would say that the in-degree of vertices in this network is
distributed according to a power law with said exponent and L(k) = C. One
year later a study appeared which suggested that the World Wide Web is
also a power law distributed network [6]. In this case webpages are vertices
and hyperlinks are edges. The network is directed since there may be a link
from one page to another but no backlink. The authors found that both the
in-degree and out-degree of the Web decayed as power laws with exponents
γ ≈ 2.1 and γ ≈ 2.45, respectively. Of course, these results were not derived
from an analysis of the Web in its entirety. Rather, they were extrapolated
from measurements made on the the portion of the Web hosted on the
nd.edu domain, which at that time numbered 325,729 documents and had
1,469,680 links. This was assumed to be a representative sample of the Web
as a whole. Similar results were obtained from the co-appearance network
of actors (γ ≈ 2.3), electrical power grids (γ ≈ 4), the Internet (γ ≈ 2.5), and
telephone calling graphs (γ ≈ 2.1). Yet further examples were unearthed
the following year in an extensive survey carried out by Amaral et al. [8].

In view of the substantial evidence provided by these (and many other)
empirical studies it soon became apparent that power law degree distribu-
tions are ubiquitous in both man-made and naturally occurring networks
(see Table 3.1 of [110]). This was particularly exciting because of the in-
teresting physical properties that power laws often imply. For one, they
are scale invariant. This means that a rescaling of the function’s argument
will cause only a proportional scaling in the function itself. For example,
considering the simple form presented in Eq. (2.10) we see that multiplica-
tion by a constant factor will not change the overall shape of the function.
Because of this, power law distributed networks are often termed scale-free.
In many contexts, this property can signify the presence of deep structural

http://nd.edu/
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Figure 2.3: A scale-free (i.e. power law distributed) network of 100 vertices with
200 edges. While the average degree is z = 4, many vertices have fewer
than 4 neighbours and a few have very many more neighbours.

symmetries. From a complex systems point of view it is often seen as the
hallmark of an underlying organizational hierarchy or stochastic process.
This boded well for the creation, finally, of a simple unifying model which
would capture all of the salient features of real networks.

First off the mark, in this respect, were Barabási and Albert, with the
publication in 1999 of their model for the creation of a class of scale-free
random graphs [13].7 Two rather simple observations laid the foundation
for this model. Firstly, real networks are not static, instead they are con-
stantly growing by the addition of new vertices and edges; and secondly,
new vertices tend to attach preferentially to already well connected ones.8

The first point seems fairly intuitive; however, the second takes some justi-
fication, especially given the generality of the claim. The authors argued
that the World Wide Web and other socio-technological systems naturally
evolve in this way, and that the same mechanism can explain power-law
degree distributions in other domains. In hindsight, whether or not this is
actually the case is debatable, and in some quarters the model has been
criticized as lacking in sufficient rigour [16].

7 As with much else in contemporary network theory this model has closely related prece-
dents in the sociometric studies of the mid 20th century. In this case, the work of Herbert
Simon [130] and Derek de Solla Price [38, 39] is the most directly relevant.

8 This phenomenon was called cumulative advantage by de Solla Price [39] in relation to
citations in scientific papers.
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Nonetheless, using these two ingredients the authors derived a simple
growth process that was capable of producing scale-free graphs with power-
law exponents γ ∈ [2, 3]. Significantly, not only was the end product of this
process scale-free, but the statistics of the power-law degree distribution
became stationary as the network evolved. This was considered an impor-
tant requirement for modelling purposes since real scale-free networks are
clearly not finished in any meaningful sense of the word, and yet are often
observed to possess constant power-law exponents in the above range.

In spite of all this progress, the Barbási-Albert model is not much closer
to a universal network model than any earlier attempt. The scale-free
graphs that it produces lack significant levels of clustering. This is just one
of its major shortcomings. Numerous refinements and modifications of
the original algorithm exist. The most significant of these are discussed in
detail in the review article [5].

The list of network models presented in this section is by no means
exhaustive. Rather, it serves to highlight the four most fundamental contri-
butions to the subject so far. As we have seen, each of these four models
capture some of the features of real-world networks, while, on the other
hand, none capture all. The phenomenon of high clustering, in particular,
has proven to be remarkably elusive. We will discuss this issue further in
Chapter 4. For now, however, we move away from the topic of network
structure and introduce the other major strand of network theory: the study
of the processes that take place on networks. The mathematical description
of these processes will be expounded upon in the next chapter.

2.3 processes on networks

While modelling efforts, such as those discussed in the previous section,
may help us to understand the topological characteristics of empirically
observed networks, these constitute merely the first steps towards our
ultimate goal of developing a comprehensive understanding of the systems
built on those networks. Unfortunately, to form a complete picture of a
system it is not enough to simply uncover the properties of its underlying
architecture; we must also provide a detailed description of how this
architecture affects the system’s functional particulars. Within network
theory, studies of the latter are much less well developed than those of the
former. As we have shown in the introduction, the reasons for this can be
found in the historical development of the theory. Many of the tools and
techniques currently used by network scientists to investigate functional
dynamics have been appropriated from the long-standing methodologies
of other fields of study. Depending on one’s point of view this may be
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seen as a weakness of the theory or as one of its primary virtues. In
support of the latter opinion, there is one area in particular where this
synthesizing approach has borne ample fruit, leading to quite a number of
important new results, and that is in the study of how things propagate
over networks.9

Broadly speaking, most of the attention thus far concerning the dy-
namical properties of networks has focused on the propagation of either
information or disease through society, or structural failure in synthetic sys-
tems, like the Internet. In respect to these spreading processes researchers
have been overwhelmingly interested in determining whether or not small
localised uniformities of state or behaviour in a given system are likely to
evolve into a large scale uniformity observable across the majority of its
components, an event we call a cascade. For example, those interested in
the spread of information through society [144, 146] are often concerned
with such phenomena as fashions or rumours, which grab the attention
of vast swathes of the population in a very short period of time and often
die out just as quickly. Similarly, many epidemiological studies [96, 119]
have been preoccupied with determining how small isolated outbreaks of
disease can quickly develop into pandemics. And, those concerned with
the robustness of the Internet, or other such man-made systems, to either
random breakdowns [31] or intentional attacks [32], often worry about the
extent to which structural failure may propagate throughout these systems.

Investigations of this sort are often complicated by the fact that each of
these processes is very different to what one might call traditional diffusive
propagation. The spread of things like information, disease, or failure is
not conservative. If you have an idea which your friend also adopts, you
may still hold on to it. Similarly, if you transmit the flu to someone, that
does not mean you are therefore cured. Hence, the diffusion equation or
some other mass-conserving equation is, usually, not an appropriate tool
for modelling such processes. More often than not, we are forced to apply
probabilistic methods in our analyses. Thankfully, as we shall see, networks
provide a natural framework on which to do so.

2.3.1 Failure and Resilience

The question of resilience has been addressed by network scientists primar-
ily by adapting ideas from the branch of condensed matter physics called
percolation theory. According to Bollobás and Riordan [17], this theory was
initiated over half a century ago by Broadbent and Hammersley [21] “in or-
der to model the flow of fluid in a porous medium with randomly blocked

9 For a review of the major advances made in this direction see [113].
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channels” [17]. Recalling the more familiar language of Erdös and Rényi,
when viewed from an abstract perspective, percolation theory can be seen
as the study of the component structure of the random graphs obtained
by selecting either vertices (site percolation) or edges (bond percolation)
independently of each other, and with uniform occupation probability φs
or φb, respectively. Indeed, a close reading of the literature on the subject
reveals that much of it concerns problems similar to those considered by
Erdös and Rényi, and Rapoport before them, albeit framed differently. It
includes, for example, questions relating to the distribution of small con-
nected components (or clusters), and the criterion for the emergence of the
giant connected component (or percolating cluster).10

Since, however, percolation has traditionally been studied by mathe-
matical physicists, many of its classical results have been derived from a
mean-field approach where the medium in which the percolating process
occurs is represented by some infinite-dimensional structure of minimal
complexity. Typically, either one of the following three types of graph have
been considered [46]: (i) an infinite dimensional lattice, (ii) a fully connected
graph, or (iii) a Bethe lattice.11 As network scientists, these types of trivial
topologies are of limited value to us; rather, our interest in percolation
stems from the relatively recent work of Molloy and Reed [104, 105], who
investigated the component structure of the infinite undirected graphs of
arbitrary degree distribution, pk, generated from their configuration model.

The most celebrated result presented in [104] relates the mean number of
first (z1) and second (z2) nearest neighbours in configuration model graphs
to the birth of the GCC. By way of some particularly dense mathematical
arguments the authors proved that the GCC exists if and only if,∑

k

k(k− 2)pk > 0. (2.11)

Extracting the first and second moments of the degree distribution from
this expression, it can be written in the form z2 > z1, where z1 = 〈k〉 and
z2 = 〈k2〉− 〈k〉. Although this result is only trivially related to percolation
(as in this case φs = φb = 1), it represents an important precedent for those
in the networks community interested in the subject, and some of the most
significant work of recent years has been based (though perhaps not always
consciously) on various modifications and extensions of Molloy and Reed’s
approach. We will illustrate this point further in a moment.

10 Two solid introductions to percolation are to be found in [17] and [134]. While the treatment
given in [17] is decidedly mathematical, [134] is written from the physicists’ point of view.

11 This is essentially an infinite dimensional random regular graph, where regular means all
vertices have the same degree. We shall return to this object in next chapter.
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Figure 2.4: The giant connected component appears once some critical occupa-
tion probability, φ̂, has been reached. For uniform site percolation φ̂s
usually marks the beginning of a continuous phase transition. S: the
relative size of the GCC; φs: site occupation probability.

First, in case it is not entirely clear to the reader at this stage of our
discussion how percolation relates to network resilience, let us state the
connection explicitly. Notice that the way we have presented percolation
thus far — as a process by which connected components are formed from
a set of initially isolated vertices, leading eventually to the appearance
of a giant connected component (see Fig. 2.4) — is just one of two valid
interpretations. If, instead, we read this picture backwards, so to speak,
percolation concerns the breakdown of a giant connected component into
a set of isolated vertices, where either sites or bonds are broken with
independent probability 1−φs or 1−φb. In fact, this is precisely how it is
interpreted in most contemporary network-oriented investigations.

Cohen et al. [31], for example, modelled the random breakdown of parts
in the Internet as a site percolation process with uniform probability of
removal ψs (= 1−φs), and thereby derived the following result for the
percolation transition on a graph of arbitrary degree distribution:

φsz2 > z1, (2.12)

where z1 and z2 are the mean numbers of first and second nearest neigh-
bours in the undamaged version of the graph, respectively. Clearly, this
result is a generalization of Ineq. (2.11) above (a point which, in fairness to
the authors of [31], they readily acknowledge).

The most original aspect of [31] concerns the resilience of scale-free
networks. In support of earlier observations made by Albert et al. [7],
the authors verified mathematically that, depending on the value of the
exponent, networks with power-law degree distributions of the general
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form pk ∼ k−γ (like the Internet) may be extremely robust to random
failures. Specifically, they showed that if γ > 3, then there will be a phase
transition at some point ψs < 1 at which the GCC disappears; if however,
γ 6 3, no such transition exists. In this case, in order to destroy the GCC

one would have to remove almost every vertex from the graph.
Naturally, the next question that follows from this result is: What will

happen if, instead of random removals, we target vertices or edges of certain
types? Of particular interest is the potential impact of targeting only the
highest degree vertices for removal. This problem was addressed early on
by Albert et al. [7], but only through the use of numerical simulations. The
first, and most elegant, analytical treatment was given by Callaway et al. [24].
The authors of this paper presented a number of remarkable results that
can be applied equally to the problems of random breakdown and targeted
attack. Using a generating function approach in which the probability of
deletion of a vertex is assumed to be some arbitrary function of vertex
degree, ψs = ψs(k), they showed that it is possible to calculate exactly not
only the position of the percolation threshold and the expected size of the
GCC12, but also the size distribution of non-critical components below the
threshold. In relation to intentional attack they provided theoretical backing
for the simulations of [7] by showing that while scale-free networks may
be resilient to random breakdowns, they are extremely vulnerable to the
removal of their highest degree vertices. In some cases removing only 1%
of these top vertices is enough to destroy the GCC [24].

Targeted removal has subsequently been studied in various guises by
other authors, including Cohen et al. [32], and occasionally in rather compli-
cated and interesting ways [47, 118]. Note also that the application of ideas
from percolation to problems of network robustness (or growth) currently
extends far beyond the foundational work presented in this section. The
concept of explosive percolation, for example, which lays outside scope of
this thesis, is a particularly hot topic [3, 124].

2.3.2 Epidemics and Rumours

Although it is an interesting process in its own right, when compared to the
types of dynamics which we observe from day to day on social networks
percolation (whether random or otherwise) can appear rather mundane.
In view of the fact that the world consists of living persons who (unlike
technological systems) each hold at least some degree of autonomy, remov-
ing with predetermined probability an undifferentiated set of vertices or
edges from a graph becomes an artificially simplistic modelling device.

12 A result equivalent to this was derived by Molloy and Reed in [105].
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To illustrate, consider the spread of disease within a population. If we
were to apply percolation directly in this case, we would be assuming that
individuals are in either of two acquiescent states: diseased or not diseased.
However, thanks to the work of epidemiologists we know that real conta-
gion dynamics are much more subtle than this, and depend upon an array
of different factors (mostly human) including, for example, the mobility of
individuals; their community groupings; and various immunities.

In recognition of these limitations, attempts to model outbreaks of in-
fectious disease by network scientists usually rely on the adaptation of
classical models borrowed from the epidemiological literature. The two that
appear most often are named, respectively, susceptible- infective-recovered
(SIR) and susceptible-infective-susceptible (SIS), after the different iterations of
state considered in each case. We shall not delve into the details of work
in this area since it deals in concepts analogous to those discussed in rela-
tion to resilience above. For example, the fraction of infected individuals
(or prevalence) in SIR corresponds closely to the relative size of the GCC.
Similarly, the idea of an epidemic threshold [80] parallels that of a critical
occupation probability. In fact, it has been shown by Newman [108] that
a generalization of the SIR model applied to random graphs of arbitrary
degree distribution can be mapped directly onto bond percolation.

Instead of disease we will focus our discussion of human-driven dynam-
ics on the spread of information, and the various cascading phenomena
which it engenders in the political, economic, and cultural domains. Though
also closely related to percolation, this topic has a much broader scope
than network-based epidemiology as each of the foregoing areas presents
its own distinct set of idiosyncrasies. There is a long-standing interest in
information cascades in sociology and related fields; however, in the inter-
est of expediency we will postpone until the next chapter consideration of
the historical context, and begin here with the paper of 2002 by Duncan
Watts [144] which has inspired much of the current wave of research on the
subject, including our own work.

2.3.2.1 Watts’s model

In [144] Watts provided a simple yet rich framework for investigating
cascade dynamics on complex networks. In principle his approach (called
Watts’s model) lends itself to a number of different applications; however, it
has found most success as a model of how information, or, as the case may
be, misinformation, propagates through society. Utilizing once again the
graphical abstraction, let us think of a random graph as representing some
social group: vertices are people and edges are bonds of acquaintanceship.
As Watts conceives it, the decision of a person to partake in the cascade,
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of some fashion or opinion for example, depends only on the states of
his or her nearest neighbours (adjacent vertices). Accordingly, each vertex
i is assigned a unique threshold of resilience ri ∈ R drawn from some
probability distribution q(r), which may be interpreted as representing
their independence of mind; i.e., their tolerance against herd-like behaviour.
The state of each vertex as a function of time is a binary variable vi(t) ∈
{0, 1}, where vi(t) = 1 means i participates and vi(t) = 0 means he does
not. Hence, the model may be interpreted as a particular instance drawn
from the more general class of models of interaction dynamics known as
binary decisions with externalities [128]. If the fraction of a person’s nearest
neighbours that are actively participating in the cascade is lower than
his threshold he will remain independent, refusing to participate (vi(t) =
0); however, if this fraction exceeds his threshold he too will participate
(vi(t) = 1). Given a network topology representative of some arbitrary
subset of the population, we can simulate the propagation of a cascade
through this population using its adjacency matrix as follows:

i) Assign each vertex a unique threshold ri drawn uniformly at random
from q(r).

ii) Starting with all vertices inactive (vi(0) = 0, ∀ i), initiate the cas-
cade dynamics by manually activating a small number of randomly
selected seed vertices.

iii) Update the state of each vertex, vi(t), according to the following
decision rule:

vi(t) =

 1, if 1
ki

∑
j aijvj(t) > ri,

unchanged otherwise.
(2.13)

iv) Repeat step (iii) until until no further changes of state are possible.

Note, once a vertex has been assigned the state vi(t) = 1 (active) it cannot
return to state vi(t) = 0 (inactive). This crucial feature is referred to as the
permanently active property (PAP). It guarantees that the dynamics described
by steps (i)-(iv) will achieve a state of completion in which a final, steady-
state density of vertices in the graph are active. Evidently, this density
will correspond to the cascade size on that particular run of the model:
1
n

∑n
i=1 vi(t). By averaging this value over many such runs we can compute

an expected cascade size, which we shall call ρ. An implementation of this
algorithm in MATLAB® code is given in Appendix C.

Applying this methodology enabled Watts to present a number of impor-
tant numerical results for the size and frequency of cascades in networks
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with various degree and threshold distributions. His main analytical result,
derived by the generating function formalism of [114], states that the nec-
essary condition for a seed consisting of a single vertex to cause a global
cascade is

G
′′
0(1) > z, (2.14)

where G
′′
0(1) is the second moment of the generating function (see Sec-

tion 2.1) for the degree distribution of vulnerable vertices, and z is the mean
degree of all vertices in the network. Vulnerable vertices are those which
require only one of their neighbours to be active in order to become acti-
vated themselves. Thus they mimic, in a very rough sense, the behaviour of
early adopters [125].13 When Ineq. (2.14) holds, the average size of connected
components of vulnerable vertices diverges, in which case a small initial
perturbation (the seed) may trigger a global cascade.14

In order to justify the use of generating functions for this result it is
necessary to assume that the local edge topology around any randomly
chosen vertex is tree-like; that is, a branching structure with no clustering.
For a random graph constructed using the configuration model, the like-
lihood that this assumption is valid improves as the size of the graph, n,
increases, and has been shown to be valid almost surely as n → ∞ (see
Section 2.2.2). Hence, this assumption will amount to quite an accurate
approximation, provided the graphs we create are very large.15 On the
other hand, as we have seen, observable networks tend to have very high
levels of clustering, and, therefore, we would not necessarily expect such
a tree-based approach to work as well in real-world applications. (We will
discuss this point further in Section 3.3.)

Finally, note that Watts’s model is purely prescriptive; in the sense that it
contains no governing equations. Thus, generally speaking, statistics such as
the expected cascade size, ρ, can be found only by numerical simulations.16

The generating functions used to obtain Ineq. (2.14) are certainly elegant
but they by no means constitute a full, analytically tractable treatment.
Thus, the model as presented in [144] lacks a robust method of predicting
ρ. As we will now show, addressing this problem has been an important
motivating factor in our own research on cascade dynamics.

13 This term has been popularized more recently by Malcolm Gladwell [69].
14 We address the issue of single seed activation in greater detail in Appendix A.2 after our

examination of the influentials hypothesis in Section 3.2.
15 The random graphs that we analyse usually lie somewhere in the range n ∼ 104 to n ∼ 106,

but can be much larger in some cases.
16 On this point note that throughout the succeeding chapters whenever we refer to running

numerical simulations on a network what is implied by this statement is running a script
similar to that shown in Appendix C on the adjacency matrix representation of the network.
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M O D E L L I N G C A S C A D E S

Inspired by Watts’s work, and also by the need to address its limitations, in
their 2007 paper [73] Gleeson and Cahalane introduced a comprehensive
analytical framework for investigating cascade dynamics on complex net-
works. Like Watts’s model itself their analysis hinges on the assumption
that the topology under consideration is locally tree-like. This technique
is by no means a novelty in physics. The Bethe lattice, which as we have
noted is a type of connected acyclic graph where each vertex is connected
to z others, has for many years been used to simplify problems related to
the Ising model, thereby allowing exact solutions to be found.

The Ising model is a mathematical model in statistical mechanics named
after the German physicist Ernst Ising (1900-1998). It is used to derive
statistics about the global behaviours of large collections of interacting
particles based on local information. Ising’s original motivation was the
phenomenon of ferromagnetism, for which he offered an explanation in
terms of the statistical behaviour of iron atoms. As a consequence, terms
such as spin, ferromagnetic and anti-ferromagnetic are still widely used
to denote certain variables of the model; however, it is not limited to this
conceptualization and has been put to use in various different settings,
from the study of gases to the neural network of the brain.

In [41] Dhar et al. investigated the single-spin flip dynamics of the random
field Ising model (RFIM) on a Bethe lattice at zero temperature. This prob-
lem is closely related to Watts’s model. The single-spin flip condition is
analogous to the permanently active property; we can think of the random
field as the threshold distribution q(r); the Bethe lattice approximation is
equivalent to the locally tree-like assumption; and at zero temperature may
be interpreted as meaning that there are no exogenous forces driving the
cascade dynamics. In Watts’s model this last condition amounts to saying
that there are no global factors affecting propagation; such as, for example,
the wide scale media coverage of some product or opinion. Only local in-
terpersonal influence can determine a person’s state. (We will examine this
aspect further in Section 3.2.) Interestingly, Dhar et al. showed in [41] that
it is possible to provide an analytically tractable treatment of this version
of the RFIM. This suggested that perhaps something similar could be done
for Watts’s model. In [73] Gleeson and Cahalane did just that when, by

31
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exploiting the similarities between these two models, they derived their
analytical model of cascade dynamics.

3.1 a tree-based analytical approach

The first step of Glesson and Cahalane’s derivation was for them to ap-
proximate the topology of an infinite random graph of arbitrary degree
distribution, pk, by a non-clustered tree-like structure with a randomly
chosen root vertex (see Fig. 3.1, left panel). They then defined the variable
qn(k) to be the probability that a vertex of degree k at level n of the tree is
active, conditional on its parent in the tree, the vertex on the next highest
level with which it shares a link, being inactive (see Fig. 3.1, right panel).
From this basis they were able to write the following iterative equation for
the conditional probability that a vertex of degree k is active on each level
of the tree:

qn+1(k) = ρ0(k) + (1− ρ0(k))G(k,qn), (3.1)

where

G(k,qn) =
k−1∑
m=0

(
k− 1

m

)
qmn (1− qn)

k−1−mF(m,k). (3.2)

Let us take a moment to parse these expressions. The fraction of vertices
of degree k that are initially active, by being chosen among our random set
of seed vertices, is ρ0(k). (This is necessarily equal to q0(k), the probability
that a vertex of degree k is initially active.) The probability that a vertex of
degree k that is not in the seed will subsequently become activated is given
by the function G(k,qn). This consists of two parts: the binomial probability
that at least m of this vertex’s k− 1 children on the next lowest level are
active, and the neighbourhood influence response function F(m,k), which is
analogous to the decision rule of Eq. (2.13). If the threshold distribution
q(r) is a Dirac delta function, q(r) = δ(r− R), whereby each vertex has the
same threshold R, then F(m,k) may be expressed as

F(m,k) =

1 if m > Rk,

0 if m 6 Rk.
(3.3)

Thus, combining these pieces of information, Eq. (3.1) tells us that the con-
ditional probability of a vertex of degree k on the next level up (generically
called n+ 1) being active is equal to the probability that it was initially
active plus the probability that it was not initially active multiplied by the
probability that it subsequently became activated by copying the majority
behaviour of the neighbours directly below it on the current level (n).
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Figure 3.1: Left panel: assume the graph topology is locally tree-like, and let a
randomly chosen vertex, A, be the root. Right panel: consider level by
level propagation towards A.

Continuing in this vein, to find the degree-independent conditional
probability that a vertex picked at random from level n+ 1 is active, qn+1,
one takes the average over all values of k as follows:

qn+1 =

∞∑
k=0

k

z
pk
[
ρ0(k) + (1− ρ0(k))G(k,qn)

]
. (3.4)

Note, (k/z)pk (where z is the mean degree) is the probability of reaching
a child of degree pk by travelling along a randomly chosen edge from its
parent. Since every vertex bar the root has a parent this is the correct term
to use for averaging on all non-terminal levels (see [110]).

Iterating Eq. (3.4) to the steady state gives q∞: the probability that a
vertex at the penultimate level of the tree, directly beneath the root, is
active. Once q∞ is found it can be used to calculate the the probability
of activation of the root itself. This probability corresponds exactly to the
steady state density of active vertices1; i.e., the expected cascade size, and
is given by

ρ =

∞∑
k=0

pk
[
ρ0(k) + (1− ρ0(k))H(k,q∞)], (3.5)

where

H(k,q∞) =
k∑

m=0

(
k

m

)
qm∞(1− q∞)k−mF(m,k). (3.6)

Comparing these expressions to Eqs. (3.4) and (3.2) we see that the main
difference here is that the root has no parent, and thus with probability pk
it has k children.

1 To understand why this is so consider an infinite graph in the steady state with a certain
fraction of its vertices permanently active. If we pick a vertex at random from this graph
the probability that we will find it active is equal to the relative size of the active fraction.
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By letting the seed be chosen uniformly at random over all degree classes
(ρ0(k) = ρ0, independent of k), in [73] Gleeson and Cahalane presented
Eqs. (3.4) and (3.5) in the following simplified forms:

qn+1 = ρ0 + (1− ρ0)

∞∑
k=0

k

z
pkG(k,qn), (3.7)

ρ = ρ0 + (1− ρ0)

∞∑
k=0

pkH(k,q∞). (3.8)

Finally, analysing these two equations, they derived their own first-order
cascade condition, Ineq. (3.9), which as ρ0 → 0 reduces to Watts’s original
condition Ineq. (2.14), provided the probability of automatic activation of a
vertex F(0,k) is 0:

∞∑
k=1

k(k− 1)

z
pk
[
F(1,k) − F(0,k)

]
>

1

1− ρ0
. (3.9)

The similarities of this tree-based approach to the zero-temperature RFIM

on a Bethe lattice are more than merely conceptual. The framework of
[73] may, in fact, be viewed as a generalization of the latter model since
it reduces to it when we have a random regular graph, and no manually
activated seed vertices (ρ0 = 0). However, as we shall see momentarily, this
last condition is feasible only for certain types of threshold distribution.

More broadly, as was demonstrated by Gleeson in [70], the results pre-
sented above are generalisable to a wider range of dynamics on random
networks than those described by Watts’s model. Different processes can
be modelled by choosing the appropriate form for the response function
F(m,k). Examples include site and bond percolation, and k-core decompo-
sition [47, 77]. We do not discuss this work here since we shall deal with
response functions later on in Chapter 5, when we introduce our extension
of the basic theory to highly clustered graphs.

3.1.1 Theory Versus Simulations

In this subsection we present some of the quantitative results obtained
by applying the tree-based theory to Watts’s model. The purpose of this
is to give a flavour of how we typically go about verifying our analytical
expressions, and to show how well Eq. (3.8) matches the output of numerical
simulations, at least on non-clustered random graphs. In Figs. 3.2 and 3.3
we plot the expected cascade size ρ against the mean degree z on Poisson
random graphs (written PRGs for short) of 105 vertices (see captions for
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Figure 3.2: Cascade dynamics of Watts’s model on PRGs with n = 105 and uniform
thresholds, R = 0.18. Numerical simulations (squares) averaged over
100 realisations and tree-based theory (lines). Final active density ρ
vs. mean degree z. Colour indicates seed fraction: ρ0 = 10−3 red;
ρ0 = 5× 10−3 blue; and ρ0 = 10−2 green.

details). These figures are, respectively, reproductions of Figs. 1(b) and 2(b)
of [73], and were created using my own code.

In Fig. 3.2 the different colours correspond to different seed fractions ρ0
(see caption). The threshold distribution is uniform with q(r) = δ(r− 0.18);
meaning every vertex requires a fraction R = 0.18 of its neighbours to be
active before it will join in the cascade. The match between theory and
numerics is clearly excellent. Note also the somewhat curious sequence
of tipping points where ρ drops discontinuously, from close to 1 (global
cascade) to almost 0 (no cascade). This feature is readily explained, however,
by considering the behaviour of the response function of Eq. (3.3). Because
it depends on the relative number, m/k, of active neighbours (as opposed to,
say, the absolute number, m), as the average degree, k, of vertices increases
we reach a point where it becomes extremely difficult for the cascade to
attract new adherents. Thus, here there is a window of z values in which
global cascades may occur; but, the same is not necessarily true of other
choices of threshold distribution. Gleeson and Cahalane [73] have given
bounds for this window which depend on the interplay of R and z (see Figs.
1(a) and 2(a) of [73]), and we can calculate quite accurately where these
tipping points will occur by applying the second-order cascade condition
expressed by Ineq. (6) of [73].2

2 Obviously, this second- order condition is more accurate than the first-order one, Ineq. (3.9),
shown above; however, we choose not to reproduce it here as its derivation concerns
technical aspects of [73] which will not be pertinent to our discussion as we continue.
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Figure 3.3: Cascade dynamics of Watts’s model on PRGs with n = 105 and Gaus-
sian thresholds, mean R and standard deviation σ = 0.2. Numerical
simulations (squares) averaged over 100 realisations and tree-based
theory (lines). Final active density ρ vs. mean degree z. Seed fraction
ρ0 = 0. Colour indicates mean threshold: R = 0.2 red; R = 0.362 blue;
and R = 0.38 green.

In Fig. 3.3 the threshold distribution is Gaussian, q(r) = N(R, 0.04). In this
case, the different colours correspond to different choices of R (see caption).
Once again, the agreement between theory and numerics is excellent;
however, here we observe a cascade dynamics strikingly dissimilar to that
in Fig. 3.2. Some R values result in a discontinuous transition between the
global and localized cascade regimes while others do not. Furthermore, it
appears that as R decreases, the range of z values for which global cascades
can occur broadens steadily, and that the upper bound, or tipping point, is
eliminated entirely. This, however, is an artefact of our particular parameter
settings. Generally, one may also find well bounded windows for global
cascades on networks with Gaussian thresholds, though they are perhaps
less prevalent than when uniform thresholds are applied. A full description,
including a bifurcation analysis, of the idiosyncrasies engendered by either
choice of threshold distribution has been given in [73], and we leave it to
the reader to examine this earlier work at his own discretion. In terms of
our discussion, what interests us most about Fig. 3.3, besides the accuracy
of the theory, is the fact that here we were able to instigate cascades without
a manually activated seed; i.e., ρ0 = 0. This was possible because the
bell shape of the Gaussian distribution at low R and σ = 0.2 meant that
some vertices were assigned negative thresholds, which in Watts’s model
translates as automatic activation. Thus, there was no need to assign a
nonzero value to ρ0. Evidently, this would not have worked with uniform
thresholds, distributed according to a Dirac delta function.
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What have we learned from Figs. 3.2 and 3.3? Well, clearly Gleeson and
Cahalane’s original tree-based analytical approach is very accurate on non-
clustered Poisson random graphs, and this accuracy is robust to the choice
of q(r). Other than that, however, these figures raise more questions than
they answer. Bearing in mind the definitions and concepts of Chapter 2,
there are quite a number of important problems which we have yet to
address, and to which the theory, as presented here, may or may not
be directly applicable. This sets the scene for the various extensions and
modifications which we will consider from now until the end of this thesis.

The next section concerns the idea of targeted activation of seed vertices
(see Section 2.3.1), which we apply to Watts’s model in order to investigate
the so-called influentials hypothesis of information dynamics on social
networks. This requires a straightforward but, as we shall demonstrate,
powerful extension of the basic theory.

3.2 the influentials hypothesis

Watts’s model has been widely accepted as a reasonable, if somewhat
simplistic, description of how information propagates through society.
There was a time, however, when it would not have been as willingly
accepted as such. Historically, the two-step flow model [92, 97] has been
the most popular, and the most successful, theory concerning this topic. Its
advocates claimed that it provided an accurate account of the roles played
by interpersonal influence and media exposure in the formation of public
opinion. According to this model the flow of information in society occurs
between three distinct categories of people. At the highest level of influence
we have those who work in the mass media; at the lowest level we have the
common herd; and, intermediate between these two we have a small group
of opinion leaders or influentials, who are the arbiters of all things trendy.

Recent progress in the theory of networks, however, seriously challenges
the validity of this view. In particular, analyses of the development of the
World Wide Web over the past ten to fifteen years have made this outlook
feel rather naive and dated. It has become blatantly apparent (at least to the
generation who grew up in this era) that public opinion formation is much
more complex than the hierarchical structure of the two-step flow model.
Local, interpersonal influence is, now at least, a much more significant
factor than originally assumed — for every boisterous opinion we can find
myriad others to contrast against it, at the click of a mouse.

Accordingly, in the picture now offered by Watts and others, society
looks more like a random graph, where vertices are people, links are
social bonds, and the degree of each vertex corresponds to that person’s
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influence. There is no a priori hierarchy determining the direction in which
influence is exerted. Significantly, however, opinion is still strongly divided
over the importance of influential individuals. Some still maintain that the
occurrence of epidemic-like phenomena in society depends crucially on
these so-called trendsetters [69]. Watts himself has been quite outspoken in
his disagreement with this view [135].

In [146] Watts and Dodds attempted to remedy the alleged misconception
of the influentials hypothesis. Their central argument was that, “. . . large-
scale changes in public opinion are not driven by highly influential people
who influence everyone else but rather by easily influenced people influ-
encing other easily influenced people” [146]. This claim was backed up by
the results of numerical simulations in which the mean size of cascades
initiated exclusively by influential individuals was compared to the size of
those initiated by average individuals on random graphs of various degree
distributions. An influential was defined here as any vertex with a degree
greater than that of 90% of the population. An average vertex was one
chosen at random from the entire distribution of degrees.3 Both average
and influential vertices were found to have similar effects on the spread
of information in a Poisson random graph. Even in the case of a highly
right-skewed power-law degree distribution influentials were found to be
of less importance than had previously been assumed [146].

However, similar to Watts’s earlier work [144], the numerical results
presented [146] were not given a corresponding analytical description. We
will now show how the tree-based theory of the previous section can be
used to provide such a match. Thus, we develop an analytically tractable
method for quantifying the effects of influentials that may be usefully
compared to the simulations of [146].

3.2.1 Extension of Theory

First, generalising the interpretation given in [146], we define an influential
to be any vertex of our graph with a degree located in the top 100τ% of the
degree distribution, where τ ∈ (0, 1]. Ergo, at least 100(1− τ)% of all the
other vertices are of a lesser degree. Next, by defining

k? = min{k : Fk > (1− τ)}, (3.10)

where Fk is the cumulative distribution function (CDF) of degrees k, we find

3 The average degree in an infinitely large seed of vertices chosen at random in this way
should adhere to the mean degree z, hence the name. We too use the epithet average in this
sense. This is not to be confused with a seed in which every vertex has degree z.
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that τ can be expressed as

τ = 1− Fk? +αpk? , (3.11)

where α ∈ [0, 1). The idea here is essentially the following. Because the
degree distributions of our graphs are necessarily discrete, more often than
not we will not be able to find a degree k? that cuts off exactly 100τ% of
the vertices. Hence, we find the value of k? that gets us as close as possible
and then add on an extra piece of probability αpk? such that exactly 100τ%
is singled out. Solving for α, we have,

α =
τ+ Fk? − 1

pk?
. (3.12)

Using Eqs. (3.11) and (3.12) we determine the effect of initially activating
only influentials on the expression for degree dependent seed fraction,
ρ0(k). In summary, ρ0(k) can now be written as the following function

ρ0(k) =


0, if k < k?,

αρ0/τ, if k = k?,

ρ0/τ, if k > k?.

(3.13)

As a quick verification of this we can calculate ρ0, the mean value of the
seed fraction over all degrees k, to show that

∞∑
k=0

pkρ0(k),

=
ρ0
τ

(
αpk? +

∞∑
k=k?+1

pk

)
,

= ρ0.

From Eq. (3.13) the starting probability, q0, of our tree-based iteration is
now given by

q0 =

∞∑
k=0

k

z
pkq0(k),

=

∞∑
k=0

k

z
pkρ0(k),

=
αρ0
τ

k?

z
pk? +

ρ0
τ

∞∑
k=k?+1

k

z
pk,

=
ẑ

z
ρ0, (3.14)
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where

ẑ = αk?
pk?

τ
+

∞∑
k=k?+1

k
pk
τ

, (3.15)

is the mean degree of an influential vertex.
Having established these new initial conditions we can now proceed to

describe the resultingly modified cascade dynamics. Substituting Eq. (3.13)
into Eq. (3.4) we have

qn+1 =

k?−1∑
k=0

k

z
pk
[
0+ (1− 0)G(qn,k)

]
+
k?

z
pk?
[
αρ0/τ+ (1−αρ0/τ)G(qn,k?)

]
+

∞∑
k=k?+1

k

z
pk
[
ρ0/τ+ (1− ρ0/τ)G(qn,k)

]
. (3.16)

Similarly, substituting Eq. (3.13) into Eq. (3.5) we find that

ρ =

k?−1∑
k=0

pk
[
0+ (1− 0)H(q∞,k)

]
+ pk?

[
αρ0/τ+ (1−αρ0/τ)H(q∞,k?)

]
+

∞∑
k=k?+1

pk
[
ρ0/τ+ (1− ρ0/τ)H(q∞,k)

]
. (3.17)

Equations (3.16) and (3.17) simplify to

qn+1 = q0 +

∞∑
k=0

k

z
pkG(qn,k)

−
ρ0
τ

[
α
k?

z
pk?G(qn,k?) +

∞∑
k=k?+1

k

z
pkG(qn,k)

]
, (3.18)

and

ρ = ρ0 +

∞∑
k=0

pkH(q∞,k)

−
ρ0
τ

[
α pk?H(q∞,k?) +

∞∑
k=k?+1

pkH(q∞,k)
]
, (3.19)

respectively.
Taken together, these last two equations are our main result of this

section. We refer to them as an extension of the tree-based theory since
by varying τ we can investigate both the dynamics that take place when
any vertex may be initially active (τ = 1) and those that take place when
only influentials are initially active (τ < 1). Note, if we set the parameter
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Figure 3.4: Cascade dynamics of Watts’s model on PRGs with n = 106 and uniform
thresholds, R = 0.18. Numerical simulations (symbols) averaged over
100 realisations and extended tree-based theory (lines). Final active
density ρ vs. mean degree z. Solid lines: τ = 1, average seed. Dashed
lines: τ = 0.1, influential seed. Colour indicates seed fraction: ρ0 = 10−3

red; ρ0 = 5× 10−3 blue; ρ0 = 10−2 green.

τ = 1, Eqs. (3.18) and (3.19) reduce to the original equations of [73] (
Eqs. (3.7) and (3.8)). In a similar manner to Section 3.1.1, by applying these
extended governing equations we produced the agreement between theory
and numerical simulations of Watts’s model shown in Figs. 3.4 and 3.5.

The first of these, Fig. 3.4, shows cascade dynamics for random and
targeted seeds on Poisson random graphs of 106 vertices (see caption for
details). First and foremost, this figure illustrates how well our extended
theory works in this important test case. It also illustrates, more clearly
perhaps than Fig. 3.2, the discontinuous nature of the transition that takes
place at the tipping points. This was one of the advantages of stepping
up to 106 vertices. As one might have expected, the effect of targeting
influentials is to extend the range of z values for which global cascades can
occur. Significantly, however, we find that when global cascades do occur
for both types of seed, the size of those instigated by a seed of influentials
in the top 10% of the degree distribution is never considerably greater than
the size of those instigated by randomly chosen average degree vertices.

For our second test, the results of which are shown in Fig. 3.5, we
have investigated the role of influentials in cascade dynamics on scale-free
networks (SFNs) at n = 106. These networks (or more properly random
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Figure 3.5: Cascade dynamics of Watts’s model on SFNs with n = 106 and uniform
thresholds, R = 0.16. Numerical simulations (symbols) averaged over
100 realisations and extended tree-based theory (lines). Final active
density ρ vs. slope γ. Solid lines: τ = 1, average seed. Dashed lines:
τ = 0.1, influential seed. Colour indicates seed fraction: ρ0 = 4× 10−3
red; ρ0 = 7× 10−3 blue; ρ0 = 10−2 green.

graphs) were generated from a truncated power-law degree distribution of
the form

pk =
k−γ

C
, (3.20)

where C =
∑kmax
k=1 pk. The truncation is applied such that pkmax > 10−5,

with kmax the maximum degree. That is, given a slope γ, we generate
probabilities according to k−γ until pkmax drops below 10−5, we then
discard this value, letting the previous number in the distribution be our
pkmax . The entire distribution is then normalised by dividing each pk value
by the total sum of probabilities, C.

In Fig. 3.5 we plot the mean cascade size ρ against the slope of the
degree distribution γ (see caption for details). Our γ values range from
γ = 1.5 to γ = 3. We have chosen to arrange these values in decreasing
order because in power-law functions like Eq. (3.20) the slope (exponent)
is inversely proportional to the mean; therefore, when read from left to
right our mean degrees increase from z = 1.3499 at γ = 3 to z = 26.2861 at
γ = 1.5, making it easier to compare this figure to those already shown. As
discussed previously in Chapter 2, this range of γ appears to be the most
relevant to real-world applications.

While Fig. 3.5 is qualitatively quite different from Fig. 3.4, many of the
same inferences drawn from that figure may also be drawn from this one.
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The only significant change is in the effect influentials have on the cascade
window. We know from Fig. 3.4 that using influentials exclusively as our
seed tends to broaden the range of z values for which global cascades
can occur. The same applies here, only in a much more pronounced way.
However, this was to be expected since for scale-free networks the heavily
right-skewed tails of their power-law degree distributions mean that the
difference in magnitude between the highest degree vertices and those of
average degree is typically far greater than in Poisson random graphs. This
last statement posits on behalf of the reader the following interpretation of
the role played by influentials in driving cascades.

3.2.2 Approximation

Having paid close attention to the analysis and results described thus far
one cannot have failed to have noticed that targeting high degree vertices for
our seed seems to affect the cascade dynamics of Watts’s model in a manner
essentially similar to what one might expect to find after having increased
the number of vertices in a random seeding. For example, looking again at
Fig. 3.4 we see that for each seed fraction (colour) the line representing a
seed of influentials (dashed) is more or less the same as that representing
a seed of average vertices (solid) only with its tipping point shifted to
the right. Furthermore looking at each color, this shifting phenomenon
appears to be the only significant difference between different seed sizes.
These observations suggest that it may be possible to approximate the
behaviour produced by targeting influentials merely by increasing the
relative size of a randomly chosen seed. If this intuition is correct it would
corroborate Watts and Dodds’s [146] claim that cascades are driven by the
great number of easily influenced individuals in a population rather than
by the comparatively small number of influencers, by showing that the
effect that either group has on cascades can be approximately replicated by
the other. It would also simplify our theoretical analysis as instead of using
the awkward looking Eqs. (3.18) and (3.19) we would simply use Gleeson
and Cahalane’s original Eqs. (3.7) and (3.8) with a larger ρ0.

Of course, the increase applied to ρ0 cannot be entirely arbitrary; it must
have some sort of theoretical underpinning. Taking what we have learned
from our derivation in the previous subsection we know from Eq. (3.14)
that targeting influentials changes the probability that a vertex is initially
active from q0 = ρ0 to q0 = (ẑ/z)ρ0. That is, it increases this probability
by a multiplicative factor equal to the ratio between ẑ, the mean degree of
influential vertices, and z, the mean degree of all vertices. For non-targeted
seed activation we know from the original theory of [73] that q0 = ρ0. Thus,
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Figure 3.6: Cascade dynamics of Watts’s model on PRGs with n = 106 and uniform
thresholds, R = 0.18. Numerical simulations (symbols) averaged over
100 realisations and original tree-based theory (lines). Final active
density ρ vs. mean degree z. Solid lines: average seed. Dashed lines:
approximation of influential seed. Colour indicates seed fraction: ρ0 =
10−3 red; ρ0 = 5× 10−3 blue; ρ0 = 10−2 green.

in our effort to approximate the effect induced by targeting high degree
vertices, from within the original framework, we have the following natural
choice for our updated seed fraction

ρ0 →
ẑ

z
ρ0. (3.21)

In other words, instead of picking influentials and applying our extended
theory we will now attempt to replicate their effect on cascade dynamics,
which is at least in part attributable to the renormalization of the initial
probability q0 defined by Eq. (3.14), by picking a correspondingly renor-
malized number of average vertices and then applying Eqs. (3.7) and (3.8).
The results obtained from this approximation are given by the dashed lines
in Figs. 3.6 and 3.7 (see captions).

Regarding Fig. 3.6 we see that the approximation appears to be accurate,
particularly at the tipping points; although, it does not work quite so
well at low z values. On this point, however, we would remind the reader
that what we are primarily interested in here is the qualitative match of
the approximation to numerical simulations with τ = 0.1, in order that
we might find out whether or not our increased average seed captures
well the extent (height and width) of the cascade window produced by
influentials. Clearly, our conjecture that it does is supported by this figure.
It is also supported by the dashed lines in Fig. 3.7 which again, though
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Figure 3.7: Cascade dynamics of Watts’s model on SFNs with n = 106 and uniform
thresholds, R = 0.16. Numerical simulations (symbols) averaged over
100 realisations and original tree-based theory (lines). Final active den-
sity ρ vs. slope γ. Solid lines: average seed. Dashed lines: approximation
of influential seed. Colour indicates seed fraction: ρ0 = 4× 10−3 red;
ρ0 = 7× 10−3 blue; ρ0 = 10−2 green.

not quantitatively accurate at lower z (higher γ) values, still show that the
extent of cascades from influentials can be comparatively matched by a
sufficiently increased number of random seed vertices.4 Thus, while this
approximation is by no means an adequate replacement for our full theory,
it does provide further theoretical justification for the view of information
dynamics and opinion formation espoused in [146].

Looking beyond the theoretical domain, the insight provided by this
analysis may have important practical implications. Consider, for example,
the business of mass marketing. Many companies spend huge sums of
money on advertising their products and services. It is the marketing
executive’s job to determine the most cost effective strategy to bring these
products and services to the attention of as many people as possible. The
conventional wisdom on which the influentials hypothesis is founded says
that some specific subgroup of the population must be more important
than others in helping information to spread. Interestingly, regardless of
whether or not a marketing campaign is successful, real-life influentials
are never physically identified. If a cascade does occur it is more or less
taken for granted that this amorphous group (or some equivalent) must
have been activated. Conversely, unsuccessful campaigns are those that,

4 We stress that Eq. (3.21) is not the only way to increase ρ0, and that we chose it merely
because it carries with it an intuitive justification. Further analysis of the renormalization of
ρ0 may reveal a more accurate approximation.
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presumably, have failed to activate influentials.5 However, Figs. 3.6 and
3.7 demonstrate that rather than company executives spending lavishly on
elaborate schemes to track down and activate these elusive, super effectual
members of the population, it may be better worth their while to focus on
directly activating as many “average” members as possible.6

This concludes for now our investigation of the influentials hypothesis
and our analytical treatment of problems directly related to dynamics on
social networks. Needless to say, there are many technical aspects of this
study that we have not yet considered. Some of these we leave to the reader
to discover by referring to the extensive literature that has been built up
in recent years, both through the rigorous framework of network-based
analyses [64, 121, 122] and through the more accessible medium of popular
science [11, 27, 145]. Other aspects, however, we cannot fail to address
ourselves since the theory that we have provided here is so apt to be
applied to them. In particular our extended theory can be used to derive
analytical expressions for the critical seed fraction for global cascades, and
the expected cascade size in the case of single seed activation. We present
these results in Appendix A.

3.3 the effectiveness of the tree analogy

The remarkable ease with which the theoretical results of the previous
section were derived suggests that the framework of Section 3.1, and ap-
propriate modifications thereof, may serve as powerful tools in tackling
numerous questions of practical significance. We have said that Gleeson
[70] has extended the basic tree-based approach to address different types
of percolation processes; and one may recall the congruity, noted in Sec-
tion 2.3.1, between the properties of random graphs under percolation and
the robustness of technological systems. One may also recall the noted sim-
ilarities between bond percolation and the SIR contagion model. Combined
with our extension into the domain of opinion dynamics, then, it appears
that quite a number of the problems of interest to us in the social and
technological spheres (those that admit of a mathematical interpretation at
least) should be treatable. It would seem that the only question remaining
to us is: How much further do we wish take this type of analysis?

5 One might consider it somewhat unsettling that such a multi-billion dollar industry as
mass marketing, which has become so invasive in our lives, appears to be run in large part
on a logical fallacy equivalent to the ground outside is wet, therefore it must have rained.

6 It is important to recognise that this conclusion does not diminish the significance of
influential individuals as spreaders of information but rather reinforces it. This is evident
from the fact that we require a large group of average vertices to match the outcome
produced by a smaller group influentials. This will be further drawn out in Appendix A.2.
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Lest we get carried away in our own hubris, however, it is worth re-
minding ourselves of the very pertinent fact that the approach of [73], and
therefore every result subsequently derived from it, is predicated on the
accuracy of the locally tree-like approximation of the network topology un-
der consideration. For infinitely large random graphs constructed using the
configuration model (like all of those examined thus far) we need have no
concern about this approximation affecting our results since these graphs
are almost surely non-clustered in the n→∞ limit. Therefore, there is a
real sense in which the matches obtained between theory and numerical
simulations in Figs. 3.2 to 3.5 constitute merely an elementary form of
verification for the framework put forth. In other words, to further test our
approach we should investigate more complicated graphical structures. If
we stop to think for a moment what these might be, it immediately becomes
evident that there are a multitude of quite straightforward variations of the
basic configuration-type graph which we simply have not considered yet;
this is before we even approach the task of introducing clustering.

For example, what can we say about cascade dynamics on digraphs; i.e,
graphs with directed edges, or for that matter graphs with degree- degree
correlations? Well, as it turns out the generalization of the tree-based theory
to directed graphs of arbitrary in- and out-degree distributions was given
in the master’s dissertation of Gleeson’s student Alan Dunne [51]. Degree-
correlated graphs were dealt with in [70], where the approach of [73] was
first extended to account for correlations between the degrees k and k ′ of
the end vertices of a randomly chosen edge, defined by the joint probability
distribution P(k,k ′), and then used to provide analytical results for k-core
sizes. For this reason, our exposition is not overly concerned with these two
particular aspects of higher order network approximations.7 As already
stated, our main contribution in this respect will be our extension of the
theory of [73] to highly clustered graphs.

Short of dismissing these features of network structure entirely, however,
we note briefly that there is one particular field of application where an
analytical description of cascades on directed graphs has proven to be quite
fruitful for us. In very recent, and as yet unpublished, work we (Gleeson,
Melnik, and Hackett) have collaborated with financial mathematician Tom
Hurd in an investigation of the very topical phenomenon of credit default
contagions on banking networks [74]. There are too many specifically
finance-oriented components to this study for a detailed discussion of it to
be of relevance here; however, the main thrust of the modelling technique
adopted in this work can be summarized as follows.

7 In relation to opinion dynamics, the aspects that we have not addressed ourselves, which in
any case have already been amply dealt with in the papers [121, 122] referred to above, are
precisely cascades on directed and/or degree correlated graphs.
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First, we modelled an interbank network as a directed graph where
for each institution its incoming edges (pointing towards it) represent the
number of debtor banks by which it is owed money and its outgoing edges
(pointing away from it) represent the number of creditor banks to which it
owes money. The method of construction of these graphs was similar to
the approach of [51] and was based on a simple modification of the config-
uration model. For the distributions of in- and out-degrees, respectively j
and k, we used a product of independent Poisson distributions:

pjk =
zj

j!
e−z

zk

k!
e−z. (3.22)

We then assigned artificial balance sheets of appropriate assets and lia-
bilities to each vertex in order to replicate in a crude sense those of real
financial institutions. Finally, the spreading dynamics were modelled in
essentially the same manner as usual by shocking seed banks chosen either
at random or from a specific (j,k)-class. In the latter case targeting high
degree classes, gave us an insight into the infamous too big to fail concept,
which, we note, is not too dissimilar from the influentials hypothesis. Shock-
ing in this context referred to setting equal to zero the external assets of
a bank. The mechanism of contagion was a specialized version of child
to parent activation on a directed tree, where an activation symbolized
an irrecoverable default on debts. Thus our analytical expressions were
suitably modified, leading ultimately to new results for the extent and
frequency of default cascades.

This work on banking networks, though it does not fit quite so easily into
our generalized framework, still illustrates yet another successful applica-
tion of the tree analogy for the purpose of modelling cascade dynamics on
networks. However, given that the directed graphs used were constructed
from little more than a modification of the configuration model, the limi-
tations of these graphs as a testing ground for tree- based approaches are
not significantly less than those associated with the standard undirected
graphs discussed above.

What we are really driving at in the entire discussion of this section, and
in fact in this thesis as whole, is the applicability of an analytical model of
cascades, which relies on a locally tree-like assumption, to real complex
networks. Everything we have learned so far about real-world structures
indicates that we are going to have to account somehow for high levels
of clustering, and indeed the next two chapters will be devoted entirely
to this problem. Before diving headlong into this task, however, we might
ask ourselves first, following the best empiricist tradition: Do we have
any hard evidence (beyond received opinion) to believe that tree-based



3.3 the effectiveness of the tree analogy 49

theories do not work at all on clustered networks? The answer to this
question may appear self-evident and we could justifiably disregard it
completely; however, we may be better served by taking it seriously. The
answers discovered will at least indicate what degree of discrepancy we
will be seeking to remedy in succeeding chapters.

In another quite recent paper [99], therefore, we (Melnik, Hackett, Porter,
Mucha, and Gleeson) have taken this latter question and investigated in
some detail the application of the standard first-order approach of [73]
which we called pk-theory and its extension to degree-correlated graphs
given in [70], called P(k,k ′)-theory, both of which are of course tree-based,
to modelling dynamics on various real-world networks. The networks
considered in this study broached the realms of technology, biology and
sociology, and included the power grid of the western United States8

[147]; the autonomous systems level Internet9; a network of the 500 most
congested U.S. airports10 [35]; the protein interaction network of the yeast S.
Cerevisae11 [33, 34]; the metabolic12 [50] and neural13 [147] networks of the
nematode C. Elegans; a scientific coauthorship network14 [106]; and a set of
100 different networks each representing for a single major U.S. university
the friendships of students of the university on the social networking website
Facebook® [137, 138], among others.

The dynamics considered in this study were bond percolation, k-core
decomposition, SIS disease dynamics, and Watts’s model with both uniform
and Gaussian distributed thresholds. Figures 1 to 4 and Fig. 7 of [99]
illustrate the matches obtained between theory and numerical simulations
on a number of the above networks in calculations of a key quantity of
interest for each dynamics.15 For example, the bond percolation results
in Fig. 1 of [99] show the relative size of the percolating cluster S as a
function of uniform bond occupation probability φb. For the purpose of
illustration, parts (a) and (d) of this figure, corresponding respectively to
the University of Oklahoma Facebook network and the western U.S. power
grid, are reproduced here in Fig. 3.8(a) and 3.8(b). Before discussing the
conclusions drawn from the analysis of this and other figures in [99], let us
first clarify the methods by which it was produced.

8 Download data at [http://www-personal.umich.edu/~mejn/netdata/power.zip].
9 Based on CAIDA measurements from 30-Jun-2008. See [http://www.caida.org/data/
active/as-relationships/].

10 See [http://sites.google.com/site/cxnets/US_largest500_airportnetwork.txt].
11 See [http://sites.google.com/site/cxnets/DIP.dat].
12 See [http://deim.urv.cat/~aarenas/data/xarxes/celegans_metabolic.zip].
13 See [http://www-personal.umich.edu/~mejn/netdata/celegansneural.zip].
14 Specifically, coauthorships in preprints posted under condensed matter on [http://arxiv.

org/] between 1-Jan-1995 and 31-Mar-2005. Download at [http://www-personal.umich.
edu/~mejn/netdata/cond-mat-2005.zip].

15 For detailed definitions of these quantities see [99].

http://www-personal.umich.edu/~mejn/netdata/power.zip
http://www.caida.org/data/active/as-relationships/
http://www.caida.org/data/active/as-relationships/
http://sites.google.com/site/cxnets/US_largest500_airportnetwork.txt
http://sites.google.com/site/cxnets/DIP.dat
http://deim.urv.cat/~aarenas/data/xarxes/celegans_metabolic.zip
http://www-personal.umich.edu/~mejn/netdata/celegansneural.zip
http://arxiv.org/
http://arxiv.org/
http://www-personal.umich.edu/~mejn/netdata/cond-mat-2005.zip
http://www-personal.umich.edu/~mejn/netdata/cond-mat-2005.zip
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Figure 3.8: Bond percolation on two real-world networks. GCC size S vs. bond oc-
cupation probability φb for (a) the Facebook network of the university
of Oklahoma, (b) the western United States power grid. Source [99].

The creation of the theory lines in either window of Fig. 3.8 was quite
straightforward. For the pk-theory (red dashed) we extracted the degree
distribution, pk, from the adjacency matrix representation of the network
in question, and then using the equations of Section 3.1 with the appropri-
ately defined response function (see Eq. (6) of [70]) we calculated S (≡ ρ).16

Similarly, for the P(k,k ′)-theory (blue solid) we extracted the degree-degree
correlation matrix P(k,k ′) of the network and calculated S using the equa-
tions of Sec. V of [70].17 On the other hand, the numerical results shown in
Fig. 3.8 have a somewhat more interesting background. First, for both net-
works we ran bond percolation processes on their measured (downloaded)
adjacency matrices. Similar to Watts’s model, this means that in each case
we fed the adjacency matrix of the network into a MATLAB script that
simulated bond percolation and returned the relevant statistics. The specific
algorithm employed was that defined by Newman and Ziff in [116]. Our

16 Alternatively, one may use the original analytical approach of Callaway et al. [24] to find S.
17 In this case the original analytical approach was determined by Vázquez and Moreno [141].
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implementation of this algorithm is given in Appendix C; and the values of
S returned by our script are illustrated in both windows of Fig. 3.8 as black
circles. Second, for the power grid network we also ran bond percolation on
a rewired version of its adjacency matrix, where rewiring refers to running
this matrix through an algorithm that removes clustering but preserves
degree-degree correlations (see Appendix C). The values of S returned by
our script in this case are plotted as blue squares.

The first question raised by Fig. 3.8 is obviously the following: Why do
the theory lines match the numerical result for the unrewired network
so much better in Fig. 3.8(a) than they do in Fig. 3.8(b)? The answer that
immediately springs to mind is that the error in each window must be
commensurate to the level of clustering in the respective networks, and
therefore the severity of the discrepancy in Fig. 3.8(b) indicates the presence
of extremely high clustering in the power grid network. However, the
measured values of the global clustering coefficient C2 (see Section 2.1)
for the Facebook Oklahoma and power grid datasets completely confound
this intuition. For Facebook Oklahoma C2 = 0.23, while for the power
grid C2 = 0.08. Hence, the error in Fig. 3.8(b) cannot be directly attributed
to high clustering. Nor for that matter can the accuracy in Fig. 3.8(a) be
attributed to low clustering. Furthermore, the rewired numerics on the
power grid show that the error for the original network does not arise from
finite size effects. The P(k,k ′)-theory is accurate for the rewired version
because the ensemble of fully rewired networks is the same as the ensemble
of random networks defined by the P(k,k ′) matrix (up to finite size effects).

If it is not a result of high clustering nor an artefact of the finite size of the
power grid, then to what can we ascribe this lack of accuracy of the theory?
To answer this question we constructed an error measure E (see Eq. (1) of
[99]) that determines the mean vertical distance between the P(k,k ′)-theory
line and the original (unrewired) numerics over the interval φb = [0, 1]. By
applying an analogous definition for other dynamics we have observed
that throughout the entire range of aforementioned real-world networks
the value of E bears a much more significant relationship to the mean
intervertex distance than it does to clustering. To be precise, scatter plots of
E for every network against a variety of possible correlates (see Fig. 9 of [99])
have revealed that C2 is a very poor predictor of this error; its coefficient
of determination being R2 = 0.08680. C1 is also poor, with R2 = 0.20134.
The best match we could find was (L− L1)/z, which gave R2 = 0.93581.
Thus we have found that the size of E is correlated with the difference
between the mean intervertex distance (or average geodesic path length, see
Section 2.1) in the original network, L, and that in the rewired version, L1,
divided by the mean degree z.
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In [99] we interpreted these results as follows: A tree-based approach,
such as P(k,k ′)-theory, may be expected to work quite well on any given
complex network provided the network’s edges are sufficiently well mixed
between its vertices for the empirical value of L to be comparably close
to the randomized L1, with a high z value obviously improving the accu-
racy of the theory even further. Remarkably, the level of clustering in the
network simply does not appear to be a significant factor in determining
the effectiveness of the tree analogy. It would appear, therefore, that any
attempt to broaden the applicability of the theory of Gleeson and Caha-
lane [73] to cascade dynamics on real-world networks, by extending their
approach to highly clustered graphs, will be futile. However, in the next
chapter we will offer some arguments to counter this interpretation.



4
N E T W O R K S W I T H C L U S T E R I N G

In this chapter and the next we will consider the problem of modelling
cascade dynamics on networks with clustering. We will begin here by
reviewing recent developments in the construction of ensembles of random
graphs with tunable clustering coefficients, before then proceeding in
Chapter 5 to seek extensions of the tree-based approach of [73] to account
for these more complex topologies. First, however, in acknowledgement
that the insight provided at the end of the previous chapter — that the
accuracy of non-clustered theoretical approaches seems to depend on mean
intervertex distance rather than clustering — may appear to the reader to
undermine the task we have just set ourselves, we now take a moment to
consider carefully the precise meaning of the results of [99].

There are a number of issues that could be raised concerning these
results; however, for our purposes it is sufficient to highlight no more
than two closely related points. First, the error measure, E, used in [99]
was of a very specific form in that it simply measured the discrepancy
between theory and numerics in terms of the vertical distance between
data points. Mean intervertex distance may well be a better indicator of
this discrepancy than clustering, but that does not imply that clustering
has no effect whatsoever on dynamics. Perhaps, similar to an influential
seed, the effects of clustering are only detectable by observing closely the
transition from the localized to global cascade regimes.1 Recall that in our
analysis of Fig. 3.4 we noted that within the window of z values for which
both types of seed, average and influential, produced global cascades, the
size of those produced by influential seeds was never considerably greater
than the size of those produced by average degree seeds (both gave ρ ≈ 1).
Thus in this range of z it appeared that whatever effect influential vertices
had, it was not correlated with the height of the cascade window. However,
by observing the relative positions of the the tipping points it became
clear that influentials significantly affected the height of this window by
shifting these points to higher z values and causing global cascades to occur
where they had not occurred for average seeds. The possibility that the
effects induced by clustering may be of a similar nature, i.e., that they are
directly connected to the change in the position of the cascade transition,
with any change in the relative cascade size occurring only secondarily to

1 We shall have more to say on this point in Sections 4.3 and 5.1.3.
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this, was acknowledged in the closing remarks of [99], though different
error measures — incorporating, for example, the critical bond occupation
probability — were not considered. Second, the philosophy of [99] leaves
something to be desired. Generally, one does not look for a specific set of
circumstances under which a low-order approximation may give accurate
results for some observed dynamics, thereby narrowing the real world to
meet one’s theory; but rather one seeks to improve one’s approximation
by accounting for more of the relevant features of those dynamics, thereby
broadening one’s theory to meet the real world. This is particularly so when
those features have an established mathematical interpretation. Thus, since
the analysis of [99] cannot not rule out the relevance of clustering, which
as we already know is a very important structural feature of real networks,
in any other sense beyond its lack of correlation with E, we are justified in
pursuing our extension of the basic approach of [73] to modelling cascade
dynamics on highly clustered networks.

Note, however, that this critique is not designed to diminish the signifi-
cance of [99]. Until this very recent work of ours, it had been more or less
tacitly accepted, in part because of the difficulty in creating highly clustered
structural models, that clustering must be by far the most significant factor
determining the behaviour of cascading processes on real networks. Our
work in [99] has shown that while clustering may be important structurally,
accounting for it will by no means mark the pinnacle of all higher order
analytical descriptions of dynamics.

Bearing this in mind then, let us begin our pursuit by reviewing the
historical and current state of affairs as regards structural models.

4.1 a gap in the literature

A lot of progress has been made in modelling the structure of complex
networks over the past decade or so. In Chapter 2 we outlined the four major
network growth models that underlie this progress, and cited a number of
their important variants. However, we also saw that these modelling efforts
are significantly limited in that, while each of them captures some of the
characteristics of real-world networks, namely high clustering coefficients,
short average geodesic path lengths, and power law scaling in the tails of
their degree distributions (pk ∼ k−γ, usually with γ ∈ [2, 3]), no one model
has been found to capture all of these features simultaneously. In particular,
an analytically tractable method for the creation of random graphs with
realistically high (and preferably tunable) levels of clustering has been
conspicuously absent from the networks literature.
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To recap briefly, we saw that Erdös and Rényi gave two of the earliest
prescriptions for the creation of ensembles of random graphs, Gn,M [56]
and Gn,p [57], the latter of which led directly to the creation of the Poisson
random graph model; the null model for all subsequent models of net-
work growth. While the Poisson random graph does have a short average
geodesic path length (L ∼ log(n)/ log(z)), its clustering coefficient vanishes
as n → ∞ and its degree distribution is necessarily limited to a Poisson
distribution with mean z: pk ∼ (zk/k!)e−z.

On the other hand, in the configuration model of Molloy and Reed [104]
the desired degree distribution p̂k is first given as a parameter; a degree
sequence, prescribing the degree of each vertex, is then drawn uniformly
at random from this distribution; and finally a random graph is created
following a fixed and easily repeatable method (see Section 2.2.2). In theory
any well-defined degree distribution can be fed in at the beginning and the
match between the desired and actual degree distribution should improve
as n→∞. However, just like Erdös and Rényi’s model, the configuration
model suffers from the significant drawback of producing graphs with
vanishing clustering coefficients in the n→∞ limit.

Watts and Strogatz’s small-world network model [147], and variants
thereof, may be used to interpolate continuously from a completely ordered
lattice where every vertex has the same degree to an unordered structure
with a random sequence of degrees. The major drawback of this approach
is the form of the degree distributions that it creates. Starting with a delta
spike at z when the rewiring probability p = 0, as p increases shortcuts are
added between vertices and the variance in their degrees increases until
at p = 1 we reach a form similar to a Poisson degree distribution, only
narrower. Significantly, it has been shown [110] that the degree distribution
of a graph constructed in this way is never as broad as a Poisson distribution
for any p ∈ [0, 1]. This is rather unfortunate since the levels of clustering
produced by this model can be quite high.

Finally, the Barabási-Albert model gives us scale-free random graphs
with power law degree distributions but again, similar to those created by
both the Erdös-Rényi and configuration model, the clustering coefficient in
these graphs vanishes as n→∞.

This lack of a plausible mechanism for the creation of random graphs
with high of levels clustering is strikingly at odds with the enormous
strides that have been made in our overall understanding of network-based
phenomena. In light of this general success there must, we feel, be some
simple, though as yet undeveloped, model that will capture all of the
relevant features of real-world networks at once, including high clustering,
and which will readily lend itself to an analytical treatment. For a long
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time, surprisingly little progress had been made in this direction beyond
that constituted by the aforementioned models; in the past couple of years,
however, this has begun to change.

4.2 two novel approaches

4.2.1 Edge-Triangle Graphs

In a paper published in July of 2009 Newman [111] introduced an analyti-
cally solvable model for the creation of ensembles of random graphs with
tunable clustering coefficients.2 Viewed as a generalisation of the classical
configuration model, the distinguishing features of this new method of
graph generation can be summarised in the following steps. First, let the
variable ti denote the number of triangles (3-cliques) attached to an arbi-
trary vertex i, and rename ki, the number of single edges attached to i, as si.
Next, assign values to these two variables for all vertices 1 6 i 6 n, thereby
creating the sequences s and t. Finally, expand s and t into their respective
stubslists (see Section 2.2.2), and connect together stubs of triangle edges
between vertex triples, and stubs of single edges between pairs of vertices.
In theory, having done all this one should end up with a realisation of
a clustered random graph whose localized topology, resembling Fig. 4.1,
consists of non-overlapping triangles and single edge pairs.

The traditional graph descriptors can still be defined using the variables
s and t; for example, the degree of each vertex, k, is simply k = s+ 2t, and
the degree distribution, pk, is now given (after [111]) by

pk =

∞∑
s,t=0

ps,tδk,s+2t, (4.1)

where ps,t is a joint distribution defining the probability that a vertex is
attached to s single edges and t triangles, and δi,j is the Kronecker delta.

Similar to Newman’s earlier papers on graph structure, the analysis given
to these new edge-triangle (or simply ps,t) graphs in [111] relied heavily
on the use of probability generating functions (see Section 2.1). From [111],
the generating function for ps,t is

gp(x,y) =
∞∑

s,t=0

ps,tx
syt, (4.2)

2 A model closely analogous to Newman’s was independently proposed by Miller [101], and
first appeared in print little over a week after the publication of [111].
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Figure 4.1: In Newman’s model one specifies separately the number of single
edges and triangles (shaded) attached to each vertex. Reproduction of
Fig. 1 of [111].

while the generating function for pk is

f(z) =

∞∑
k=0

pkz
k =

∞∑
s,t=0

ps,tz
s+2t = gp(z, z2). (4.3)

Equations (4.2) and (4.3) were used in [111] to calculate the clustering
coefficient C1, defined (see Section 2.1) as

C1 =
3× number of triangles in the graph

number of connected triples of vertices
=
3N4
N3

, (4.4)

where the numerator

3N4 = n
∑
s,t

tps,t = n
(∂gp
∂y

)
x=y=1

, (4.5)

and the denominator

N3 = n
∑
k

(
k

2

)
pk =

n

2

(∂2f
∂z2

)
z=1

. (4.6)

We can now appreciate the usefulness of the sequence t and the joint dis-
tribution ps,t. By varying the number of triangles attached to each vertex
in Eq. (4.5) one can directly increase or decrease the value of the cluster-
ing coefficient. Most importantly, the variable n, denoting the number of
vertices in the graph, is present in both Eq. (4.5) and Eq. (4.6); it therefore
cancels upon substitution into Eq. (4.4). Thus C1 is independent of n and,
in contrast to the models discussed earlier, diverging graph size (n→∞)
cannot have a diminishing effect on the level of clustering.
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In order to investigate dynamical processes on these graphs Newman
defined what he calls excess degree distributions,

qs,t =
(s+ 1)ps+1,t

〈s〉
, (4.7)

and

rs,t =
(t+ 1)ps,t+1

〈t〉
, (4.8)

where 〈s〉 and 〈t〉 are the averages of s and t over all vertices. Here, qs,t

is the distribution of the number of single edges and triangles attached
to a vertex reached by traversing a single edge, excluding the traversed
edge, and rs,t is the corresponding distribution associated with a vertex
reached by traversing a triangle edge.3 The generating functions for these
distributions are

gq(x,y) =
∑
s,t

qs,tx
syt =

1

〈s〉
∑
s,t

sps,tx
s−1yt =

1

〈s〉
∂gp

∂x
, (4.9)

and

gr(x,y) =
∑
s,t

rs,tx
syt =

1

〈t〉
∑
s,t

tps,tx
syt−1 =

1

〈t〉
∂gp

∂y
, (4.10)

respectively. These two equations facilitate the derivation of analytical
expressions for a number of important structural properties, including
average path lengths, vertex connection probabilities, the size distribution
of small components and the condition for the existence of the GCC. One can
also use them to investigate various percolation processes: site percolation,
bond percolation, joint site-bond percolation, etc.

In [111] Newman derived the following expression for the birth point of
the GCC in terms of 〈s〉 and 〈t〉:[

〈s2〉
〈s〉

− 2

][
2
〈t2〉
〈t〉

− 3

]
=
2〈st〉2

〈s〉〈t〉
. (4.11)

He also considered bond percolation on a graph with the doubly Poisson
degree distribution

ps,t = e
−µµ

s

s!
e−ν

νt

t!
, (4.12)

3 The concept of excess degree was first introduced in [114].
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with µ chosen to be µ = 〈s〉 and ν set to ν = 〈t〉. In this case, the size of the
GCC, called S, was shown to be

S = 1− e−[µS+νS(2−S)]. (4.13)

In the left panel of Fig. 2 in [111] S was plotted against the bond occupation
probability, which here we call φb, for several values of the clustering
coefficient C1. However, Newman did not calculate the critical values at
which the GCC first appears in this figure. To do this it is necessary to derive
an expression for the existence of the GCC in a bond percolation process on
edge-triangle graphs in terms of 〈s〉, 〈t〉, and also φb. We will demonstrate
in Section 5.1.2 how such a condition can be defined as part of our own
generalized analytical approach to modelling the cascade dynamics of a
broad range of processes run on Newman’s graphs.

4.2.2 Clique-based Graphs

Newman’s was not the only model of random graphs with tunable clus-
tering coefficients to appear in 2009. In a paper published in September of
that year Gleeson [71] also proposed a new way to generate such graphs.
Like Newman’s model, Gleeson’s may be seen as a modifying the classical
configuration model, with clustering introduced by embedding cliques of
connected vertices within an otherwise tree-like structure. However, while
Newman considered only 3-cliques, i.e. triangles, in his model, Gleeson’s
approach permits an entire distribution of clique sizes to be prescribed.
Thus, [71] generalizes work based on similar ideas by Trapman [136], and
Gleeson and Melnik [75].

To construct a realisation of a clustered graph in the manner described
in [71] we first make a distinction between edges that connect vertices
in the same clique, which we call internal edges, and those that connect
vertices in different cliques, called external edges. We also stipulate that
each vertex may be a member of at most one clique. Doing this allows the
desired graph to be decomposed into a set of disjoint cliques connected
together by external edges. In this way we can treat each clique as a vertex
(or node) in its own right, called a supernode in [71]. With these conditions
in place, a unique graph realisation can be drawn simply by employing
the configuration model technique of pairing up at random stubs of edges.
The only difference here is that the stubs we join together are now those of
external edges between cliques (see Fig. 4.2).

The defining feature of a clique-based graph is its joint probability distri-
bution γ(k, c), which determines the probability that a randomly chosen
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(c)

(a)

(b)

Figure 4.2: (a) Segment of a clustered random graph; (b) decomposed into disjoint
cliques with external edges emphasized; (c) cliques seen as supernodes
in a tree-like supergraph. Reproduced from Fig. 1 of [71].

vertex has degree k and belongs to a c-clique. Thus, the approach of [71]
is sometimes referred to as γ-theory. Note, γ(k, c) = 0 for k < c− 1 since
each member in a clique of c vertices must possess enough incident edges
to connect to every other member (excluding itself).

In the analysis presented in [71], Gleeson first demonstrated how the
degree distribution of a γ-theory graph, pk, is obtained by averaging γ(k, c)
over all clique sizes:

pk =

k+1∑
c=1

γ(k, c) =
∑
c

γ(k, c). (4.14)

Next he showed how the degree dependent clustering coefficient ck (see
Section 2.1) can be defined in terms of γ(k, c) as

ck =
∑
c

γ(k, c)
pk

(c− 1)(c− 2)

k(k− 1)
. (4.15)

Having derived these expressions, he then proceeded to investigate some
of the dynamical properties of his graphs. Formulas were found for the
expected fractional size of the GCC in a bond percolation process, and the
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critical bond occupation probability φ̂b. In contrast to [111], the analytical
framework used to obtain these results did not involve generating functions.
Instead, it was similar to, but evidently more complicated than, the tree-
based approach derived in [73], and applied by us throughout Chapter 3.
In Section 5.2 we will significantly extend this framework by presenting our
own generalized analytical description of cascade dynamics on γ-theory
graphs, which will include bond percolation as a special case. Therefore, to
avoid repeating similar ideas here as later on, we omit for now the specific
details of the analysis of [71], and state in short order its main outcome.

To summarize very briefly, then, by applying the concept of child to par-
ent activation (see Section 3.1, and Fig. 2 of [71]) to graphs with embedded
cliques, Gleeson derived the following expression for the expected GCC size
in a bond percolation process with occupation probability φb:

S =
∑
k,c

γ(k, c)
[
1− (1−φbq∞)k−c+1(1−Qc)], (4.16)

where Qc is the probability that the parent vertex in a c-clique is active
(with the remaining c− 1 vertices in the clique treated as its children), and
q∞ is the steady state value of the level by level iteration, qn+1 = G(qn),
defined by Eq. (5) of [71]. The same iterative equation also provided the
first-order cascade condition G ′(0) = 1 [70], which was expressed as a
polynomial in φb (see Eq. (7) of [71]), and then solved to determine the
critical value φ̂b.

The theory behind these two results will be more clearly elaborated in
the generalized scheme put forth in Section 5.2, and we postpone all further
discussion of dynamics on γ-theory graphs until then. There is, however,
one other important aspect to the structural characterisation given in [71]
worth highlighting here before we proceed.

We have mentioned that this model permits a distribution of clique
sizes to be prescribed to a graph. In fact, it permits something much more
significant than this. In [71] Gleeson showed that γ(k, c) can be fitted to
the degree distribution, pk, and clustering spectrum, ck, of any real-world
network using the following parametrization

γ(k, c) = pk

(
k

c− 1

)
gc−1k (1− gk)

k−c+1, (4.17)

which is defined for c = 1 to k + 1. To see how this idea works, first
understand that Eq. (4.17) causes the distribution of clique sizes, c, occupied
by vertices of degree k in a generated graph to adhere to a binomial
distribution whose specific form is determined by the parameter gk. Next,
notice that substituting Eq. (4.17) into Eq. (4.15) reveals the remarkably
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simple relationship gk =
√
ck. Thus, given a pair of measured pk and ck

sequences, one can feed these directly into the right hand side of Eq. (4.17),
produce a fitted joint distribution γ(k, c), and then use that to define a
more realistic ensemble of clustered random graphs. Furthermore, when
substituted into Eq. (4.16) this fitted γ(k, c) improves the accuracy of ρ and
φ̂b, as evidenced by Fig. 3 of [71].

Finally note, however, that the binomial parametrization defined by
Eq. (4.17) is fundamentally arbitrary, in that it was chosen without any
theoretical justification other than the simple fact that it introduces no
obvious structural bias into the distribution of c over k. Therefore, the
equality of gk to

√
ck was a rather serendipitous discovery, upon which a

more in depth analysis may perhaps provide an improvement.

4.3 comparison of models

The common goal of Newman’s work in [111] and Gleeson’s in [71] was
to lay the theoretical foundations for the creation, ultimately, of a realistic
network model that will accurately replicate the relevant structural features
of observable complex systems.4 In both papers the first steps towards this
goal were taken by generalizing the configuration model such that it may
used to create ensembles of highly clustered random graphs. Despite the
appreciable unity of purpose between Newman and Gleeson in this respect,
the distinguishing features of their respective analyses, most of which we
have already outlined, may be viewed as setting the frameworks offered
in [111] and [71] somewhat at odds with each other. However, at this early
stage of development preference for one approach over the other remains
largely a matter of opinion, or perhaps convenience.

For example, as regards the methods used by each author to model
bond percolation on their graphs, Newman quite naturally employed an
adaptation of the, by now classic, generating function techniques of [24],
whereas Gleeson opted for a modified version of the tree-based theory of
[73]. Undoubtedly, generating functions do carry with them an intrinsic
mathematical elegance, and one may feel that they provide a more parsi-
monious framework in which, unlike [71], no reference need be made to
levels of activation, or child and parent vertices, etc. On the other hand,
some noteworthy commentators have argued quite convincingly that it is
precisely this latter sort of physically intuitive grounding that makes the
tree-based approach, and other complementary approaches [43, 44], easier

4 The adjective relevant in our usage means any feature that has an impact on the functional
behaviours of the system; behaviours which we gain insight into by considering various
idealized processes. After [99] this word will likely denote more than just high clustering,
and may even include structural metrics that have not been thought of yet.
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to understand and perhaps more readily generalizable to a wider range of
processes. (Our work in Chapter 5 will shed further light on this point.)

There does, however, appear to be one aspect of the use of generating
functions that stands clearly to Newman’s advantage, and that is that they
allow him to calculate the distribution of small component sizes up to the
critical point at which the GCC first forms. The tree-based approach allows
Gleeson to calculate the expected fractional size of the GCC but he cannot
say anything about small components, at least not before first developing
extensions to the current set of expressions given in [71]. Yet, from an
applications perspective, this is not necessarily such a major shortcoming
of [71] since, apart from the value of the critical point, the size of the GCC

is usually the quantity of primary concern to us, particularly when we
consider the question of resilience.

Besides these differences in the authors’ approaches to modelling dynam-
ical properties, there are also a number of fundamental differences in terms
of the characteristics of real networks that their separate graph ensembles
can capture. A number of pros and cons can be weighed in favour of or
against either ensemble. For one, it may be argued that the way Newman
introduces clustering is rather artificial. Nonoverlapping triangles are by
no means the only structural motif by which clustering may be identified
in a real network. An obvious advantage of Gleeson’s graphs, in this re-
spect, is that they permit an entire spectrum of clique sizes incorporating
higher order motifs than simply triangles. Furthermore, as we have just
seen, this clustering spectrum can be parametrized to fit measured values.
But, then again, his graphs are constructed by first stipulating that each
vertex may be a member of at most one clique. No such condition exists in
the real-world, nor does it exist in Newman’s model since more than one
triangle may be attached to a single vertex. Thus the scales appear to be
fairly evenly matched with regard to the question: Which model creates the
most realistic network topology? The simple answer is that neither model
creates graphs that look very much like real networks. Of course, this does
not take away from the importance of either model as a theoretical point of
departure for more ambitious investigations.

Lastly, however, in relation to clustering, we note that there is one other
property of Gleeson’s approach, besides its parametrizability, that would
seem to tip the scales slightly in his favour. In Newman’s model the local
clustering coefficient is necessarily limited by ck 6 1/(k− 1) since a k-
degree vertex can belong to at most k/2 disjoint triangles, and there are
also strict bounds on the range of values achievable for the global clustering
coefficient C1 which depend on the graph topology under consideration.
Restrictions of this sort do not apply to Gleeson’s model: C1 ∈ [0, 1).
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Figure 4.3: Bond percolation threshold φ̂b vs. clustering coefficient C1 for z-regular
graphs with z = 3 (top), z = 4 (middle), and z = 6 (bottom). Red dashed
lines correspond to the nonclustered value φ̂b

(r) = 1/(z−1); Black solid:
values of φ̂b

(γ) from [71]; magenta dot-dashed: φ̂b
(N1) from [111]; and

blue circles: φ̂b
(N2) from [109]. Source [76].

In [76], we (Gleeson, Melnik, and Hackett) looked very closely at the
levels of clustering permissible in either approach and also at the effects that
different levels may have on the bond percolation threshold. To get a flavour
of the type of analysis carried out in [76], consider a bond percolation
process on a z-regular (each vertex has z neighbours) γ-theory graph. By
adapting the results of [71], we showed that the threshold for such a graph
is given by the root in φb of the equation

∑
c

(z− c+ 1)

(1−
√
C1)z

(
z

c− 1

)
C
( c−12 )

1

(
1−

√
C1
)z−c+1

×
[
(z− c)φb + (z− c+ 1)Dc(φb)

]
= 1, (4.18)

where Dc(φb) are polynomial functions of φb defined in [71]. For any
C1 ∈ [0, 1), Eq. (4.18) can be solved to find the corresponding critical value,
φ̂b. In [76] we used this equation to compare the clustering properties of the
z-regular graphs produced by Gleeson’s model [71] to those of Newman’s
[111], and also those of an earlier bipartite model of Newman’s [109].5 The
most explicit illustration of the differences between these three models is
given by Fig. 1(a) of [76] which we reproduce here as Fig. 4.3.

This figure clearly demonstrates our point about the range of C1 values
attainable in each model; although, note that the full analysis of [76] con-
cerning this question extends beyond the z-regular subclass to the arbitrary

5 For [109] φ̂b can be calculated only at certain {C1, z} pairings. See Appendix A of [76].
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pk ensemble. Moreover, it also illustrates a very important fact about the
effects of clustering on dynamics; a fact which strongly supports our criti-
cism of the error measure E [99] at the beginning of the chapter. Namely, in
each model the introduction of clustered vertices increases the percolation
threshold above its value on the nonclustered graph (red dashed). This
effect may be observed consistently across each range of C1 values and for
varying z. The extent of the increase is greater in Newman’s models than in
Gleeson’s; however, these differences diminish as z grows and the graphs
become more heterogeneous.6

This latter aspect of bond percolation on clustered graphs, which from
what we can tell so far appears to be a generic phenomenon among existing
structural models, can be framed as part of the broader problem of deter-
mining the shift in the critical value for a more general class of dynamical
processes. For instance, we might ask: Does increased clustering have a
similar effect for site percolation, or Watts’s model? We will address this
question in some detail in Section 5.1.3.

6 At z = 6 the φ̂b
(N1) (magenta) line almost coincides with the φ̂b

(γ) (black) line.
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C A S C A D E S A N D C L U S T E R I N G : A S Y N T H E S I S

In Section 3.3 we discussed the effectiveness and ultimate limitations of
the locally tree-like approximation in application to real-world network
topologies. Referring to our work in [99], we showed that the accuracy of an
analytical theory of dynamics derived from this approximation (specifically
P(k,k ′)-theory [70]) appears to depend more on the mean intervertex
distance, L, of the observed network than on either definition of the global
clustering coefficient, C1 or C2. However, we also established that the
analysis of [99] did not present enough evidence to rule out entirely the
possibility that clustering has some sort of effect on dynamics, particularly
in the range of parameters close to the global cascade transition. Thus,
given the broadly recognized significance of clustering as a structural
characteristic of real networks, we proceeded in Section 4.2 to present
two of the most successful recent attempts [71, 111] at creating ensembles
of random graphs with tunable clustering coefficients. Comparing these
models revealed (see Fig. 4.3) that indeed clustering does have an effect
on cascade dynamics similar to what we had speculated, at least apropos
the process of uniform bond percolation, and perhaps other processes as
well. Thus we arrive at the beginning of this penultimate chapter of our
dissertation confident that the task set before us of providing independent
analytical descriptions of cascade dynamics on these two new ensembles
of clustered random graphs is one which may provide insights of genuine
novelty and importance.

We have said that we will undertake this task by seeking extensions of
the original approach of [73]. To elaborate, what we have in mind here
is to account for clustering from within the framework of level-by-level
tree-based activations. In this way we aim to provide a unique synthesis of
tree-like (branching) cascade propagation and clustered structural motifs;
combining what we have learned about modelling processes in Chapter 3

with the insights into network structure gained in Chapter 4. We fully
appreciate that, in view of all that we have learned so far, this stated goal
of ours may appear to the reader a contradiction in terms; however, we
shall demonstrate in the results that follow that the distinctive features of
Newman’s and Gleeson’s graph ensembles permit its realization without
recourse to excessively complicated mathematical techniques, and allow
us to retain the familiar language of Chapter 3. We consider each model

67
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separately, dividing our presentation into two broad sections. The analytical
approach of Section 5.1 applies to cascades on edge-triangle graphs, and
has appeared previously in [85]. The approach described in Section 5.2,
applies to cascades on clique-based graphs, and is as yet unpublished [83].

We concede that this dependence on the individual traits of each graph
ensemble means that both of these approaches, like the ensembles them-
selves, will fall considerably short of being ideal analogues of the real world.
Notwithstanding, together they will undoubtedly provide the theoretical
scope for further development in this direction. One other recent highlight
from the networks literature [91] also provides this scope. Thus, we will
discuss in the closing remarks of Section 5.3 potential avenues towards a
more fully realized, and preferably unified framework; one in which the
results of this chapter may perhaps be derived as special cases.

5.1 cascades on edge-triangle graphs

We begin in this section by showing how the theory put forth in [73] (see
Section 3.1) and further developed in [70] for cascades on locally tree-like
graphs can be modified such that it is applicable to the ensemble of clus-
tered random graphs introduced in [111]. The work of [70], which we have
previously merely alluded to, showed how through the response function
mechanism the basic theory of [73] can be applied to any process that
satisfies the following set of properties: (i) each vertex is assigned a binary
value specifying its current state, active (damaged or infected) or inactive (un-
damaged or susceptible); (ii) the probability of a vertex becoming active (in
a synchronous update of all vertices) depends only on its degree k and
the number m of its neighbours who are already active, i.e., the response
function F(m,k); (iii) for any fixed degree k, F(m,k) is a nondecreasing
function ofm; and (iv) once active, a vertex cannot become deactivated. Our
work in Chapter 3 verified that the process described by Watts’s model sat-
isfies these constraints. Other confirmed members of the class of processes
that can be modelled by choosing an appropriate F(m,k) [70] are site and
bond percolation [21, 134], and k-core decomposition [77, 47]. (It remains
to be seen if more may be included.) Thus, when we refer to providing a
generalized analytical description for Newman’s ensemble, what is implied
by this is an approach that can model the same broad class of processes
but on edge-triangle graphs, with joint distribution ps,t.

The next subsection describes in detail the methods behind our extension
of the approach of [73], and includes our analytical calculation of the
expected cascade size and our condition for the existence of global cascades.
Following that, Section 5.1.2 will show how to model different processes
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using these expressions by defining appropriate response functions. We
conclude our discussion of ps,t graphs in Section 5.1.3 with a thorough
investigation of the effects of clustering on cascades.

5.1.1 Cascade Propagation

The key observation that justifies our use of the locally tree-like approxi-
mation in the presence of nonzero clustering and permits our modification
of the equations of Section 3.1 is simply the following: In ps,t graphs clus-
tering is generated solely through the motif of nonoverlapping triangles.
Therefore, we posit that fitting this specific type of clustering into the tree-
based framework is quite straightforward: a triangle exists whenever an
edge connects two vertices on the same level (see Fig. 5.1). This supposition
appears to us to be fairly intuitive; however, it will be validated conclusively
only by the accuracy of the equations derived. Taking it for the moment
to be legitimate, we see that the same basic conception of propagation of
activations up the levels of a tree towards a randomly chosen root vertex
as was applied in Section 3.1 (see Fig. 3.1) may also be applied here. The
only significant difference pertaining uniquely to ps,t graphs is that now
we are faced with two distinct ways in which activations may spread from
one level to the next. They may spread as in Fig. 5.1(a) from a child (c) to
its parent (p) across a single edge or as in Fig. 5.1(b) from either child at
the base of a triangle to the parent at its apex.

Following the methodology of Section 3.1 then, let us model a generalized
cascade as a recursive sequence of activations from child to parent and set
up self-consistent equations for the probabilities involved.

Considering first Fig. 5.1(a), let σ1 be the probability that the child is
active conditional on its parent being inactive, and let σ0 = 1 − σ1 be
the corresponding conditional probability that the child is inactive. For
convenience we represent this set of probabilities with the generating
function σ(x) = σ0 + σ1x. Similarly, in Fig. 5.1(b), let τ2 be the probability
that both children are active, conditional on their parent being inactive,
let τ1 be the conditional probability that only one child is active, and let
τ0 = 1− τ1 − τ2 be the conditional probability that neither child is active.
The generating function for these probabilities is τ(x) = τ0 + τ1x+ τ2x2.

Of course, the vertex arrangements represented by Figs. 5.1(a) and
5.1(b) usually exist in various combinations, and not exclusively of each
other. By definition, in any given graph realization a randomly chosen
vertex will be directly connected to s vertices via single edges and to 2t
vertices via triangle edges, with probability ps,t. Therefore, letting Πs,t

m be
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Figure 5.1: Level-by-level cascade propagation in a ps,t graph using the tree ap-
proximation. Triangle corners are marked in black. Source [85].

the probability that m of these neighbouring vertices are active, σ(x) and
τ(x) can be related to that probability by a third generating function

G(x) =

s+2t∑
m=0

Πs,t
m x

m =
[
σ(x)

]s[
τ(x)

]t, (5.1)

which is defined for each pairing of s and t.
We are now in a position to write an analytical expression for σ1. In

terms of an arbitrary response function F(m, s+ 2t), written Fm for short,
we have

σ1 = ρ0 + (1− ρ0)
∑
s,t

sps,t

〈s〉

s+2t−1∑
m=0

Πs−1,t
m Fm, (5.2)

where ρ0 is the seed fraction and 〈s〉 =
∑
s,t sps,t is the average number

of single edges per vertex. Equation (5.2) is a self-consistent equation for
σ1 since according to Eq. (5.1), Πs,t

m is itself a function of the coefficients of
σ(x) and τ(x). We can read Eq. (5.2) as follows: The probability of the child
vertex in a randomly chosen single edge pair being active, conditional on its
parent being inactive, is equal to the probability that it was either initially
active (ρ0), or that (1− ρ0) it subsequently became active by copying the
behaviour of the m out of s+ 2t− 1 of its own children that were already
active. Note, the term sps,t/〈s〉 is the probability of reaching a child with s
single edges by travelling along a random single edge from its parent (see
Eq. (3.4) of Section 3.1, and [110]).

To obtain similar expressions for τ1 and τ2 we must reflect the fact that
in a triangle the state of either child may influence the state of the other.
Referring to Fig. 5.1(b), the probability that one child is active regardless of
the state of the other is

α = ρ0 + (1− ρ0)
∑
s,t

tps,t

〈t〉

s+2(t−1)∑
m=0

Πs,t−1
m Fm, (5.3)
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the probability that one child is inactive if the other is inactive but will
activate if the other is active is

β = (1− ρ0)
∑
s,t

tps,t

〈t〉

s+2(t−1)∑
m=0

Πs,t−1
m

[
Fm+1 − Fm

]
, (5.4)

and finally the probability that one child is inactive even if the other is
active is γ = 1−α−β. In Eqs. (5.3) and (5.4), we use the fact that following
a triangle edge from the parent leads to a child with t triangles with
probability tps,t/〈t〉. This child then has s single edges and t− 1 triangles
available to connect to its own children, giving its maximum number of
active children (for the sum over m) as s+ 2(t− 1). Expressed in terms
of the probabilities α and β, self-consistent expressions for τ1 and τ2 are
given by

τ1 = 2αγ, (5.5)

and
τ2 = α

2 + 2αβ. (5.6)

The form of Eq. (5.5) arises from the fact that the probability of the parent
in a triangle of vertices having one active child is equal to the probability
that one child is active regardless of the state of the other (α), while the
other is inactive regardless of the state of the other (γ), and there are two
different ways in which this may be the case. Reading Eq. (5.6) in the same
way, we see that the probability of the parent vertex in a triangle having
two active children is equal to the probability that both children are active
regardless of each others’ states (α2) plus the probability that one child
is active and the other activates because of this with probability β; again
there are two ways in which the latter may occur.

The propagation of a cascade through a ps,t graph is now almost fully
defined. Given a seed fraction ρ0, we solve Eqs. (5.1)-(5.6) to find the
steady-state values of the coefficients of the polynomials σ(x) and τ(x), and
then, using these, we determine the expected cascade size in the familiar
manner by calculating the probability of activation of the root vertex. This
final probability is given by

ρ = ρ0 + (1− ρ0)
∑
s,t

ps,t

s+2t∑
m=0

Πs,t
m Fm. (5.7)

Comparing this equation to Eq. (5.2), we see that here the root vertex, which
has s single edges and t triangles with probability ps,t, has no parent and
so has s+ 2t children.
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We leave the verification of the analytical approach derived here to
Section 5.1.3. The figures presented there will show that Eq. (5.7) and
Ineq. (5.11) (below) are in excellent agreement with the results of numerical
simulations of site percolation and Watts’s model on ps,t graphs.

5.1.1.1 Cascade condition

Having established an analytical expression for the expected cascade size
in Eq. (5.7), we now turn to the derivation of a cascade condition. This
will determine the circumstances under which the process of propagating
activations described by Eqs. (5.1)-(5.6) can generate a nonvanishing mean
cascade size from an infinitesimally small seed fraction ρ0 → 0.

We begin by observing that Eqs. (5.1)-(5.6) can be represented as the
steady state of a nonlinear system of the general form v(n+1) = H

(
v(n)

)
,

where v(n) =
[
σ1

(n), τ1(n), τ2(n)
]
.1 The trivial solution v = 0 corresponds to

an equilibrium state where cascades do not occur. We can look for other
solutions by applying a small perturbation away from this equilibrium and
then considering the trajectories in a linearized version of the system.

Applying this method we first linearize the generating function G(x) of
Eq. (5.1) about v = 0 using a small parameter ε to measure the magnitude
of the perturbation. Scaling the coefficients of σ(x) and τ(x) as O(ε), that is
σ1 ' εσ̃1, τ1 ' ετ̃1 and τ2 ' ετ̃2, we expand G(x) as

G(x) ' 1− ε
[
sσ̃1 + t(τ̃1 + τ̃2) − (sσ̃1 + tτ̃1)x− tτ̃2x

2
]
, (5.8)

up to terms of O(ε2).
Our next step will be to substitute the coefficients of G(x) from Eq. (5.8)

into Eqs. (5.2)-(5.6). Before doing this, however, we further simplify our
analysis by assuming F0 = 0. This implies that a vertex will never activate if
none of its neighbours are active, and this is true, or a good approximation,
in many cases of interest. With F0 = 0, then, said substitution gives us a
linear system that may be represented in the matrix form ṽ(n+1) = A · ṽ(n),
where

ṽ(n) =

 σ̃1
(n)

τ̃2
(n)

 , A =

A11 A12

A21 A22

 , (5.9)

and the elements of A are

A11 =
〈(s2 − s)F1〉
〈s〉

, A12 =
〈stF2〉
〈s〉

+
〈stF1〉
〈s〉

〈t〉− 〈tF1〉
〈tF1〉

;

1 In fact, this is how the expressions of Section 3.1 were presented. We could have dropped the
n and n+ 1 subscripts from Eqs. (3.7) and (3.8), and referred to them also as self-consistent;
however, for the sake of simplicity we kept them iterative.
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A21 =
2〈stF1〉〈tF1〉
〈t〉2

,

A22 =
2〈(t2 − t)F1〉

〈t〉
+
2〈(t2 − t)(F2 − F1)〉〈tF1〉

〈t〉2
. (5.10)

Note, the application of Eq. (5.8) has allowed us to express τ̃1
(n) in terms

of τ̃2
(n) as τ̃1

(n) = (〈t〉− 〈tF1〉)τ̃2(n)
/〈tF1〉, hence the reduction to the 2× 2

system of linear equations represented by Eqs. (5.9) and (5.10).
In order for this system to produce trajectories that will diverge from

v = 0, in other words in order to produce cascades, we require that the
larger eigenvalue of A (both eigenvalues are real) be greater than one,
λ+ > 1.2 This condition is satisfied (see Appendix B.1) if

〈t〉
{
2〈stF1〉2 −

[
〈(s2 − s)F1〉− 〈s〉

][
2〈(t2 − t)F1〉− 〈t〉

]}
− 2〈tF1〉

{[
〈(s2 − s)F1〉− 〈s〉

]
〈(t2 − t)(F2 − F1)〉

− 〈stF1〉〈st(F2 − F1)〉
}
> 0. (5.11)

Conversely, if the left-hand side of Ineq. (5.11) is negative, then λ+ < 1, and
the trivial equilibrium is stable, so cascades do not occur. The boundary
between these two regimes, one where cascades are observed and the other
where they are not, is located precisely at the point where λ+ = 1; that is,
where the left-hand side of Ineq. (5.11) is equal to zero.

5.1.2 Response Functions

In this subsection we will show how our new generalized analytical ap-
proach may be used to model a range of processes on ps,t graphs. As stated
previously each specific process will be defined by choosing an appropriate
response function, and Eq. (5.7), in combination with Eqs. (5.1)-(5.6), will
then give the expected cascade size (or, for percolation, the fractional GCC

size). We consider in detail site and bond percolation, and Watts’s model.

5.1.2.1 Site and bond percolation

Beginning with percolation, we frame our description of this process in the
language of successive activations already introduced. Thus, we define a
vertex as active if it is part of the GCC (percolating cluster) of the graph,
and our choice of response function, Eq. (5.12) or Eq. (5.16) below, will

2 In general, the trivial equilibrium v = 0 is unstable when the matrix A has at least one
eigenvalue λ such that |λ| > 1. Our simplified requirement follows from the fact that A
consists of real positive elements and thus according to the Perron-Frobenius theorem
at least one of the eigenvalues of A is real and positive, and is greater than the other in
absolute value.
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determine the type of percolation under consideration, either uniform site
percolation or uniform bond percolation, respectively. This interpretation
works because when the activation process defined by Eqs. (5.1)-(5.7), with
the appropriately substituted response function, reaches the steady state,
any vertex that is labelled as active will have at least one active neighbour to
which it is connected. Therefore, the fraction ρ of these active vertices will
correspond to the size of the connected component, expressed as a fraction
of the graph size n. In the n → ∞ limit, only the GCC size scales with n,
and so ρ will match the fractional size of the GCC, S. This can be seen also
from the fact that in the limit of zero clustering, our equations reduce to
the standard percolation equations for the GCC size in configuration model
graphs, as given in [24]. Note, however, that, like every other variation
of the tree-based theory [70, 71, 73, 75], this method does not permit the
calculation of finite-size connected components.

In uniform site percolation, each vertex is occupied with independent
probability φs, and an occupied vertex can become active in the cascade,
i.e., form part of the GCC, if it has one or more active neighbours (who
are already in the GCC). Unoccupied vertices can never become active. The
response function for site percolation is therefore [70]

F(m, s+ 2t) =

φs if m > 0,

0 if m = 0.
(5.12)

Using Eq. (5.12) in the ρ0 → 0 limit of Eqs. (5.2)-(5.7), and noting that with
this choice of response function

s+2t∑
m=0

Πs,t
m F(m, s+ 2t) = φs

[
1− σ0

sτ0
t
]
, (5.13)

the fractional size of the GCC (as n→∞) is given by Eq. (5.7) (with ρ ≡ S)
and reduces to the simple form

S = φs −φs
∑
s,t

ps,tσ0
sτ0

t. (5.14)

Likewise, substituting Eq. (5.12) into the left hand side of Ineq. (5.11) and
setting it equal to zero we derive the equation [84]

(
φs〈s2 − s〉− 〈s〉

)(
2φs〈t2 − t〉− 〈t〉

)
− 2φs

2〈st〉2 = 0, (5.15)

whose solution in φs determines the critical site occupation probability φ̂s.
In uniform bond percolation, on the other hand, each edge is occupied

with independent probability φb, and a vertex can become active only if it
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is linked to another active vertex by an occupied edge. Thus, a vertex with
m active children has probability 1− (1−φb)

m of becoming active itself.
The appropriate choice of response function in this case is therefore [70]

F(m, s+ 2t) =

1− (1−φb)
m if m > 0,

0 if m = 0,
(5.16)

which upon substitution into Eqs. (5.2)-(5.7) yields

S = 1−
∑
s,t

ps,t
[
σ0 + σ1(1−φb)

]s
×
[
τ0 + τ1(1−φb) + τ2(1−φb)

2
]t, (5.17)

as the fractional GCC size for this type of percolation. Similarly, applying
Eq. (5.16) to Ineq. (5.11) gives us the following equation for the critical bond
occupation probability φ̂b [76]:

(
φb〈s2 − s〉− 〈s〉

)(
2fφb〈t2 − t〉− 〈t〉

)
− 2fφb

2〈st〉2 = 0, (5.18)

where f : φb → f(φb) = 1+φb −φb
2.3

The approach outlined here is also applicable to two other closely related
problems: SIR contagion dynamics [80, 108] and k-core decomposition [47,
77]. From [108] (see Section 2.3.2) we know that the steady state infected
fraction in an SIR process can be mapped directly to the GCC size in bond
percolation. The topic of k-cores was discussed in detail in [70] and the
relevant response function for standard configuration model graphs was
provided in Eq. (10) of that paper. With the introduction of triangles we
simply update that response function by setting k = s + 2t, and then
continue as above by performing appropriate substitutions of F(m, s+ 2t).

Finally, in relation to network-oriented epidemiology, we note that the
question of how clustering in networks of human interactions may influence
the size and persistence of outbreaks of infectious diseases has motived
a number of recent studies [10, 20, 52, 87, 102, 136]. In fact, much of the
impetus for considering more complex topological motifs in networked
structures in general has come from this source (see [75, 101, 136] and
references therein). We will see in Section 5.1.3 how the results obtained by
us for site and bond percolation echo (albeit indirectly) some of the major
results from this literature concerning the effects of clustering.

3 Note that by setting φs = 1 in Eq. (5.15) and φb = 1 in Eq. (5.18) both equations reduce to
Newman’s original Eq. (22) of [111] (reproduced in Section 4.2.1 as Eq. (4.11)).
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5.1.2.2 Watts’s model

Turning next to Watts’s model, we recall from our review in Section 2.3.2.1
that in its most abstract formulation this model describes a type of binary-
state dynamics on the vertices of a random graph of arbitrary degree
distribution, pk. The active fraction requires no great elaboration in this
case, since it has already been discussed at length throughout Chapter 3. To
recap briefly, it simply corresponds to the relative number of participants
in the cascade (of some fashion, rumour, etc.), where the participation of a
vertex i at time t is indicated by the state vi(t) = 1, and non-participation
by vi(t) = 0. From the definition of the decision rule in, Eq. (2.13), a vertex
will change state from zero to one if the fraction of its neighbouring vertices
that are already active (m/k) exceeds the value of its random (frozen)
threshold r, which is drawn from a specified distribution q(r). Otherwise,
vi(t) will remain unchanged. Thus, if during a synchronous update of all
states, a vertex decides to activate, from that point on it may not change
state ever again. It is this crucial feature that permits us to map the average
steady-state active fraction in this process to the expected cascade size, ρ.
The results of Chapter 3 have demonstrated this last point quite extensively.

In [70] Gleeson defined the response function for Watts’s model on a
graph with both arbitrary q(r) and arbitrary pk (see Eq. (2) of [70]). We can
extend this definition to ps,t graphs, in precisely the same way as before,
simply by setting k = s+ 2t. From Eq. (2) of [70] this gives us

F(m, s+ 2t) = Hr

(
m

s+ 2t

)
, (5.19)

where m is the number of active neighbours and Hr denotes the CDF of
the thresholds. The form that Eq. (5.19) takes when a uniform threshold
distribution is applied can be seen by substituting k = s+ 2t into Eq. (3.3)
of Section 3.1. If we require a Gaussian threshold distribution with mean R
and standard deviation σ, then Eq. (5.19) becomes

F(m, s+ 2t) =
1

2

[
1+ erf

(
m/(s+ 2t) − R

σ
√
2

)]
, (5.20)

where erf(x) is the error function. Note, F(0, s+ 2t) > 0 here, meaning some
vertices have negative thresholds, and so will activate even if none of their
neighbours are active. It is possible, therefore, for such vertices to instigate
a cascade even when ρ0 = 0 (see the discussion pertaining to Fig. 3.3).

As usual, we obtain the expected cascade size and the cascade condition
for Watts’s model by substituting the appropriate form of Eq. (5.19) into
Eqs. (5.1)-(5.7) and Ineq. (5.11) from above.
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5.1.3 The Effects of Clustering

The results of Section 5.1.1 in combination with the response functions
listed in the previous section will supply us with a diverse set of tools with
which to model cascades on ps,t graphs. Provided, that is, we can verify
that the reasoning that underlies their derivation is, indeed, sound. In this
section we shall seek this verification by the familiar method of plotting
predicted values from our analytical calculations against the results of
numerical simulations of various processes. However, we shall do more
than merely verify. These plots will also be used to address an important
question concerning the effects of clustering on cascades.

We showed in Fig. 4.3 of Section 4.3 that increasing the level of clustering
in the z-regular graphs of Newman’s ps,t, or Gleeson’s γ(k, c) ensemble
will unambiguously increase the value of the critical occupation probability
(percolation threshold) in a bond percolation process run on either of these
types of graphs [76]. Therefore, we asked: Does a similar effect occur for
a more general class of processes? Evidently, the class we were alluding
to is the one cited at the beginning of this chapter. Also, after our review
of [99] in Section 3.3 we proposed at the beginning of Chapter 4 that
the relationship between the expected cascade size4, ρ, and the level of
clustering may be determined by looking closely at the parameter range
near the cascade threshold. Both of these aspects of the effects of clustering
are directly related to each other since a change in the position of the
threshold is, in point of fact, a change in the cascade size over the distance
the threshold has moved relative to its original position. An increased
threshold corresponds to a reduction in the value of ρ, and a decreased
threshold corresponds to an increase in ρ (see Fig. 5.2 below).

In order, therefore, to address both aspects simultaneously, we reframe
the question above as: Does the presence of clustering in ps,t graphs
increase or decrease the expected cascade size relative to its value in a
nonclustered graph with the same degree distribution, pk? The answers
provided to this question are to be taken with the proviso that since they
will be inferred from the position of the cascade threshold they will apply
conclusively only to the region over which it has moved. Furthermore, we
must ensure that the way we add clustering does not change pk, since were
it to do so, we would not be permitted to unambiguously attribute the
change in the threshold to the effects of clustering.

This last point indicates why we have chosen to conduct our investigation
from within the conceptual framework of the edge-triangle model. The
simplicity of both the model itself and our description of cascades on the

4 The height of the cascade window in Fig. 3.8.
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graphs that it produces affords us the flexibility to vary clustering in an
uncomplicated manner, without altering pk.

Consider, for example, the following choice joint distribution:

ps,t = pkδk,s+2t
[
(1− g)δt,0 + gδt,b(s+2t)/2c

]
, (5.21)

where g ∈ [0, 1], δi,j is the Kronecker delta, and b·c is the floor function. By
applying this definition, we construct ps,t from a given degree distribution
pk such that a fraction g of the vertices in our graph are attached to the
maximum possible number of triangles t = b(s+ 2t)/2c while the remain-
ing (1− g) are attached to single edges only (t = 0). Upon substitution of
Eq. (5.21) into Eq. (4.4) of Section 4.2.1 we find that the clustering coefficient
C1 can be expressed as

C1 = g

∑
k k(p2k + p2k+1)∑

k

(
k
2

)
pk

. (5.22)

This linear relationship between C1 and g allows us to increase C1 contin-
uously from its minimum value at g = 0 to its maximum possible value
obtained at g = 1, while preserving pk throughout. We cannot guarantee,
however, that degree-degree correlations will be preserved [76].

In Fig. 5.2 (below) we have used Eq. (5.21) to verify our approach of
Sections 5.1.1 and 5.1.2 in the case of site percolation on ps,t graphs with
Poisson degree distribution pk = zke−z/k!. We plot our result for the GCC

size from Eq. (5.14) against numerical simulations for two different values
of the mean degree z =

∑
k kpk. In both cases we consider minimum

clustering (g = 0) and maximum clustering (g = 1). Threshold values
defined by Eq. (5.15) are also plotted as yellow pentagrams (see caption).

Observing the relative positions of the percolation thresholds in Fig. 5.2
we note that they lend support in favour of (or, at least, do not contradict)
the hypothesis that adding clustering will decrease the cascade size by
virtue of increasing the threshold. From Fig. 4.3 (and [76]), we know that
this is true for bond percolation on ps,t graphs with pk = δk,z; however,
since the presence of clustered edges in a z-regular graph cannot affect
its correlation structure, this means that any effects that may have been
introduced by allowing correlations to vary were automatically negated in
that figure. Furthermore, it was explicitly demonstrated in [76], and also
[101], that such effects may significantly complicate matters. In Fig. 5.2, on
the other hand, degree-degree correlations are not preserved. Therefore,
while this figure does provide a validation of our generalized approach, it
does not permit us to draw definitive conclusions as regards the question
of the change in the expected cascade size due to clustering alone.
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Figure 5.2: Site percolation on ps,t graphs with n = 105 and Poisson pk. Numerical
simulations (triangles) averaged over 100 realisations and theory of
Section 5.1.1 (lines). GCC size S vs. site occupation probability φs.
Colour indicates mean degree: z = 3 blue; and z = 5 green. In both
cases we consider minimum clustering g = 0 and maximum clustering
g = 1. In each of the four parameter settings we calculate φ̂s from
Eq. (5.15) and mark its position on the φs axis with a yellow pentagram.

In order to do that we will follow the approach of [76] (see also [25]) and
focus our investigation on ps,t graphs with z-regular pk. In particular, we
consider the following joint distribution

ps,t = δz,s+2t
[
(1− g)δt,0 + gδt,1

]
, (5.23)

where z > 2. This choice shares some similarities with Eq. (5.21); however,
here we are adding only one triangle to each of a fraction g of the vertices
in a z-regular graph. Substituting Eq. (5.23) into Ineq. (5.11) we have, as the
condition for cascades to occur (corresponding to λ+ > 1),

F1(z
2 − z) − z+ gζc > 0, (5.24)

where

ζc = 2+ F1(6− 4z) + 2F1
2(z− 2)2

+ 2F1
2F2(z− 2)

2 − 2F1
3(z− 2)2, (5.25)

denotes the sum of the terms which introduce clustering into the graph.
This expression gives us an insight into how adding clustering (specifically
nonverlapping triangles in this case) alters the cascade size. Given a specific
z we can determine the qualitative effect of clustering in the following
way. First, set the expression on the left-hand side of Ineq. (5.24) equal
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to zero and solve for F1 at g = 0. This determines the value of F1 at the
transition to the cascade regime in the nonclustered graph; the well-known
result of Watts [144], F1 = 1/(z− 1). Next, substitute that F1 into Eq. (5.25)
and observe the sign of ζc. If ζc is negative we conclude that introducing
clustering will decrease the expected cascade size. If, on the other hand, ζc
is positive, clustering will increase the cascade size.

The justification for these last two statements follows simply from the
fact that if ζc constitutes a negative contribution to the expression on the
left-hand side of Ineq. (5.24), then increasing g, given that F1 = 1/(z− 1),
will break the inequality in Ineq. (5.24) and take us into the regime where
cascades do not occur. Alternatively, if ζc is shown to be positive, then
increasing the parameter g will ensure the inequality holds and cascades
do occur at these parameter values. Furthermore, because we add only one
triangle to each vertex, the level of clustering will be varied by only a small
amount by g. Therefore, this analysis provides a zoomed in view of the
region near the threshold. In this way we can be certain that the conditions
set in relation to the question posed at the outset are met. This is another
advantage of using the language of ps,t graphs to address this question.5

In Fig. 5.3 (below) we have plotted ζc against z for the three processes
described in Section 5.1.2: site percolation, bond percolation and Watts’s
model. In this last case we have chosen the following parameters: seed
fraction ρ0 = 0, and a Gaussian threshold distribution with mean R fitted
to F1 = 1/(z− 1), and standard deviation σ = 0.1.

This figure indicates that clustering will decrease the expected cascade
size in both site percolation and bond percolation. In other words, the value
of the occupation probability needed for a giant connected component to
exist is increased in the presence of clustering. We have already demon-
strated in [76] that this is the case for the latter of these two processes; to
our knowledge this is the first statement of the corresponding result for
site percolation. While these results are not directly applicable to models
of the spread of disease, in light of the established connection between SIR

epidemics and bond percolation we suggest that they may, nonetheless, be
of some considerable interest to researchers in that field. This statement is
vindicated by the fact that analogous results have recently been established
in a number of epidemiological studies that have shown that clustering can
adversely affect the propagation of a disease [10, 52, 87, 102].

Also of interest is the behaviour of ζc for Watts’s model. As z increases
in Fig. 5.3, we see ζc vary from negative values for z 6 3, through a regime
of positivity, and back again to negative values for z > 29. This tells us

5 A similar, though more complicated, analysis is most likely possible with z-regular γ(k, c)
graphs; however, we have yet to verify this.
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Figure 5.3: Sum of the clustering terms from Ineq. (5.24), ζc, vs. mean degree z
on ps,t graphs with z-regular degree distribution. Results from site
percolation, bond percolation, and Watts’s model are shown. As in Sec-
tion 5.1.2, each process is defined by choosing an appropriate response
function. For Watts’s model the threshold distribution is Gaussian with
standard deviation σ = 0.1 and mean R, such that F1 = 1/(z− 1). Note,
only integer z values are realizable as z-regular graphs.

that for z 6 3 the presence of clustering will decrease the left-hand side
of Ineq. (5.24) below zero, thereby decreasing the expected cascade size; for
3 < z < 29 clustering will increase the expected cascade size; and finally for
z > 29 clustering will once more tend to decrease the expected cascade size.
We note that qualitatively similar results (not reproduced here) are seen for
different values of σ, the standard deviation of the thresholds.

By way of validation, in Fig. 5.4 (below) we plot the cascade size ρ
against the mean of the threshold distribution R for Watts’s model with
joint distribution defined by Eq. (5.21), and otherwise the same parameter
settings as in Fig. 5.3 (see caption for details). We inferred from Fig. 5.3 that
at z = 3 cascades become smaller as clustering is increased. This is what
we observe in Fig. 5.4(a). Contrastingly, at z = 5 cascades should become
larger as clustering increases. This is verified by Fig. 5.4(b).

This dependence of the cascade size on the sign of the sum of the clus-
tering terms, ζc, in Ineq. (5.24) may be expressed succinctly as a condition
on the response function F2, the probability of activation in the presence
of two active neighbours. Specifically, if the value of F2 at the transition
point for cascades in nonclustered z-regular graphs (i.e., F2 evaluated at
the parameters for which F1 = 1/(z− 1)) satisfies the condition

F2

∣∣∣∣∣
F1=

1
z−1

>
2z− 3

(z− 2)(z− 1)
, (5.26)
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Figure 5.4: Cascade dynamics of Watts’s model on graphs of n = 105 vertices with
pk = δk,z and ps,t defined by Eq. (5.21). Gaussian thresholds: mean R
and standard deviation σ = 0.1. Numerical simulations averaged over
100 realizations (symbols) and theory of Section 5.1.1 (lines). Cascade
size ρ vs. mean threshold R. (a) z = 3: here increasing the level of
clustering decreases the expected cascade size at any given R value; (b)
z = 5: increasing clustering increases the expected cascade size.

then adding triangles will increase the expected size of cascades. Alter-
natively, if F2 does not satisfy this inequality, clustering will decrease the
expected size of cascades. One may derive this condition by substituting the
zero-clustering cascade condition F1 = 1/(z− 1) into Ineq. (5.24) and then
solving for F2. Note that by substituting the respective response functions
for site and bond percolation, Eq. (5.12) and Eq. (5.16), into Ineq. (5.26) one
may confirm that for z > 2 this inequality is not satisfied, and thus that
clustering decreases cascade sizes for both of these processes (increases the
percolation threshold). Finally, note that Ineq. (5.26) can also be arrived at
by a simple counting argument that compares the spread of activations in a
clustered random graph to that in a nonclustered random graph. We leave
this discussion to Appendix B.1.2.
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∗ ∗ ∗

This concludes for now our analysis of cascades on edge-triangle graphs.
As indicated at the beginning of the chapter, we will pick up this topic again
in Section 5.3 as part of a closing discussion of the potential for further
development offered by ours and other complementary approaches [91] to
synthesising cascade dynamics and high clustering. Our approach consists
of two distinct parts, each of which can be thought of as an extended
version of the tree-based theory of [73]. Having dealt at length with the
first (and simpler) of these extensions in the preceding subsections, we now
switch our focus for the duration the next major section of this chapter
to the task of modelling cascades on clique-based graphs [71]. This will
provide us with our second extension.

5.2 cascades on clique-based graphs

In this section we aim to derive a generalized analytical description of
cascade dynamics on the ensemble of graphs defined by Gleeson’s γ-theory
[71]. Again, the word generalized here means that the approach being
sought for will apply to the same broad class of models as discussed at
the beginning of Section 5.1, and will include in its scope, at the very least,
Watts’s model; k- core decomposition; and both site and bond percolation.

As was also the case for ps,t graphs, the first problem that we are
immediately confronted with in this endeavour is that of reconciling the
presence of clustering — which in this case is introduced through a whole
spectrum of different-sized cliques — with the tree-based framework of
successive activations. Based on our work in Section 5.1.1, we can be hopeful
that a congenial solution to this problem will open up the floodgates, so to
speak, to the derivation of a series of self-consistent analytical expressions.
However, by the same token, we can be certain that the solution provided
there for ps,t graphs will be of little use to us here since it depends on
the structural motif of nonoverlapping triangles. That is to say, despite the
fact that in certain parameter settings (e.g., γ(3, 3) = 1 and p1,1 = 1) both
models will produce the same ensemble, in general clique-based γ(k, c)
graphs are distinct from edge-triangle graphs, and their cascade dynamics
require a unique conceptualization.

In considering how best to proceed, let us return briefly to our review
in Section 4.2.2 and remind ourselves of what we know (and do not yet
know) about the γ-theory. As regards structural properties, we know that
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Figure 5.5: Level-by-level cascade propagation in a γ(k, c) graph using the tree
approximation. External edges emphasized. Reproduced from [71].

the joint distribution γ(k, c) prescribes the probability that each vertex has
degree k and is a member of a c-clique. We also know that each vertex may
be a member of at most one clique, and that there is a distinction between
internal edges that connect vertices in the same clique and external edges
that connect vertices in different cliques. In terms of dynamics, we have seen
that Gleeson [71] has, in fact, already provided an analytical description of
cascade propagation on γ(k, c) graphs; but that this description is limited
strictly to the process of bond percolation (i.e., it is not defined by a
response function). One may recall that we sketched the main outline of
this approach, while carefully avoiding any discussion of its finer details.
By far the most significant detail, which has been purposefully omitted
from our initial review, is the precise method by which he was able to apply
the concept of child to parent activation to graphs with embedded cliques.
We can now reveal how this was achieved.

In Fig. 5.5 we have reproduced Fig. 2 of [71]. This figure shows a portion
of an arbitrary γ(k, c) graph that has been reconfigured into a tree-like for-
mation. The essential characteristics of this reconfiguration can be explained
most succinctly by looking at the local edge topology of the randomly cho-
sen vertex A. This vertex, positioned on level n+ 1 of the tree, has degree
k = 6 and is a member of a 4-clique. Its six incident edges are made up
of c− 1 = 3 internal edges, which connect A to its neighbouring clique
members, and k− c+ 1 = 3 external edges (emphasised). Of these external
edges, one connects A to its parent vertex on the next level up, while
the remaining k− c = 2 connect A to its external children on level n. As
regards the location of the clique neighbours, they are positioned on an
unlabelled, intermediate level between A and its grandchildren (circled in
green) on level n. This categorization and positioning of edges is repre-
sentative of how the tree-based framework operates throughout the graph.
Notice that any vertex may be treated similarly to A regardless of the size
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of the clique to which it belongs. For any (k, c) pairing such that k > c− 1

(see Section 4.2.2), c− 1 clique neighbours can always be made to reside
in the interspace between a vertex and the level below; and one may also
stipulate in general that at most one external edge leads to the parent above.
In extreme cases, a vertex with no internal edges is simply a member of a
1-clique; and, therefore, all of its connections will pass directly from one
level to the next (c− 1 = 0), as in [73]. A vertex with no external edges
must reside either at the root of the tree, and have no parent, if it is part of
a clique, or it must be entirely isolated and have zero connections in total.

This, then, was the key that allowed Gleeson to calculate the GCC size,
S, in bond percolation on γ(k, c) graphs. Equation 5 of [71] was used to
determine the conditional probability that a vertex like A is active (part
of the GCC) on each level of the tree, and Eq. 6 of [71] (see Eq. (4.16) of
Section 4.2.2) then gave S as the probability of activation of the root vertex
by using the steady-state value from Eq. 5. The restriction of this theory to
bond percolation arises primarily from its reliance on a set of polynomial
functions which were defined and tabulated in [109]. Crucially, however,
those polynomials play no role in the conceptualization described above.
Thus, it turns out that the solution to our problem of understanding how
cliques can fit into a tree approximation has already been provided for us
in [71]. Our task of generalization, therefore, amounts to taking this set-up
and introducing the response function mechanism. However, given the
limitations of the equations of [71], this will necessarily involve much more
than a series of straightforward substitutions of F(m,k). In fact, as we will
now show, it requires a fundamentally new set of equations.

5.2.1 Cascade Propagation

With the theoretical foundations now in place, we can begin in earnest to
derive analytical expressions for generalized cascade dynamics on γ(k, c)
graphs. We proceed in the familiar manner by considering (from scratch)
the probability, qn+1, that the randomly selected vertex A in Fig. 5.5 is
active, conditional on its parent vertex being inactive. As is usual for tree-
based propagation, we stipulate that a vertex can become active only by
copying the states of the neighbouring vertices directly below it in the tree.
In this case, however, the vertex A has two different types of neighbour:
it has k− c external children on level n and c− 1 clique neighbours on
the intermediate level. Significantly, the ways in which these two types of
neighbour can become active in their own right are quite distinct from each
other. Thus, their contributions to the probability of activation of A must
be calculated separately. This is the first problem to be addressed.
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Starting with the simpler of the two contributions, let us write down the
probability that an arbitrary number, call it j, of A’s external neighbours are
active. Since there is no clustering between these vertices, each one is inde-
pendently activated by its own children on level n− 1 with probability qn.
Therefore, the probability that a total of j out of k− c external neighbours
are activated in this way is given simply by the binomial PMF

Bk−cj (qn) =

(
k− c

j

)
qn
j(1− qn)

k−c−j. (5.27)

For the second contribution to A, matters are made considerably more
complicated by the fact that its c− 1 clique neighbours are fully connected.
This means that the probability that each of these clique neighbours is active
depends not only on the states of their children — the four grandchildren
of A on level n — but also on the states of one another. Recall from the
derivation of our theory for cascades on ps,t graphs in Section 5.1.1 that
we had to account for the fact that each vertex at the base of a triangle
can directly influence the state of the other. We are faced with a similar
problem here; however, since we are now dealing with γ(k, c) graphs we
have a whole spectrum of clique sizes to contend with. One can appreciate
how much more intricate this will make our calculations, by imagining
that A were part of a very large clique (as it could be if we were to
choose a power-law degree distribution, pk ∼ k−α). For example, if A were
in a 20-clique, then c− 1 = 19 intermediate vertices would each have a
role to play in determining each others’ states. The solution in this case,
would require an extensive list of combinatorial expressions, similar to,
but extending far beyond, Eqs. (5.5) and (5.6) of Section 5.1.1. However,
the sheer number of vertices that may be involved in our calculations is
not the only major difficulty that confronts us. Ideally, we would like to
avoid tabulating combinatorial terms altogether and instead have a single,
compact analytical expression that is flexible enough to deal with any
clique size. This expression (behaving as a function) would allow us to
feed in the total number of clique neighbours as a variable and would then
return the probability that a certain fraction of them are active.

It is not at all obvious that a function can even be defined in the foregoing
terms. And, in fact, our demonstration that, indeed, this can be done is of
such a distinct character from the rest of our theory as to warrant its own
separate subsection. Thus, we continue with our analytical description of
cascade propagation by simply providing the name of this function, and
taking it for grated that later in Section 5.2.2 we will define precisely how
it operates. Let us call the relevant function Rc−1m (qn), and in doing so
refer to it as the probability that in a clique of c− 1 intermediate vertices a
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total of m are active. The dependence on qn arises from the fact that each
intermediate vertex has its own set of children on level n, and each of those
children (A’s grandchildren in Fig. 5.5) is active with probability qn.

If we accept the meaning of the label Rc−1m (qn) and combine it with
Eq. (5.27) above, we now have the necessary terms in which to express
the contribution of A’s external children and clique neighbours towards
its probability of activation, qn+1. This takes us very close to defining an
iterative equation for qn+1 in terms of qn. The last missing ingredient
is the probability, Ψk,c, that the random vertex A, while having degree k
and being a member of a c-clique, is also the child of a random vertex on
level n+ 2. This probability plays a role similar to that of the term (k/z)pk

in Eq. (3.4) of Section 3.1; which, one may recall, gave the probability of
reaching a child of degree pk by travelling along a randomly chosen edge
from its parent in a non-clustered graph. Similarly, here Ψk,c closes our
iteration by allowing us to average over all vertices on level n+ 1 in the
correct manner. We express this probability as

Ψk,c = (k− c+ 1)γ(k, c)/ze, (5.28)

where ze =
∑
k ′,c ′(k

′ − c ′ + 1)γ(k ′, c ′) is the average number of external
edges per vertex.6

Combining all three of our ingredients, we can now write our generalized
iterative equation, in terms of an arbitrary response function Fm+j ≡
F(m+ j,k), as

qn+1 = ρ0 + (1− ρ0)
∑
k,c

Ψk,c

k−c∑
j=0

c−1∑
m=0

Bk−cj Rc−1m Fm+j. (5.29)

Thus, we have derived an analytical expression for the probability that
a random vertex on the next level up, generically called n+ 1, is active,
conditional on its own parent being inactive. Reading this equation from
left to right, we see that it is quite easy to interpret its meaning. Referring
once again to Fig. 5.5, Eq. (5.29) tells us that the randomly chosen vertex A
will be found active if it was initially activated as part of the seed fraction ρ0,
or (1− ρ0) if it subsequently became activated by copying the states of the
neighbours directly below it in the tree. For the latter, there are two distinct
contributions from two different sets of neighbours: one from the external
children of A, and the other from the intermediate clique members. A total
of j of the first type of neighbour are active with probability Bk−cj (qn), and
m of the second type with probability Rc−1m (qn). (For compactness, these

6 The dashes have been introduced in the definition of ze to avoid confusion when nesting
different sums over k and c inside of each other.
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probabilities have been written as Bk−cj and Rc−1m , respectively.) Whether
the sum of m and j is sufficient to activate A is determined (as always) by
how we define the response function F(m+ j,k).

In the usual manner, iterating Eq. (5.29) to the steady-state will give
us q∞. This value can then be substituted into Bk−c+1j and Rc−1m (again
both shortened) in the following expression to determine the probability of
activation of the root vertex:

ρ = ρ0 + (1− ρ0)
∑
k,c

γ(k, c)
k−c+1∑
j=0

c−1∑
m=0

Bk−c+1j Rc−1m Fm+j. (5.30)

The probability ρ is, of course, equivalent to the expected fractional cascade
size (see the discussion in Section 3.1). The differences between this equation
and Eq. (5.29) above are all attributable to the fact that the root vertex has
no parent. The sum over j extends to k− c+ 1 because all of the root’s
external edges connect downwards to its children, and the correct term
for averaging over k and c is simply γ(k, c) since the root’s activation
probability is not conditional on any parent.

Taken together, then, Eqs. (5.29) and (5.30) constitute the core of our
new analytical approach. Using these it should be possible (i) to derive
a generalized cascade condition, and (ii) to investigate various cascading
processes by applying an appropriately defined response function. We
will only consider the second of these tasks, and not in any great detail
since the main ideas behind the various response function definitions have
already been discussed at length in Section 5.1.2.7 The appropriate versions
of F(m+ j,k) will be summarized later in Section 5.2.3; where we will also
verify our approach against the results of numerical simulations of bond
percolation and Watts’s model (see Figs. 5.7 and 5.8 below). Before that,
there remains for us, in the following subsection, the not so trivial task of
deriving an analytical expression for Rc−1m (qn).

5.2.2 Active Clique Neighbours

Backtracking now slightly in the flow of our presentation, we will offer
over the course of the next few pages a series of arguments that will lead
ultimately to our derivation of a concise closed-form expression for the
probability labelled above as Rc−1m (qn). Let us begin by recapitulating the
precise meaning of this label. According to our earlier definition, it is the
probability that m out of c− 1 intermediate level c-clique vertices are active,
given that their own externally linked children are each independently ac-

7 In addition, one may note that if we were to derive a cascade condition, the technique used
would be similar to the perturbative method of Section 5.1.1.1.
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tive with probability qn. In Fig. 5.5, for example, R3m(qn) is the probability
that m of the vertex A’s three clique neighbours are active, given each of
the four grandchildren of A (circled) has an activation probability of qn.

In considering how to calculate Rc−1m (qn) in general, we see immediately
that it is not the states of the external grandchildren that will cause us
difficulty; but, rather, the fact that the state of each intermediate clique
member can influence the states of all other members. In the framework of
[71], every c-clique has one of its (internally linked) members designated as
the parent and placed on level n+ 1. This leaves each of the remaining c− 1
clique members on the intermediate level with k− c+ 1 external edges to
connect to its own children on level n. The probability that some number,
j, of these children are active is given by the binomial PMF Bk−c+1j (qn).
Thus, the probability that an intermediate clique member is activated by
its children is quite easy to calculate. On the other hand, in order to deal
with the influence of these c− 1 clique members on one another, we will
have to consider carefully the various combinations of states that may exist
within the intermediate portion of the clique. However, given that these
states are conditional on the parent vertex in the c-clique being inactive,
this intermediate portion may be treated as clique of size c− 1 in its own
right. Our main problem, therefore, is to figure out how to count every
possible active-vertex configuration in a (c− 1)-clique, for arbitrary c.

Our first step in tackling this problem is to provide a mechanism for the
intermediate clique members to be activated, which combines both internal
and external influences. We define

G(d, c− 2) =
∑
k ′

γ(k ′, c)∑
k ′′ γ(k ′′, c)

k ′−c+1∑
j=0

Bk
′−c+1
j (qn)F(d+ j,k ′), (5.31)

for c > 2 and d 6 c− 2, as the conditional probability that an intermediate
c-clique vertex will be activated if d of its c − 2 clique neighbours on
the same level are active, given its external children are each active with
probability qn. The term γ(k ′, c)/

∑
k ′′ γ(k ′′, c) in this expression is the

degree distribution of vertices that belong to a c-clique.8 And, the response
function F(d+ j,k ′) will determine whether d neighbours plus j children
are enough to cause activation. Defined as such, G(d, c− 2), provides us
with a fundamental term in which to express the various possible active
configurations, thus permitting us to begin the procedure of counting.

We consider first the simplest non-trivial case, namely c = 3. Suppose
we pick, from some arbitrary γ(k, c) graph, a vertex with degree k, that
is also a member of a 3-clique. If, following [71], we let this vertex reside
on level n+ 1 of a tree, and also position its c− 1 = 2 clique neighbours

8 See footnote [6] above on p. 87.
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Figure 5.6: Transition probabilities for a pair (c− 1 = 2) of intermediate clique
neighbours in a γ(k, c) graph, expressed in terms of the binomial PMF
from Eq. (5.27). Colour indicates state: grey: inactive; green: active.

between level n+ 1 and level n below, our task then is to calculate R2m(qn).
To do this, let us refer to Fig. 5.6, and look at the possible states of these
two vertices in isolation from their inactive parent.

Starting with both vertices inactive — the configuration labelled x in
Fig. 5.6 — we first count the possible configurations of states after one
round (i = 1) of synchronous updating. Since we have started from x, with
both vertices inactive, the probability of either vertex becoming active in
this first round is simply G(0, 1). Therefore, each possible outcome (a, b, or
c in Fig. 5.6) is determined by a binomial PMF with probability of success
G(0, 1). Configuration a, in which both vertices have remained inactive,
will occur with probability B20(G0). Similarly, configuration b, in which one
vertex has been activated and the other has remained inactive, will occur
with probability B21(G0). Finally, configuration c, in which both vertices
have been activated, will occur with probability B22(G0). (Note that in each
term Gd ≡ G(d, c− 1); we will use this abbreviation throughout.)

Having determined the three distinct outcomes of the first round of
updates, we will now categorize each configuration into either of two types:
terminal or volatile. In a terminal configuration no further changes of state
are possible because all vertices have reached their own steady-state of
either permanent activation or inactivation. In a volatile configuration, on
the other hand, there exists at least one inactive vertex that is liable to
become active. Thus, as long as volatile configurations are produced we
must continue with another round of synchronous updates. The process of
updating will reach its end when all configurations are terminal. Catego-
rizing the outcomes of round one tells us whether or not a second round
is necessary, and, also, indicates which configurations need to be updated.
Configuration a is obviously terminal, since the transition from x to a has
established that neither vertex can activate while the other remains inactive.
Similarly c is also terminal for the simple reason that we do not allow active
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vertices to revert to being inactive. Configuration b, however, is volatile,
since the transition from x to b has shown us that one of these vertices
can activate without the other first being active, but that the same is not
true of this other vertex. That is to say, we know that the inactive vertex
in b cannot activate without an active neighbour. What is not clear from
b is whether the vertex that did activate in round one is now sufficient to
activate the vertex that remained inactive in that round. The only way to
determine this is to run a second round (i = 2) of updates on b.

As was the case in the first round, to begin the second round we must
provide an appropriate probability of activation. We want to know if the
active vertex in b is enough to activate the inactive vertex in b, given that
the inactive vertex cannot activate without an active neighbour. This can be
decided upon by using the activation probability ξ0,1 = (G1−G0)/(1−G0).
The configurations produced by updating with this probability are, once
again, given by a binomial PMF. With probability B10(ξ0,1) the inactive vertex
will remain inactive, thereby producing configuration d. Conversely, with
probability B11(ξ0,1) the inactive vertex will activate, thereby producing
configuration e. Categorizing d and e, we find both configurations are
terminal, and therefore the process of updating may now cease.

With all terminal configurations now achieved, the next step in our
derivation of R2m(qn) will be to combine the various transition probabilities
listed in Fig. 5.6, and use them to calculate each of R20(qn), R

2
1(qn), and

R22(qn). Tracing our way through Fig. 5.6, we reach a terminal state in
which no vertices are active by following the route x → a. Similarly, we
end with one active vertex by following x → b → d. Finally, a terminal
state with two active vertices is given by either of the routes x → c or
x→ b→ e. All of this information can be expressed succinctly using the
various transition probabilities associated with each route, if we bear in
mind that a transition from one configuration to another, symbolized by→,
corresponds to the multiplication of probabilities, and also that the word
or corresponds to addition. To summarize, the set of routes described here
yields the following set of equations:

R20(qn) = B
2
0(G0),

= (1−G0)
2. (5.32)

R21(qn) = B
2
1(G0)B

1
0(ξ0,1),

= 2G0(1−G1). (5.33)



92 cascades and clustering : a synthesis

R22(qn) = B
2
1(G0)B

1
1(ξ0,1) +B

2
2(G0),

= 2G0(G1 −G0) +G0
2. (5.34)

The final step towards our goal of writing a closed-form expression for
R2m(qn) is, obviously, to find a way of expressing Eqs. (5.32)-(5.34) as
the outputs of a single function which has been given the inputs m = 0,
m = 1, and m = 2, respectively. There may be a number of different ways
of defining such a function; some of which may appear more elegant than
others. For our own part, we can offer a particularly concise definition by
introducing a new variable, and considering how the various combinations
of Gd in Eqs. (5.32)-(5.34) can be produced in a parsimonious manner.

Our new variable is called li. We define it as the number of new activa-
tions in round i of synchronous updates. In the scheme presented above
we had two rounds; therefore, we also define the pair l = (l1, l2) as the
sequence of new activations over both rounds. This allows us to represent
all possible routes through the configurations of Fig. 5.6 as a collection of
ordered pairs. For example, l = (1, 0) means that there is one activation in
round i = 1 and no activations in round i = 2, and therefore corresponds
to the route x → b → d. (Similarly, l = (1, 1) corresponds to x → b → e.)
By applying this notation we have determined (through observation) that
the following equation will reproduce each of the Eqs. (5.32)-(5.34) above:

R2m(qn) =
∑

l1+l2=m

(
2

l1, l2

)[
1−Gl1

]2−(l1+l2)[
2− (l1 + l2)

]
!
G0
l1(Gl1 −G0)

l2 . (5.35)

There are two points worthy of note concerning this equation. The first is
that

∑
l1+l2=m

means one must sum over all pairs l = (l1 + l2) such that
l1 + l2 = m, where m is the total number of activations. The second point
relates to the appearance, directly after this summation, of the multinomial
coefficient

(
2
l1,l2

)
. For those who are unfamiliar with multinomial coeffi-

cients, the general form of this term for an arbitrary number of vertices, v,
is defined as(

v

l1, l2, . . . , lv

)
=

(
l1
l1

)(
l1 + l2
l2

)
. . .

(
l1 + l2 + . . .+ lv

lv

)
. (5.36)

In Eq. (5.35), therefore,
(
2
l1,l2

)
acts as a neat way of writing the multiplication

of binomial coefficients
(
l1
l1

)(
l1+l2
l2

)
(see [61, 149] and references therein).

To see how Eq. (5.35) operates let us calculate R21(qn) by setting m = 1.
The set of all l-pairs that add up to this value of m is l ∈ {(0, 1), (1, 0)}.
Substituting each of these pairs in turn into the right hand side of Eq. (5.35)
and then summing gives R21(qn) = [0+ 2G0(1−G1)], thereby reproduc-
ing Eq. (5.33) above. The values of R20(qn) and R22(qn) are found, sim-
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ilarly, by using the parameters m = 0 and l = (0, 0), and m = 2 and
l ∈ {(0, 2), (1, 1), (2, 0)}, respectively.

Thus, in Eq. (5.35) we have found an expression for R2m(qn) — which,
we remind ourselves once more, is the probability that m of the two
intermediate vertices in a 3-clique are active, given that each of their own
children are active with probability qn. Recall, however, that our ultimate
goal is to provide a general expression for Rc−1m (qn). In the remaining
few paragraphs of this section we will summarize very briefly how this
expression can be defined. Our technique of finding Rc−1m (qn), to put it
bluntly, is to simply determine a series of expressions for increasing values
of c− 1, and then to try to uncover a unifying pattern between them. In
other words, we first find a series of expressions for R3m(qn), R4m(qn), etc.
And, following that, we determine, by means of various notational devices,
how to write these expressions as a single function.

We spare the reader the details of the derivations involved in this proce-
dure. Each of our individual expressions for Rc−1m (qn), where c > 3, can
be found by a method similar to the one described above for R2m(qn). The
core of this method is the same regardless of the value of c, and can be
summarized in general as follows:

i) Synchronously update the states of all inactive vertices.

ii) Categorize the resulting configurations of states as either terminal or
volatile, removing those that are terminal from further consideration.

iii) Repeat steps (i) and (ii) until no volatile configurations remain.

For example, in determining R3m(qn), the application of these three
steps reveals every possible active configuration in a triangle of connected
vertices, and each associated transition probability. The full scheme of acti-
vations for this case is illustrated in Fig. B.2 of Appendix B.2.1. As above,
following the different routes in this figure towards each terminal con-
figuration indicates the correct sequence of multiplications and additions
to employ to calculate the values of R3m(qn) for 0 6 m 6 3. Doing these
calculations yields the following set of equations:

R30(qn) = B
3
0(G0),

= (1−G0)
3. (5.37)

R31(qn) = B
3
1(G0)B

2
0(ξ0,1),

= 3G0(1−G1)
2. (5.38)
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R32(qn) = B
3
2(G0)B

1
0(ξ0,2) +B

3
2(G0)B

2
1(ξ0,1)B

1
0(ξ1,2),

= 3G0
2(1−G2) + 6G0(G1 −G0)(1−G2). (5.39)

R33(qn) = B
3
3(G0) +B

3
1(G0)B

2
2(ξ0,1) +B

3
2(G0)B

1
1(ξ0,2)

+B31(G0)B
2
1(ξ0,1)B

1
1(ξ1,2),

= G0
3 + 3G0(G1 −G0)

2 + 3G0
2(G2 −G0)

+6G0(G1−G0)(G2 −G1). (5.40)

Note, for these equations we have extended our earlier definition of ξ0,1 to
the create the function ξa,b = (Gb −Ga)/(1−Ga).

A generalized expression for R3m(qn), which contains Eqs. (5.37)-(5.40) as
special cases can be defined by a similar method to that used for Eq. (5.35).
By applying the variable li, and considering the sequences of activations,
l = (l1, l2, l3), associated with each route through Fig. B.2 we have found
that the equation

R3m(qn) =
∑

l1+l2+l3=m

(
3

l1, l2, l3

)[
1−Gl1+l2

]3−(l1+l2+l3)[
3− (l1 + l2 + l3)

]
!

G0
l1

× (Gl1 −G0)
l2(Gl1+l2 −Gl1)

l3 , (5.41)

will produce expressions in Gd in agreement with Eqs. (5.37)-(5.40).
Observe the striking similarities between equation Eq. (5.41) and Eq. (5.35).

They indicate that to create an expression for R3m(qn) from that for R2m(qn),
above, all one must do (besides set c− 1 = 3) is place extra indices, l2
and l3, in appropriate positions, and include one more multiplicative term,
namely (Gl1+l2 −Gl1)

l3 . By running the entire scheme of categorization
and route counting over again with c− 1 = 4 and l = (l1, l2, l3, l4), we have
observed (in calculations not reproduced here) that a similar relationship
also holds between R3m(qn) and R4m(qn). And so on for higher c values, in
a matryoshka-like sequence.

The pattern of similarities detected in our calculations strongly suggests
the following form for a single unifying expression for Rvm(qn), where v is
arbitrary:

Rvm(qn) =
∑

l1+...+lv=m

(
v

l1, . . . , lv

)[
1−
∑v
i=1 θi

]v−∑vi=1 li[
v−
∑v
i=1 li

]
!

v∏
i=1

θi
li . (5.42)

The variable θi in this equation is defined recursively as θi = GSl − Sθ for
i > 2, with initial value θ1 = G0. The terms Sl and Sθ denote the partial
sums

∑i−1
j=1 lj and

∑i−1
j=1 θj, respectively.
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Finally, we observe that Eq. (5.42), may be rewritten, using multi-index9

notation, in the remarkably concise form

Rvm(qn) =
∑

|l|=m

(
v

l

)
(1− |θ|)v−|l|

(v− |l|)!
θl, (5.43)

where, following the conventional usage of this notation, the multi-indices
l = (l1, l2, . . . , lv) and θ = (θ1, θ2, . . . , θv) are ordered v-tuples of li and
θi, for 1 6 i 6 v. The summations over l and θ are defined, respectively,
as |l| = l1 + . . .+ lv and |θ| = θ1 + . . .+ θv, and exponentiation of θ by l
means θl = θ1l1θ2l2 . . . θvlv .

By setting v = c− 1 in Eq. (5.43) we have the function Rc−1m (qn), ex-
pressed in closed form. Applying this definition of Rc−1m (qn) in Eqs. (5.29)
and (5.30) above completes our analytical description of cascades on clique-
based graphs, and permits us to proceed with the task of verifying of our
approach. This will be done in the next section by comparing predicted
values of the expected cascade size from Eq. (5.30) against the results of
numerical simulations of bond percolation and Watts’s model.

5.2.3 Response Functions

To test the theory of the previous two sections we require an appropriate
set of definitions for the response function F(m+ j,k) corresponding to
the processes in our familiar broad class (see Section 5.1). The function F,
however, is the same one that we have used throughout our presentation.
We started in Chapter 3 by writing it in its simplest generalized form:
F(m,k) (see Eq. (3.3)). There, it defined the probability that a k-degree
vertex in a locally tree-like graph may be activated by m active neighbours.
In Section 5.1, F(m, s+ 2t) gave the probability that a k-degree vertex in
an edge-triangle graph may be activated by m active neighbours, where
k = s + 2t. In this section, F(m + j,k) prescribes the probability that a
k-degree vertex in a clique-based graph may be activated by m+ j active
neighbours, where j and m are the numbers of external and internal
neighbours, respectively. Since F has not changed (only its arguments have),
the same justifications of our use of the response function mechanism
as were given in Section 5.1.2 apply equally here. Furthermore, the same
method of substitution of arguments into F also applies. Therefore, similarly

9 Multi-index notation is little more an aesthetic tool. It is typically used to simplify formulae
in multivariable calculus and distribution theory, by representing an ordered n-tuple of
indices as an integer index on which a standard set of operations are defined (see for
example [65, 127]). The li indices in Eq. (5.42) are ideally suited to this representation.
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Figure 5.7: Bond percolation on γ(k, c) graphs with n = 105 vertices and Poisson
degree distribution pk, mean degree z = 3. Numerical simulations
(symbols) averaged over 100 realisations and theory of Section 5.2.1
(lines). GCC size S vs. bond occupation probability φb. Colour indicates
values of α and β used to create the joint distribution γ(k, c), and also
the level of clustering: C2 = 0 red; C2 = 0.31 blue; C2 = 0.35 green.

to Section 5.1.2, the definitions of F(m+ j,k) for different processes are
found by setting m = m+ j in the definitions of F(m,k) given in [70].

With this aspect clarified, we can begin testing our theory against nu-
merical simulations of various processes. We consider first the process of
uniform bond percolation. Setting m = m+ j in the right-hand side of
Eq. (5.16) defines F(m+ j,k) for this process. Applying that definition in
the respective ρ0 → 0 limits of Eqs. (5.29) and (5.30) allows us to use
these two equations to calculate the expected GCC size, S. We choose not to
reproduce here the simplified forms of Eqs. (5.29) and (5.30) after these
substitutions have been applied. Instead, let us go directly to our results.

In Fig. 5.7 we have plotted our calculations of S from Eq. (5.30) against
the results of numerical simulations on γ-theory graphs (see caption).
The parameters chosen for this figure are the same as those used in Fig.
3(a) of [71]. Each graph has a Poisson degree distribution pk = zke−z/k!,
with mean degree z = 3. Following [71], we set γ(k, c) =

[
(1−α−β)δc,1 +

αδc,3+βδc,4
]
pk for k > 3, where α,β ∈ [0, 1]. In this way we create nonzero

clustering by assigning a fraction α of k-degree vertices to 3-cliques and a
fraction β to 4-cliques. Additionally, since a 2-degree vertex cannot belong
to a clique of size c > 3, we assign a fraction α of these vertices to 3-cliques
using γ(2, c) =

[
(1−α)δc,1+αδc,3

]
p2. We let vertices of degree zero or one

belong to 1-cliques: γ(k, c) = pkδc,1. By varying α and β different levels
of clustering can be prescribed. Again following [71], we use three (α,β)
pairs: (0, 0), (0.8, 0.1), and (0, 1). Obviously, (0, 0) produces a nonclustered
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graph (red). We can use Eq. (4.15) of Section 4.2.2 to define the global
clustering coefficient C2 =

∑
k pkck (see Section 2.1). From this one may

show that (0.8, 0.1) produces a clustered graph with C2 = 0.31 (blue), and
also that (0, 1) gives a graph with C2 = 0.35 (green). The match obtained
between theory and numerics in Fig. 5.7 is excellent, and thereby provides
a validation of our generalized approach in the case of bond percolation.10

Furthermore, because we have chosen the same parameters as Fig. 3(a)
of [71], the results shown in that figure should correspond exactly with the
results shown here in Fig. 5.7. Comparing these two figures will reveal to
the reader that they do indeed match. This illustrates that our approach
contains within its scope the ability to produce the same predicted values
of S as the theory of [71]. Note, however, that we have not attempted to
explicitly reproduce the equations of [71] from our Eqs. (5.29) and (5.30). As
noted earlier at the beginning of Section 5.2, Gleeson’s equations depend
on a set of polynomial functions defined and tabulated in [109]. These
polynomials limit the application of his equations to bond percolation.
They also make his equations different to ours. Specifically, the polynomials
of [109] give the probability that a randomly chosen vertex in a damaged
(i.e., by bond percolation) c-clique belongs to a connected cluster of a certain
number of vertices. It is unclear whether this feature can be mapped directly
to our generalized framework; although, it appears the correspondence
must reside somewhere in the combination of Rc−1m (qn) and F(m+ j,k).

The advantage of our approach over that of [71] is, of course, its supposed
applicability to other processes besides bond percolation. To confirm that it
really does posses this power we consider for our second, and final, test
Watts’s model [144]. In Fig. 5.8 (below) we present values of the expected
cascade size ρ from Eq. (5.30) plotted against the results of numerical
simulations on γ-theory graphs. The thresholds in each of these graphs
are drawn from a Guassian distribution: q(r) = N(R, 0.1) (see caption).
Therefore, the response function for our theory is defined by setting m =

m+ j in Eq. (5.20). The structural variables used are the same as those
given for Fig. 5.7. All graphs have Poisson pk with z = 3, and γ(k, c) is
defined by the same three equations as above. The match between theory
and numerics in Fig. 5.8 is excellent, once again validating our approach.

This draws to an end all we have wished to say concerning the topic of
verification. We take it that the results of Figs. 5.7 and 5.8 have illustrated to
ample effect that our approach is extremely accurate, and that the response
function mechanism provides us with the flexibility to model a range of

10 One may note that, like Fig. 5.2 earlier, the percolation thresholds in Fig. 5.7 are shifted to
the right by increasing the level of clustering. However, the restrictions on what we can
infer from this observation are the same as those applied to Fig. 5.2. In particular, we cannot
rule out the effects of degree-degree correlations.
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Figure 5.8: Cascade dynamics of Watts’s model on γ(k, c) graphs with n = 106

vertices and Poisson degree distribution pk, mean degree z = 3. Gaus-
sian thresholds: mean R and standard deviation σ = 0.1. Numerical
simulations averaged over 100 realizations (symbols) and theory of Sec-
tion 5.2.1 (lines). Cascade size ρ vs. mean threshold R. Colour indicates
values of α and β used to create the joint distribution γ(k, c), and also
the level of clustering: C2 = 0 red; C2 = 0.31 blue; C2 = 0.35 green.

processes. Based on this evidence, we posit that site percolation and k-core
decomposition may also be modelled by defining the appropriate response
functions (see Section 5.1.2).

In the next, and final, section of this chapter we will provide a brief
overview of the approaches to modelling cascades presented here and in
Section 5.1. We will also offer some concluding remarks concerning the
potential for further development contained within the work of these two
sections and some recent work by Karrer and Newman [91].

5.3 towards a unified framework

In this chapter we have provided analytical methods for modelling the
cascade dynamics of a broad, but precisely defined, class of processes on
each of a pair of highly clustered random graph ensembles [71, 111]. Both
of these methods have been derived as extensions of the tree-based theory
of cascade propagation first put forth in [73]. In each case, the kernel of
our approach has been the way in which we have reconciled conceptually
the locally tree-like approximation with the explicit presence of clustering
in the graphs under consideration. Ostensibly, these two concepts are
diametrically opposed; however, the distinctive features of each type of
graph have enabled us to subsume clustering within a tree structure and,
following [73], to treat the cascade dynamics as a process of successive
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activations from level to level, towards the root. In recalling our review of
Section 4.3, we are reminded that, for Newman’s edge-triangle model, the
enabling feature in question is the fact that in his graphs clustering exists
solely through the motif of nonoverlapping triangles. Similarly, the vital
feature of Gleeson’s clique-based model in this respect is the fact that in
his graphs a vertex can belong to at most one clique.

If, however, our approaches depend on these two fundamentally un-
realistic aspects of Newman’s and Gleeson’s models, it raises a question
concerning the significance of the insights that we can provide. Setting
aside the inherent limitations of the idealized processes that our theories
can model. We would like to be able to say that the structures to which
our theories apply contain at least some degree of realism. The ultimate
goal of work like ours is to create an analytical theory that offers highly
accurate predictions for cascade dynamics on real-world complex networks.
There are many aspects underlying the complexity of these networks; per-
haps more aspects than we can ever hope to fully describe from within a
mathematical framework. Based on this understanding, we try to build our
theories from the bottom up by stripping away as much information as
possible and considering instead of real networks, ensembles of undirected
and unweighted random graphs. However, even at this degree of abstrac-
tion it is not clear which graphical structures should be accounted for, and
which others are redundant. For example, the degree distribution is the
cornerstone of most sensible first-order theories. To achieve the next level of
complexity one can include degree-degree correlations and/or clustering.
But, from there it is uncertain whether there are other structural features
that should be included to achieve a further level, and if so, how. In the
work presented here we have focused on the problem of accounting for
clustering for the practical reason that unlike degree-correlated graphs
analytical models of dynamics on highly clustered graphs are severely
lacking from the networks literature. We also believe that this problem
offers a broad prospect for further development, and that, judging by the
consensus of empirical observations, clustering is a genuine hallmark of
complexity across many domains. Thus, even though models like New-
man’s and Gleeson’s may contain unrealistic features, the mere fact that
they include clustering places these models, and also theories of dynamics
derived from them, at the forefront of the current state of knowledge.

Concerning the way forward, it appears that Gleeson’s model is better
suited as a point of departure for the goal we have in mind. This is in
virtue of the fact that in a clique-based graph the spectrum of degree-
dependent clustering (see Section 2.1) can be fitted to values observed
from real networks. There are also no upper bounds on the conventional
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clustering measures C1 and C2. In contrast, in an edge-triangle graph the
level of clustering achievable does have strict upper bounds (see Fig. 4.3
and [76]), and it is generally not possible to match empirical clustering
spectra using only nonoverlapping triangles.

However, Newman’s model appears to provide the most natural language
with which to address questions related to the effects of clustering on
cascades. By the addition of nonoverlapping triangles we can increase the
level of clustering in an edge-triangle graph in a very precise way, and in
small increments each time. This allows us to pinpoint certain effects, such
as changes in the position of the cascade threshold (see Section 5.1.3). We
suggest that further work in this direction should seek to clarify fully the
interplay between clustering and degree-degree correlations (see [76] and
[101]) in determining such effects. A similar analysis should be possible
from within the clique-based model; however, is it not clear that this would
provide any greater insight into the true effects of these properties in the
real-world than the corresponding analysis on an edge-triangle graph.

This latter point highlights another important fact about the current state
of knowledge concerning network structure. There are many different ways
to include clustering in a graph. Two of the most elegant procedures, in
terms of analytical tractability, are those provided in [71] and [111]. At
certain parameter settings the ensembles of graphs produced by these
models may correspond; however, for the most part these ensembles are
distinct from each other. This means that each model describes, in a sense,
its own universe. Certainly, neither of those universes corresponds to reality.
What is missing it seems from each model is the fundamental aspect of
arbitrariness. Expressed in the terms in which it actually exists in the real-
world, clustering refers to the presence of densely connected subgraphs.
Evidently, there are no a priori restrictions on the characteristics of these
subgraphs. For example, for most real networks only a small percentage
of the subgraphs in their corresponding graphs will be cliques. And so,
there appears to be limited scope in these two models for achieving the
ideal of a universal model of clustering. Crucially, however, this does not
mean that their analysis, and in particular their individual use as a basis
for descriptions of dynamics (such as we have provided), will be rendered
meaningless should such a structural model be defined. On the contrary,
we suggest that our work concerning cascade dynamics [83, 85] may bear
fundamental relevance to such a model. In justification of this claim we
highlight, finally, the recent paper of Karrer and Newman [91].

In [91] Karrer and Newman have introduced a general formalism for
creating ensembles of random graphs that contain arbitrary distributions
of subgraphs. The most remarkable feature of their approach is that in
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theory the subgraphs in question can be of any desired type. Hence, cliques
of various sizes and motifs such as nonoverlapping triangles, are a small
subset in the range of possible choices. In particular, the edge-triangle
model of [111] is contained within this new class of models as a special
case. In fact, it appears likely that many other models are also special
cases. In this way, [91] presents a great leap forward towards a universal
framework for modelling clustering. What is not clear, however, is how one
should select subgraphs such that the random graphs created may mimic
in a parsimonious manner the structure of a given real-world network.

We find it particularly interesting that every ensemble generated by
the formalism of [91] contains graphs that, like those of [71, 111], can be
treated as being tree-like. As the authors of [91] have shown, if we consider
arbitrary subgraphs and single edges as the two fundamental units of a
graph ensemble, then in each graph realization “local neighbourhoods are
tree-like at level of these units” [91]. This suggests the possibility of further
extending the tree-based approach of [73] to model cascades on some, or
perhaps all, of the ensembles described by this formalism. We have already
provided an extension to one of these ensembles in Section 5.1. Finally, it
may be possible to generalize our result of Section 5.2.2 for the probability
that a clique of arbitrary size contains a certain number of active vertices,
into a corresponding result (or set of results) for arbitrary subgraphs.





6
S U M M A RY A N D C O N C L U S I O N S

We began by introducing the idea of complexity, and by providing a few
examples of its manifestation in cascading phenomena. We also offered
a minor critique of certain contemporary connotations of this concept
by showing that it is, in fact, deeply rooted in the history of Western
intellectual thought. In its most sensible usage the epithet complex applies
to any system whose global behaviours are not reducible to a simple average
or sum of the individual properties of its components. When expressed
in these terms, it becomes apparent that complexity is an increasingly
pervasive feature of the modern world. This renders imperative the task
of determining precisely why it comes about and how it can be modelled.
By its very nature, the study of complexity requires much more than the
narrow set of techniques specific to any one field of scientific inquiry.
Success, in these terms, is predicated on the knitting together of a diverse
array of tools and concepts. This is borne out by the recent prominence of
network theory among the different branches of complexity science.

Network theory refers to a broadly interdisciplinary approach to un-
derstanding the structural and dynamical characteristics of the networked
architectures on which many complex systems are built. It combines aspects
of fields ranging in diversity from condensed matter physics to sociometry
into a framework based on the theory or random graphs. The core principle
of this approach is that insight into complex global phenomena can be
gained by determining the properties of these underlying networks. Thus,
it adheres to a fundamentally reductionist philosophy. For our own part,
we have sought to contribute towards a mathematical interpretation of
cascading phenomena by describing analytically a certain class of idealized
processes on random graphs of various structural configurations.

After our review of the historical development of network theory in
Chapter 1, we proceeded in Chapter 2 to provide details of some of the
most significant advances offered by the contemporary study of networks
in terms of modelling both structural properties and dynamics. As regards
structure, we reviewed four important models of random graph generation
[13, 57, 104, 147]. We saw that while each of these models captures some
of the salient features of real-world networks — namely, heterogeneous
degree distributions, short average geodesic path lengths, and high levels
of clustering — none capture all. We attached particular significance to the
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lack of a robust method of creating highly clustered random graphs since
this feature is widely deemed indispensable to an accurate characterisation
of the patterns of interaction between the components of a complex system.
In graph theoretic terms clustering translates as the presence of a large
number of (typically small) fully connected subgraphs, and is commonly
measured by counting the fraction of vertex triples that form triangles.
Given the simplicity of this idea, it appeared to us at odds with the general
success of network theory that an ensemble of highly clustered graphs,
with broad degree distributions, had not been defined many years ago.

Models of the processes that take place on networks are many and varied.
If we accept the consensus that networks are ubiquitous, then certainly
there are too many processes to consider at any one time. Therefore, for the
second part of Chapter 2 we offered detailed reviews of only two dynamical
models. The first, percolation, was presented as a way of modelling the
resilience of networks under targeted or random removal of sites (vertices)
or bonds (edges). And we discussed some important results [24, 31, 104]
relating to the size of the GCC of the graph and the percolation threshold,
at which the GCC disappears. The second, Watts’s model [144], provides
insight into cascading phenomena in society, such as fashions, rumours,
and opinions. It offers a numerical procedure for computing the the steady-
state fraction of active vertices in a particular type of binary-state dynamics
on a random graph. This number is used as an estimate of the expected
cascade size (i.e., the steady-state density of participants in the cascade).

And so, Chapter 2, as well as providing the fundamental definitions and
concepts used in subsequent chapters, also introduced the two focal points
of our thesis: random graphs with clustering, and cascade dynamics.

In Chapter 3 we began our discussion of the modelling of cascades with a
review of the analytical approach of Gleeson and Cahalane [73]. Motivated
by Watts’s model, in [73] Gleeson and Cahalane provided an analytically
tractable framework for modelling cascade dynamics on networks. Their
approach was derived from work on the zero-temperature RFIM on a Bethe
lattice [41]. The authors of [73] showed how this model could be generalized
to provide a method of calculating analytically the expected cascade size
and the position of the cascade threshold for Watts’s model on locally tree-
like random graphs. Later, it was shown by Gleeson [70] how the response
function mechanism of the approach of [73] facilitates its application to a
broad class of problems, which includes, as well as Watts’s model, site and
bond percolation, k-core decomposition, and SIR contagion dynamics.

The tree-based approach of [73] is the cornerstone of the analyses offered
in this thesis. Our objective has been to extend this approach in suitable
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ways in order to account for certain aspects of network dynamics and/or
structure that lay outside the remit of the original theory.

In our first extension we considered the idea of targeted activation of seed
vertices (those who instigate the cascade) in Watts’s model, and showed how
the equations of [73] can be modified to calculate the expected cascade size
and the position of the cascade threshold (Appendix A) when the seed is
chosen at random from amongst either all vertices in the graph, or a specific
subset of vertices with the highest degrees. From this we investigated the
so-called influentials hypothesis, whereby it is posited that there are certain
individuals in society who drive the propagation of information cascades in
this domain (like fashions, rumours, and opinions). Following the approach
of Watts and Dodds [146], we compared the expected size of cascades
instigated by a seed of influentials to the expected size of those instigated
by average members of society. Influenatials were defined as those vertices
selected from the high-degree subset. Specifically, we chose vertices that had
degrees corresponding to the top 10% of the degree distribution. An average
member was any vertex in the graph. Using both numerical simulations of
Watts’s model and our modified expressions we calculated the expected
cascade size ρ on Poisson random graphs, and scale-free networks of
various mean degrees z, and for various seed fractions ρ0. For infinite seeds
(i.e., those that scale with the size of the graph n as n→∞), our analysis
showed that at values of z for which both types of seed produced global
cascades (ρ ≈ 1) the expected size of those produced by influential seeds
was never considerably greater than the expected size of those produced
by average seeds. However, there were other z values at which influentials
caused global cascades, while average vertices did not (ρ ≈ 0). We inferred
from the figures produced that it may be possible to replicate the effects
induced by targeting influentials simply by picking a larger seed of average
vertices. Hence, we devised an heuristic approximation, whereby the seed
fraction of average vertices is rescaled according to the ratio between the
mean degree of the influential subset and the mean degree of all vertices in
the graph. Figures 3.6 and 3.7 confirmed that this approximation is valid,
at least in a qualitative sense.

The conclusions drawn from this investigation were addressed towards
the subject of mass-marketing. We proposed that instead of engaging in
the costly endeavour of tracking down influential individuals, companies
may be better served by seeking to activate as many “average” members of
the population as possible. However, our results do not refute the intrinsic
value of influentials (as defined above) as spreaders of information; rather,
they reaffirm it. This is borne out also by our work in Appendix A, where
we have looked at the case of single seed activation. Here, targeting an



106 summary and conclusions

influential produced consistently larger cascades than those produced by
picking a random vertex. Thus, in our view, the truth of the influentials
hypothesis is largely a matter of interpretation. We agree with Watts and
Dodds that real-world cascades are most likely driven by a critical mass of
easily influenced (average) individuals, but depending on the costs involved
targeting a small number of high degree vertices (influentials) may be an
effective strategy for marketers to consider.

We rounded off our discussion of cascade dynamics on locally tree-like
graphs in Section 3.3 by mentioning some of the ways in which the ap-
proach of [73] has been further modified. For example, versions applying
to degree-correlated graphs and directed graphs have been derived in
[70] and [51], respectively. And, we mentioned some recent work of ours
(Gleeson, Hurd, Melnik, and Hackett) [74] in which we have modelled de-
fault contagions in banking networks as binary-state cascades on a certain
augmented class of directed graphs. We also considered in Section 3.3 the
broader effectiveness of the tree-based framework for modelling cascades
on real-world networks; i.e., networks for which structural data has been
measured and compiled into adjacency matrices. We reviewed in detail a
recent paper of ours (Melnik, Hackett, Porter, Mucha, and Gleeson) [99]
that has provided conditions under which the application of the tree-based
approach (specifically, the degree-correlated version [70]) may be expected
to give accurate results. In this paper we found that, for a range of pro-
cesses, the discrepancy, in terms of vertical distance, between predicted
values of the expected cascade size from the tree-based theory, and values
determined by numerical simulations is strongly correlated with (L− L1)/z.
That is to say, the accuracy of the theory, depends on the difference between
L, the mean intervertex distance in the original network, and L1, the mean
intervertex distance in the rewired version of the network, divided by
the mean degree z. Rewiring refers, here, to running an adjacency matrix
through an algorithm (Appendix C) that removes clustering, but preserves
degree-degree correlations. Furthermore, we found that the vertical dis-
tance between theory and numerics is poorly correlated with the level of
clustering in the network. Thus, the results of [99], presented us with the
counterintuitive proposition that the tree-based theory may work well in
the presence of clustering, provided (L− L1)/z is small. This implies that
clustering does not affect the expected cascade size.

Having reviewed [99], we reached the end of Chapter 3 uncertain whether
our planned second extension of the theory of [73], to model cascade
dynamics on highly clustered networks, was a worthwhile endeavour.
However, in the introduction to Chapter 4 we argued that clustering does
affect the expected cascade size (and thereby the accuracy of the tree-based
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theory), and that this effect may be detected by observing closely the region
near the cascade threshold. Therefore, we proceeded with our extension.

We began by reviewing two methods of generating ensembles of clustered
random graphs that have appeared recently in the networks literature:
Newman’s edge-triangle model [111], and Gleeson’s model of clique-based
clustering [71]. A comparison of these two models revealed that both create
graphs that are more structurally realistic than those created by any of
the four models reviewed in Chapter 2. In addition, Gleeson’s model has
the advantage over Newman’s that it allows one to create graphs with
clustering spectra that match empirical measurements. In Fig. 4.3 [76], we
showed also that the range of clustering achievable in Gleeson’s model
is significantly broader than in Newman’s. This figure corroborated our
argument that clustering affects the expected cascade size by showing us
that increasing the level of clustering in z-regular graphs, generated by
either model, increases the value of the critical bond occupation probability.

Each graph ensemble reviewed in Chapter 4 provided a unique structural
foundation on which to build an analytical model of cascades on highly
clustered networks. Therefore, in Chapter 5 the task of extending in this
way the tree-based theory of [73] branched into two distinct tasks. The
first, described in Section 5.1, was to extend the theory of [73] to provide
an analytical description of cascades on Newman’s graphs. The work
presented in this section was published in May of this year [85], and has
been cited four times since then [26, 43, 122, 150]. The second, described
in Section 5.2, was to extend the theory of [73] to provide an analytical
description of cascades on Gleeson’s graphs. The work of this section is
currently being prepared for publication.

In both sections we demonstrated how motifs of clustered vertices can
be included in the conceptual framework of child-to-parent activation that
defines the tree-based approach. For edge-triangle graphs this demonstra-
tion was quite straightforward (see Fig. 5.1). Since nonoverlapping triangles
is the only motif that Newman defines for his graphs, we posited that
such a triangle exists whenever an edge connects two vertices on the same
level of the tree. From this basis we derived self-consistent equations for
the activation probabilities of random vertices on each level that included
the interplay of influences between the child vertices in a triangle. In this
analysis we derived an analytical expression for the expected cascade size.
The corresponding demonstration for Gleeson’s graphs of how cliques of
various sizes can be included in the framework of child-to-parent activation
was first given by Gleeson himself in [71], and we simply reviewed his
approach (see Fig. 5.5). This, however, did not make the derivation of an
analytical expression for the expected cascade size any easier in this case.
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The broad spectrum of clustering motifs defined by Gleeson’s model made
this task significantly more complicated than the corresponding task had
been for the edge-triangle model by virtue of the fact that the interplay of
influences between neighbouring vertices in cliques of various sizes had to
be accounted for. In Newman’s graphs we had only the two children in a
3-clique (triangle) to contend with, for Gleeson’s graphs we had the c− 1
children in a c-clique, where c is arbitrary. Nevertheless, in Section 5.2.2 we
presented an extensive series of arguments to show how one may count the
number of active vertices in a clique of arbitrary size. This lead, ultimately,
to our derivation in Eq. (5.43) of a concise closed-form expression for the
probability, Rc−1m , thatm of the c− 1 children in a c-clique are active. Earlier,
in Section 5.2.1 we had written an iterative equation for the level-by-level
activation probabilities in a clique-based graph, and also an equation for
the expected cascade size, before knowing how to express one of the key
components of each of these equations, namely Rc−1m , analytically. Equation
(5.43) completed the definitions of both equations.

Thus, in Sections 5.1 and 5.2 we have extended the tree-based theory of
[73] to model cascade dynamics on two classes of highly clustered graphs.
In both cases, our expressions for level-by-level activation probabilities and
the expected cascade size provide us with the necessary tools to model a
broad range of processes (see above). As Gleeson [70] has demonstrated,
this is facilitated through the response function mechanism.

We validated our results for edge-triangle graphs by comparing our cal-
culations of the expected GCC size in site percolation and the steady-state
active fraction in Watts’s model to the corresponding values determined by
numerical simulations. We validated our results for clique-based graphs
in a similar manner but with bond percolation and Watts’s model. For
both types of graphs our analytical calculations provided extremely accu-
rate matches to the numerical output. Additionally, in the case of edge-
triangle graphs we used our expressions to determine a cascade condition
in terms of arbitrary response functions F(m, s+ 2t). Therefore, this con-
dition (Ineq. (5.11)) contains as special cases expressions for the threshold
values in every process within our broad range.

Finally, in Section 5.1.3 we conducted a close analysis of the effects of
clustering on cascades. We demonstrated that on edge-triangle graphs with
z-regular (every vertex has degree z) degree distributions clustering will
increase the percolation threshold in both site and bond percolation for all
values z > 2 (see Fig. 5.3 and Ineq. (5.26)). We suggested that these results
may be of considerable interest to epidemiologists since, as Newman [108]
has shown, the steady-state infected fraction in SIR dynamics on a random
graph can be mapped onto the GCC size in bond percolation. Furthermore,
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results analogous to ours have been established in a number of recent
network-based epidemiological studies that have shown that clustering
can negatively impact the spread of disease [10, 52, 87, 102]. In relation to
Watts’s model, we showed that the effects of clustering may vary. For z 6 3
adding clustering to the graph will decrease the expected cascade size ρ,
for 3 < z < 29 clustering will increase ρ, and for z > 29 clustering will once
again decrease ρ. In Fig. 5.4 we confirmed these results at z = 3 and z = 5.
This insight into the idiosyncrasies of the cascade dynamics of Watts’s
model may bear direct relevance to studies of the spread of behaviour in
human populations, such as [25].

∗ ∗ ∗

Some suggestions for future research relating to the analytical approaches
of Chapter 5 and the clustering formalism of [91] have been given in
Section 5.3. Adding to these, we suggest that it is desirable to broaden the
range of processes we can model to include those — such as SIS — that
exhibit non-monotone binary-state dynamics. In [72] Gleeson has provided
master equations for some of these processes on locally tree-like graphs.
The combination of our work in this thesis (including that presented in
Section 3.2) with these master equations and the ensembles of clustered
graphs defined by [91] represents an intriguing possibility.





A
O T H E R A S P E C T S O F I N F L U E N T I A L S T H E O RY

In this appendix we demonstrate the application of the theory of Section 3.2
to other more technical questions related to the influentials hypothesis of
information dynamics on social networks. We encourage the reader to
review Section 3.2 before proceeding as extensive reference is made to the
material presented there throughout the following discussion.

A.1 critical seed fraction

Returning to Fig. 3.4 of Section 3.2.1, if instead of reading the cascade size
ρ as a function of the mean degree z, we fix on a specific z and consider
the change in ρ as the seed fraction ρ0 increases, we see that at certain z
values there is a discontinuous transition from ρ ≈ 0 to ρ ≈ 1. To illustrate
this point, let us extract a slice from Fig. 3.4 at z = 8 and compare ρ against
ρ0. The result is shown below in Fig. A.1. With regards to this plot, observe
that for each seed type (average and influential) the transition to the global
cascade regime occurs at a critical value of ρ0, which we denote as ρ̂0.
For both parameter settings (τ = 1 and τ = 0.1), we have calculated this
number and marked its position on the ρ0 axis.

What is the significance of ρ̂0? For a fixed graph topology it represents the
minimum seed fraction necessary to instigate a global cascade. According
to our theory, if the seed is smaller than ρ̂0 global cascades are not likely
to occur; and if it is larger global cascades are likely to occur. When
generalized to include varying τ, this concept is of significant interest
to those concerned with the effectiveness of marketing strategies, as it
provides a theoretical insight into not only the type but also the relative
number of people that should be targeted.

In this section we show how, for either type of seed, this critical value
of ρ0 can be approximated using analytical techniques. Our first step is to
rewrite the extended iterative equation (3.18) as

λ(q) =
ẑ

z
ρ0 + ζ(q) − ρ0ζ̂(q), (A.1)

where

ζ(q) =

∞∑
k=1

k

z
pk

k−1∑
l=0

C̃lq
l, (A.2)
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Figure A.1: Cascade dynamics of Watts’s model on a PRG with n = 106, z = 8,
and R = 0.18. Numerical simulations (squares) averaged over 100
realisations and extended tree-based theory (lines). Final active density
ρ vs. seed fraction ρ0. Colour indicates seed type: red: τ = 1; green:
τ = 0.1. Critical seed fractions, ρ̂0 = 3.768× 10−3 for τ = 0.1 and
ρ̂0 = 6.336× 10−3 for τ = 1, marked with cyan pentagrams.

ζ̂(q) =
αk?pk?

τz

k−1∑
l=0

C̃lq
l +

1

τ

∞∑
k>k?+1

k

z
pk

k−1∑
l=0

C̃lq
l, (A.3)

and

C̃l = (−1)l
(
k− 1

l

) l∑
m=0

(−1)m
(
l

m

)
F(m,k). (A.4)

For convenience we have dropped the n and n+ 1 subscripts from q; so
that the function λ(q) now represents qn+1. And, we have introduced C̃l
in order to make simpler the differentiation of ζ(q) and ζ̂(q). We will see
why this is necessary shortly.

The key insight that suggested the possibility of an analytical approxima-
tion was the realisation that the critical value of ρ0 occurs when λ(q) = q
has a double root; that is, when its discriminant ∆ = 0. This emerged from
the analysis of cobweb plots of the function λ(q). One such plot is shown
below in Fig. A.2. This figure illustrates the behaviour of λ(q) at ρ0 = 10−3

for Watts’s model on a Poisson random graph with the same parameters as
Fig. A.1 (see caption). The size of a cascade depends on where the function
λ(q) first hits the diagonal (grey). If it hits close to q = 0 a global cascade
does not occur; however, if it does not hit the diagonal here it will continue
to grow until it reaches a value close to q = 1, in which case a global
cascade will occur. Significantly, it is the value of ρ0 that determines the
shape of λ(q) around q = 0, and thereby determines where it will first
cross the diagonal. As can be seen in the zoomed-in version, Fig. A.2(b), for
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Figure A.2: Cobweb plot of λ(q) at ρ0 = 10−3, for Watts’s model on a PRG with
n = 106, z = 8, and R = 0.18. Colour indicates the behaviour of λ(q):
red: λ(q) < q; green: λ(q) > q. Points where λ(q) = q are marked
with yellow pentagrams. In (a) q, λ(q) ∈ [0, 1], in (b) q, λ(q) ∈ [0, 0.1].

ρ0 = 10−3 the function λ(q) dips below the diagonal very close to q = 0

(values marked in red) and therefore a global cascade does not occur in this
case, which tallies with Fig. 3.4. In our analysis we have observed that the
trajectory of λ(q) over the interval 0 6 q 6 1 is always qualitatively similar
to the one shown in Fig. A.2(a). The differences are usually discernible
only by looking closely at the q 6 0.1 region. For example, we know from
Fig. 3.4 that with ρ0 = 10−2 a global cascade should occur at z = 8, and we
would recognize this in a cobweb plot (if we were to draw one) by the fact
λ(q) would not fall below q, as it does in Fig. A.2(b).

Note, we do not attempt to find an exact expression for the double root of
λ(q) = q; instead, we approximate this value using Taylor series. In doing
this we take the third order Taylor polynomials of ζ(q) and ζ̂(q) about the
point q = 0:

ζ(q) = qζ ′(0) +
q2

2
ζ ′′(0) +

q3

6
ζ ′′′(0), (A.5)
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and

ζ̂(q) = qζ̂ ′(0) +
q2

2
ζ̂ ′′(0) +

q3

6
ζ̂ ′′′(0). (A.6)

Substituting Eqs. (A.5) and (A.6) into λ(q) = q gives us a third order
polynomial in q, with ρ0 and the derivatives of ζ(q) and ζ̂(q) appearing in
the coefficients:(ζ ′′′(0) − ρ0ζ̂ ′′′(0)

6

)
q3 +

(ζ ′′(0) − ρ0ζ̂ ′′(0)
2

)
q2

+ (ζ ′(0) − ρ0ζ̂
′(0) − 1)q+

ẑ

z
ρ0 = 0. (A.7)

Letting ∆ denote the discriminant of Eq. (A.7), our critical value ρ̂0 is
found by solving ∆ = 0 for ρ0. This task is made easier by the introduction
of the C̃l function, but is still sufficiently complicated for us to skip the
details here. Suffice to say that given the relevant parameters, pk, n, R, τ
and z, we can solve ∆ = 0 using a combination of pen and paper calculation
and computer-based iterative solvers. For example, in Fig. A.1 we made
use of the built-in ‘fzero’ function from MATLAB R2010b® to find that
ρ̂0 = 3.768× 10−3 for τ = 0.1, and ρ̂0 = 6.336× 10−3 for τ = 1. As one can
see, these are very accurate approximations of the true transition points.1

Finally, note that Fig. A.1 lends further credence to our assertion of
Section 3.2.2 that the effect of influentials on cascade dynamics in Watts’s
model can be accurately replicated by renormalizing the seed; i.e., by choos-
ing a greater number of average degree vertices to initiate the spreading
dynamics. Notice, the green line (τ = 0.1) is essentially similar to the red
line (τ = 1) only with a lower ρ̂0. Thus, this figure tells us, and marketing
executives, that on a PRG with the given parameters — which is obviously a
trivialized example for real-world applications — one is likely to initiate a
cascade by turning on a fraction of the population greater than 3.768× 10−3

consisting entirely of influentials, or, failing that, simply by increasing to
a fraction 6.336× 10−3 consisting of average degree people. We have ob-
served qualitatively similar pictures to Fig. A.1 (not reproduced here) for
other choices of z, and also for power law pk; therefore, this interpretation
is quite robust.

1 A similar analysis can be applied also to the power-law distributed graphs of Section 3.2.1.
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A.2 single seed adjustment

In [144] Watts considered a seed consisting a single vertex of average degree,
and showed how in this setting the existence of global cascades depends
on the relative size of the vulnerable cluster, Sv, and that of the extended
vulnerable cluster, Se. From our review in Section 2.3.2.1 we know that
the vulnerable cluster consists of those vertices that require only a single
neighbour to be active in order for them to join in the cascade themselves.
The extended vulnerable cluster is a superset of the vulnerable cluster
consisting of all vulnerable vertices, plus any of their immediately adjacent
neighbours. From this definition, it is clear that a single seed cannot be the
spark that ignites a cascade unless it is a member of the extended vulnerable
cluster. In any given realization the probability that we pick such a vertex
as our seed is Se. Thus here our calculation of the expected size of an
ensuing cascade, which we usually call ρ, requires an adjustment to reflect
this restriction on where the seed is placed. An intuitive, and as Gleeson
[70] has shown effective, way to factor in this adjustment is to simply
multiply these probabilities. This gives us the following approximation for
the expected size of a cascade instigated by a single seed of average degree:

S ≈ ρSe. (A.8)

The generalization of Eq. (A.8) to seed fractions larger than ρ0 = 1/n

was expressed in [70] as

S ≈ ρ
[
1− (1− Se)

bnρ0c
]
, (A.9)

where b·c is the floor function. This version of the approximation applies
to any ρ0 that does not scale with the number of vertices in the graph, n,
as n → ∞. For the figures shown in Section 3.2 ρ0 → ∞ with n, so that
Eq. (A.9) reduces to ρ.

In [70] Gleeson also derived an analytical expression for the size, Se,
of the extended vulnerable cluster. Watts had calculated this value by
numerical simulations in [144], whereas in [70] in was shown that

Se =

∞∑
k=1

pk
[
1− (1− q∞)k], (A.10)

where q∞ is the steady state of the iteration

qn+1 =

∞∑
k=1

k

z
pk
[
1− (1− qn)

k−1
]
F(1,k). (A.11)
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By substituting Eq. (A.10) into Eq. (A.8) it is possible to accurately
approximate S (see Fig. 5 of [70]). However, this adjustment factor applies
only when the seed vertex is chosen at random (τ = 1). For our extended
theory, in which we account for the targeting of vertices of specific degree
(τ ∈ [0, 1]), we must modify Eq. (A.10) slightly. In calculating Se we are now
no longer interested merely in the probability pk that a vertex has degree k
but rather the probability that an initially active vertex has degree k. We
call this probability Sk, it is given by:2

Sk =


0, if k < k?,

αpk/τ, if k = k?,

pk/τ, if k > k?.

(A.12)

And so, Eq. (A.10) now becomes

Se =

∞∑
k=1

Sk
[
1− (1− q∞)k]. (A.13)

Figures A.3 and A.4 illustrate the application of the approximation of S
given by Eq. (A.8) with Eq. (A.13) used to calculate Se. Figure A.3 shows the
result of average and influential single seed activation in Watts’s model on
Poisson random graphs; Fig. A.4 shows the same but on scale-free networks
created in a similar manner those analysed in Fig. 3.5 of Section 3.2.1 (see
captions for details).

As regards the influentials hypothesis, these figures provide a unique
and interesting insight. They demonstrate that in this particular setting,
where one is not afforded the freedom to simply increase the relative size
of the seed, an influential may be significantly more successful than an
average vertex in terms of the extent of the cascade that it may trigger.
While in either figure the bounds on the window of global cascades is
the same for both types of seed, inside each of these windows influentials
generally produce larger cascades. Thus, Figs. A.3 and A.4 show that there
is a genuinely intrinsic value which influentials posses over average degree
vertices. This does not, however, contradict our thesis that a larger group
of regular Janes and Joes could, if mobilized, outdo this one trendsetter.

2 Refer to Section 3.2.1 and [70] for the relevant definitions.
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Figure A.3: Cascade dynamics of Watts’s model on PRGs with n = 106 and uniform
thresholds, R = 0.18. Numerical simulations (squares) averaged over
103 realisations and extended tree-based theory (lines). Final active
density S vs. mean degree z. Single-seed initially active, ρ0 = 1/n.
Colour indicates seed type: red: τ = 1; green: τ = 0.1.
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Figure A.4: Cascade dynamics of Watts’s model on SFNs with n = 106 and uniform
threshold R = 0.06. Numerical simulations (squares) averaged over
103 realisations and extended tree-based theory (lines). Final active
density S vs. slope γ. Single-seed initially active, ρ0 = 1/n. Colour
indicates seed type: red: τ = 1; green: τ = 0.1.





B
F U RT H E R D E TA I L S O F A S Y N T H E S I S

This appendix offers further details of some of the arguments put forth
in Chapter 5 concerning cascade dynamics on highly clustered graphs.
Section B.1 relates to our approach to modelling cascades on Newman’s
edge-triangle graphs [111] (see Section 5.1). Section B.2 deals with a certain
aspect of our approach to modelling cascades on Gleeson’s clique-based
graphs [71] (see Section 5.2). (See Chapter 5 for definitions of terms.)

B.1 concerning edge-triangle graphs

b.1.1 On the Edge-Triangle Cascade Condition

The cascade condition for ps,t graphs represented by Ineq. (5.11) of Section
5.1.1.1 has its origin in the following simple argument. Returning to Eq. (5.9)
we see that the largest eigenvalue of the matrix A can be expressed in the
generalized form

λ+ =
p+
√
q

2
, (B.1)

where p = A11 +A22 and q = (A11 −A22)
2 + 4A12A21. We have said if

λ+ > 1, then the vector of activation probabilities v will diverge from its
trivial equilibrium v = 0, taking us into the global cascade regime (see
Section 5.1.1.1). From Eq. (B.1) this condition on λ+ is equivalent to

q− (2− p)2 > 0. (B.2)

In terms of the elements of A, Ineq. (B.2) may be written as

− 4det(I − A) > 0, (B.3)

where I is the identity matrix and det(I − A) = (1 − A11)(1 − A22) −

A12A21. By substituting the values of the elements of A from Eq. (5.10)
into Ineq. (B.3) and rearranging terms we arrived at Ineq. (5.11).
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b.1.2 Counting Argument for the Effects of Clustering

Here we give an intuitive argument for the effects of clustering on cascades
in z-regular ps,t graphs. This stands as an alternative derivation of the
condition on the response function F2 in Section 5.1.3, see Ineq. (5.26).

We compare the spread of activations from a single active vertex (coloured
green in Fig. B.1(a) and B.1(b), below) to two of its neighbours, and then
further into the graph. In configuration (a) the three vertices considered do
not form a triangle, and up to 2(z− 1) second neighbours may potentially
be activated in this way. In configuration (b), the three vertices do form a
triangle, and therefore only 2(z− 2) second neighbours are available for
activation. We proceed to calculate the expected number of edges that may
activate second neighbours in each configuration, and derive a condition
under which clustering (configuration (b)) gives a greater number of ex-
pected activations than the corresponding nonclustered case (configuration
(a)). First, we consider configuration (a). Each of the two grey vertices will
be activated by the green vertex with probability F1. If activated, a grey
vertex may in turn activate up to z− 1 of its other neighbours. So we count
the expected number of active edges (edges that are connected to an active
vertex) on the right-hand side of Fig. B.1(a) as 2F1(z− 1).

In configuration (b), the two neighbours of the active vertex are also
connected to each other, leaving each with z− 2 edges to other neighbours.
These edges may become active edges in one of three ways:

i) Both grey vertices are activated directly by their single active neigh-
bour; this happens with probability F12, and gives 2(z − 2) active
edges on the right-hand side of Fig. B.1(b).

ii) One grey vertex is activated directly by the active neighbour; the
other grey vertex then becomes active because it now has two active
neighbours. This happens with probability 2F1(F2 − F1), and gives
2(z− 2) active edges.

iii) One grey vertex is activated directly by the active neighbour; the
other grey vertex does not activate even though it has two active
neighbours. This happens with probability 2F1(1 − F2), and gives
z− 2 active edges.

The expected number of active edges on the right-hand side of Fig. B.1(b)
is therefore

2F1
2(z− 2) + 4F1(F2 − F1)(z− 2) + 2F1(1− F2)(z− 2)

= 2F1(z− 2)(F2 − F1 + 1). (B.4)
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(a) (b)

} z-1

} z-1

} z-2

} z-2
Figure B.1: Spread of activation from a single active vertex (green) to two of its

inactive neighbours (grey) in (a) a nonclustered graph, and (b) a ps,t
graph with nonzero clustering.

This is greater than the value 2F1(z− 1) found for configuration (a) if

F2 − F1 >
1

z− 2
. (B.5)

To examine the effect upon the cascade threshold, we substitute the cascade
condition F1 = 1/(z − 1) for the threshold in a nonclustered z- regular
graph [144] into Ineq. (B.5)) to obtain the condition given in Ineq. (5.26).
If this condition is satisfied, cascade propagation is more likely on the
clustered z-regular graph than on the nonclustered version.

B.2 concerning clique-based graphs

b.2.1 On Active Clique Neighbours

Figure B.2, below, illustrates the various configurations of states associated
with the process of updating and categorization described in Section 5.2.2,
when applied to a clique of three intermediate vertices. Refer to the discus-
sion in Section 5.2.2 for the meanings of the different labels and variables
used in this figure. By following routes through the configurations shown
here we can count every possible way of producing a certain number of
permanently active vertices. For example, the process will end with no
vertices active if we follow the route x → a. We end with a single active
vertex by the route x→ b→ e. Two permanently active vertices are given
by either of the routes x→ c→ h or x→ b→ f→ j. Finally, there are four
different routes that each lead to three permanently active vertices: x→ d,
or x→ b→ g, or x→ c→ i, or x→ b→ f→ k.
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Figure B.2: Transition probabilities for a triple (c− 1 = 3) of intermediate clique
neighbours in a γ(k, c) graph, expressed in terms of the binomial PMF
from Eq. (5.27). Colour indicates state: grey: inactive; green: active.
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S O M E N U M E R I C A L A L G O R I T H M S

Listing C.1: A MATLAB script for Watts’s model

% watts_model.m: Watts’s model [144] on adjacency matrix A. Here all

vertices are assigned the same threshold R. Author: J. P. Gleeson.

% Input variables:

% A := adjacency matrix;

% Nrealiz := no. of runs to average over;

% R := value of uniform threshold;

% rho0 := seed fraction;

% Output variable:

% rho := expceted cascade size.

function[rho]=watts_model(A,Nrealiz,R,rho0)

Nnodes=size(A,1);

degree=A*ones(Nnodes,1);

realiz=zeros(Nrealiz,1);

threshold=R*ones(Nnodes,1); % set uniform treshold

for r=1:Nrealiz

n=zeros(Nnodes,1);

randnodes=randperm(Nnodes); % randomly activate seed set

n(randnodes(1:floor(rho0*Nnodes)))=1;

Non=sum(n);

vuln_n=A*n>degree.*threshold; % vulnerable set

new_n=max(vuln_n,n); % newly active nodes

% repeat until no new activations

while max(new_n~=n)>0

n=new_n;

Non=sum(n);

vuln_n=A*n>degree.*threshold;

new_n=max(vuln_n,n); % assumes always on

end

realiz(r)=Non/Nnodes;

end

rho=sum(realiz)/Nrealiz;

end �
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Listing C.2: A MATLAB script for Newman and Ziff’s bond percolation algorithm

% newman_ziff_alg.m: Newman and Ziff bond percolation algorithm [116]

on adjacency matrix A. Adds a specified fraction of edges to A in

random order. Author: J. P. Gleeson.

% Input variables:

% A := adjacency matrix;

% edgefraction := fraction of edges to add.

% Output variables:

% Nnodes := no. of nodes;

% Q := size of largest cluster after bonds added;

% useNedges := no. of edges added.

function [Q,Nnodes,useNedges]=newman_ziff_algorithm(A,edgefraction)

Nnodes=size(A,1);

[fromvtemp,tovtemp,vals]=find(A);

kv=A*ones(Nnodes,1);

kmax=max(kv);

LUindices=fromvtemp<tovtemp;

fromv=fromvtemp(LUindices);

tov=tovtemp(LUindices);

randorder=randperm(length(fromv));

fromv=fromv(randorder);

tov=tov(randorder);

Nedges=length(fromv);

useNedges=floor(edgefraction*Nedges);

size_cluster=ones(Nnodes,1);

max_cluster_size=1;

Q=zeros(useNedges,1); % holds max cluster size with n edges in play

for n=1:useNedges

label_a=fromv(n);

label_b=tov(n);

% if label_a=label_b do nothing on this bond

if label_a~=label_b

if size_cluster(label_a)<size_cluster(label_b)

label_min=label_a;

label_max=label_b;

else

label_min=label_b;

label_max=label_a;
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end % if

% move cluster sizes from min to max

size_cluster(label_max)=size_cluster(label_max)+size_

cluster(label_min);

if size_cluster(label_max)>max_cluster_size

max_cluster_size=size_cluster(label_max);

end % if

size_cluster(label_min)=0;

% replace min labels in fromv

indices=find(fromv(n+1:useNedges)==label_min);

fromv(indices+n)=repmat(label_max,length(indices),1);

% replace min labels in tov:

indices=find(tov(n+1:useNedges)==label_min);

tov(indices+n)=repmat(label_max,length(indices),1);

% search only from n+1 to end, as no need to relabel

earlier bonds

end % if

Q(n)=max_cluster_size;

end % for n

end �
Listing C.3: A MATLAB script for rewiring a clustered random network

% rewire_alg.m: Assumes matrix A loaded. Rewires A, removing clustered

configurations of edges, preserves degree-degree correlations.

Author: S. Melnik [99].

kc=kmax

kclow=1

kchigh=kmax

% shuffling routine:

N=size(A,1);

[fromv,tov,vals]=find(A);

kv=A*ones(N,1);

kmax=max(kv)

LUindices=fromv<tov;

LUfromv=fromv(LUindices);

LUtov=tov(LUindices);

% check recontructs correctly:

sm=sparse(LUfromv,LUtov,ones(size(LUfromv)),N,N);

A2=sm+sm’;

k2=A2*ones(N,1);

z2=mean(k2)

max(k2)

% end reconstruction check
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% now shuffle k-degree stubs:

LUfromv_degrees=kv(LUfromv);

LUtov_degrees=kv(LUtov);

new_LUfromv=[];

new_LUtov=[];

for knum=kclow:kchigh % 1:kc %1:kmax

indices_fromv_deg_knum=find(LUfromv_degrees==knum);

indices_tov_deg_knum=find(LUtov_degrees==knum);

if length(indices_fromv_deg_knum)>0

LUfromv_nodes=LUfromv(indices_fromv_deg_knum);

rp=randperm(length(LUfromv_nodes));

LUfromv_nodes_shuffled=LUfromv_nodes(rp);

LUfromv(indices_fromv_deg_knum)=LUfromv_nodes_shuffled;

end % if

if length(indices_tov_deg_knum)>0

LUtov_nodes=LUtov(indices_tov_deg_knum);

rp=randperm(length(LUtov_nodes));

LUtov_nodes_shuffled=LUtov_nodes(rp);

LUtov(indices_tov_deg_knum)=LUtov_nodes_shuffled;

end % if

end % for knum

% check post-shuffle:

sm=sparse(LUfromv,LUtov,ones(size(LUfromv)),N,N);

A3=sm+sm’;

k3=A3*ones(N,1);

z3=mean(k3)

max(k3)

% end of shuffle routine

A=A3;

disp(’end of shuffle’); �
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