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Properties of highly clustered networks
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We propose and solve exactly a model of a network that has both a tunable degree distribution and a tunable
clustering coefficient. Among other things, our results indicate that increased clustering leads to a decrease in
the size of the giant component of the network. We also study susceptible/infective/recovered type epidemic
processes within the model and find that clustering decreases the size of epidemics, but also decreases the
epidemic threshold, making it easier for diseases to spread. In addition, clustering causes epidemics to saturate
sooner, meaning that they infect a near-maximal fraction of the network for quite low transmission rates.
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I. INTRODUCTION

In recent years there has been considerable interest w
the physics community in the structure and dynamics of n
works, with applications to the Internet, the world-wide we
citation networks, and social and biological networks@1–3#.
Two significant properties of networks have been particula
highlighted. First, one observes for most networks that
degree distribution is highly non-Poissonian@4–6#. ~A net-
work consists of a set of nodes or ‘‘vertices’’ joined by lin
or ‘‘edges,’’ and the degree of a vertex is the number
edges attached to that vertex.! Histograms of vertex degre
for many networks show a power-law form with an expone
typically between22 and 23, while other networks may
have exponential or truncated power-law distributions. S
ond, it is found that most networks have a high degree
transitivity or clustering, i.e., there is a high probability th
‘‘the friend of my friend is also my friend’’@7#. In topologi-
cal terms, this means that there is a heightened densit
loops of length three in the network, and more generally i
found that networks have a heightened density of short lo
of various lengths@8#.

It is now well understood how to calculate the propert
of networks with arbitrary degree distributions@9–13#, but
where clustering is concerned our understanding is m
poorer. Most of the standard techniques used to solve
work models break down when clustering is introduce
obliging researchers to turn to numerical methods@7,14–16#.

In this paper, we present a plausible network model t
incorporates both non-Poisson degree distributions and
trivial clustering, and which is exactly solvable for many
its properties, including component sizes, percolation thre
old, and clustering coefficient. Our results show that clus
ing can have a substantial effect on the large-scale struc
of networks, and produces behaviors that are both quan
tively and qualitatively different from the simple nonclu
tered case.

The outline of the paper is as follows. In Sec. II we defi
our model and in Sec. III we derive exact expressions fo
variety of its properties. In Sec. IV we discuss the form
these expressions for some sensible choices of the pa
eters, and also consider the behavior of epidemic proce
within our model. In Sec. V we give our conclusions.
1063-651X/2003/68~2!/026121~6!/$20.00 68 0261
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II. THE MODEL

There is empirical evidence that clustering in networ
arises because the vertices are divided into groups@17,18#
with a high density of edges between members of the sa
group, and hence a high density of triangles, even though
density of edges in the network as a whole may be low. O
model is perhaps the simplest and most obvious realiza
of this idea. We describe it here in the anthropomorphic l
guage of social networks, although our arguments could
applied to any network that has an appropriate group st
ture.

We consider a network ofN individuals divided intoM
groups. A social network, for example, might be divided
according to the location, family ties, occupation, interes
and so forth, of its members.~Many networks are indeed
known to be divided into such groups@19#.! Individuals can
belong to more than one group, the groups they belong
being chosen, in our model, at random. Individuals are
necessarily acquainted with all other members of th
groups. If two individuals belong to the same group th
there is a probabilityp that they are acquainted andq51
2p that they are not; if they have no groups in common th
they are not acquainted.~A more sophisticated model, in
which there are many nested levels of groups within gro
and a spectrum of acquaintance probabilities depending
these levels, has been proposed and studied by Watts, Do
and Newman@20# and independently by Kleinberg@21#. For
this paper, however, we confine ourselves to the simp
case.! In addition to the probabilityp, the model is param-
etrized by two probability distributions:r m is the probability
that an individual belongs tom groups andsn is the prob-
ability that a group containsn individuals.

Mathematically, the model can be regarded as a bond
colation process on the one-mode projection of a bipar
random graph. The structure of individuals and groups for
the bipartite graph, the network of shared groups is the p
jection of that graph onto the individuals alone, and the pr
ability p that one of the possible contacts in this projection
actually realized corresponds to a bond percolation proc
on the projection. See Fig. 1.

III. ANALYTIC DEVELOPMENTS

We can derive a variety of exact results for our model
the limit of large size using generating function method
©2003 The American Physical Society21-1
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There are four fundamental generating functions that we
use:

f 0~z!5 (
m50

`

r mzm, f 1~z!5m21 (
m50

`

mrmzm21, ~1!

g0~z!5 (
n50

`

snzn, g1~z!5n21(
n50

`

nsnzn21, ~2!

wherem5(mmrm and n5(nnsn are the mean numbers o
groups per person and people per group, respectively.

A. Degree distribution

Consider a randomly chosen personA, who belongs to
some number of groupsm. The numberj of A’s acquaintan-
ces within one particular group of sizen is binomially dis-
tributed according to ( j

n21)pjqn212 j . We represent this dis
tribution by its generating function:

FIG. 1. The structure of the network model described in t
paper.~a! We represent individuals~A–L! and the groups~1–5! to
which they belong with a bipartite graph structure.~b! The bipartite
graph is projected onto the individuals only.~c! The connections
between individuals are chosen by bond percolation on this pro
tion with bond occupation probabilityp. The net result is that indi-
viduals have probabilityp of knowing others with whom they shar
a group.
02612
ll

(
j 50

n21 S n21
j D pjqn212 j zj5@pz1q#n21. ~3!

Averaging over group size, the full generating function f
the neighbors in a single group isn21(n50

` nsn@pz1q#n21

5g1(pz1q), and for the neighbors of a single person
f 0„g1(pz1q)…. This allows us to calculate the degree dist
bution for any givenr m andsn , and by judicious choice of
these fundamental distributions, we can arrange for the
gree distribution to take a wide variety of forms. We giv
some examples shortly. The mean degree^k& of an indi-
vidual in the network is given by

^k&5@]zf 0~g1~pz1q!!#z515pmg18~1!. ~4!

B. Clustering coefficient

The clustering coefficientC is a measure of the level o
clustering in a network@7#. It is defined as the mean prob
ability that two vertices in a network are connected, giv
that they share a common network neighbor. Mathematica
it can be written as three times the ratio of the number
triangles Nn in the network to the number of connecte
triples of verticesN3 @12#. In the present case, we have

Nn5
1

6
Np3f 08~1!g19~1!,

N35
1

2
Np2$ f 09~1!@g18~1!#21 f 08~1!g19~1!%, ~5!

and hence the clustering coefficient is

C5
3Nn

N3
5p

f 08~1!g19~1!

f 09~1!@g18~1!#21 f 08~1!g19~1!
5pCb , ~6!

where Cb is the clustering coefficient of the simple on
mode projection of the bipartite graph, Fig. 1~b! @12#. In
other words, one can interpolate smoothly and linearly fr
C50 to the maximum possible value for this type of grap
simply by varyingp. ~In the limit C50, our model becomes
equivalent to the standard unclustered random graphs stu
previously@9,12#.! The average number of groups to whic
people belong and the parameterp give us two independen
parameters that we can vary to allow us to changeC while
keeping the mean degreêk& constant.~Other parameter
choices are also possible, but these are perhaps the sim
to work with.! Alternatively, and perhaps more logically, w
can regardC and ^k& as the defining parameters for th
model and calculate the appropriate values of other qua
ties from these.

The local clustering coefficientCi for a vertexi has also
been the subject of recent study.Ci is defined to be the
fraction of pairs of neighbors ofi that are neighbors also o
each other@7#. For a variety of real-world networksCi is
found to fall off with degreeki of the vertex asCi;ki

21

@17,18#. This behavior is reproduced nicely by our mod
Vertices with higher degree belong to more groups in prop
tion to ki ~provided we keep the mean group size fixe!,

s
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while the number of pairs of their neighbors is1
2 ki(ki21),

and the combination gives preciselyCi;ki
21 aski becomes

large.

C. Component structure

To solve for the component structure of the model,
focus on acquaintance patterns within a single group. S
pose personA belongs to a group ofn people. We would like
to know how many individualsA is connected to within tha
group, either directly~via a single edge! or indirectly ~via
any path through other members of the group!. Let P(kun)
be the probability that vertexA belongs to a connected clus
ter of k vertices in the group, including itself. We have

P~kun!5S n21
k21Dqk(n2k)P~kuk!, ~7!

which follows since we can make an appropriate graph on
labeled vertices by taking a graph ofk vertices, all of which
A is connected to, and addingn2k others to it, which we can
do in (k21

n21) distinct ways, each with probabilityqk(n2k) ~the
probability that none of the newly added vertices connect
any of thek old vertices!.

Probabilities P(kuk) are polynomials inp of order s
5 1

2 k(k21), which can be written in the form

P~kuk!5(
l 50

s

M l
kplqs2 l , ~8!

whereMl
k is the number of labeled connected graphs witk

vertices andl edges. While some progress can be made
evaluating theMl

k by analytic methods~see Appendix A!, the
resulting expressions are poorly suited to mechanical e
meration ofP(kuk). For practical purposes, it is simpler t
observe that

P~kuk!512 (
l 50

k21

P~ l uk!, ~9!

which, in combination with Eq.~7!, allows us to evaluate
P(kuk) iteratively, given the initial conditionP(1u1)51. In
Table I we give the first fewP(kuk) for k up to 10.

The generating function for the number of vertices
which A is connected, by virtue of belonging to this group
sizen, is

hn~z!5 (
k51

n

P~kun!zk215 (
k51

n S n21
k21Dqk(n2k)P~kuk!zk21.

~10!

Notice the appearance ofzk21. This is a generating function
for the number of verticesA is connected to excluding itself
Averaging over the size distribution of groups then giv
h(z)5n21(nnsnhn(z), and the total number of others t
whom A is connected via all the groups they belong to
generated byG0(z)5 f 0„h(z)…, wheref 0(z) is defined in Eq.
~1!. If we reach an individual by following a randomly cho
sen edge, then we are more likely to arrive at individu
who belong to a large number of groups. This means that
02612
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distribution of other groups to which such an individual b
longs is generated by the functionf 1(z) in Eq. ~1!, and the
number of other individuals to which they are connected
generated byG1(z)5 f 1„h(z)….

TABLE I. PolynomialsP(kuk) for values ofk up to 10.

k P(kuk)

1 1
2 p
3 3 p2q1p3

4 16p3q3115p4q216 p5q1p6

5 125p4q61222p5q51205p6q41120p7q3145p8q2

110p9q1p10

6 1296p5q1013660p6q915700p7q816165p8q7

14945p9q612997p10q511365p11q41455p12q3

1105p13q2 115p14q1p15

7 16807p6q15168295p7q141156555p8q131258125p9q12

1331506p10q111343140p11q101290745p12q9

1202755p13q81116175p14q7154257p15q6

120349p16q515985p17q411330p18q31210p19q2

121p20q1p21

8 262144p7q2111436568p8q2014483360p9q19

110230360p10q18118602136p11q17128044072p12q16

135804384p13q15139183840p14q14137007656p15q13

130258935p16q12121426300p17q11113112470p18q10

16905220p19q913107937p20q811184032p21q7

1376740p22q6198280p23q5120475p24q413276p25q3

1378p26q2128p27q1p28

9 4782969p8q28133779340p9q271136368414p10q26

1405918324p11q251974679363p12q24

11969994376p13q23 13431889000p14q22

15228627544p15q2117032842901p16q20

18403710364p17q1918956859646p18q18

18535294180p19q1717279892361p20q16

15557245480p21q1513792906504p22q14

12309905080p23q13 11251493425p24q12

1600775812p25q111254183454p26q10

194143028p27q9130260331p28q8

18347680p29q7 11947792p30q61376992p31q5

158905p32q417140p33q31630p34q2136p35q1p36

10 100000000p9q361880107840p10q3514432075200p11q34

116530124800p12q33150088981600p13q32

1128916045720p14q311288982989000p15q30

1573177986865p16q2911016662746825p17q28

11624745199910p18q2712352103292070p19q26

13096620034795p20q2513717889913655p21q24

14078716030900p22q2314093594934220p23q22

13761135471805p24q2113163862003211p25q20

12435820178050p26q1911714943046390p27q18

11102765999275p28q171646542946125p29q16

1344847947664p30q151166867565040p31q14

173005619995p32q13128759950345p33q12

110150589610p34q11 13190186926p35q10

1886163125p36q91215553195p37q8

145379620p38q718145060p39q6

11221759p40q5 1148995p41q4114190p42q3

1990p43q2145p44q1p45
1-3
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Armed with these results, we can now calculate a vari
of quantities for our model. We focus on two in particula
the position of the percolation threshold and the size of
giant component. The distribution of the number of individ
als one step away from personA is generated by the functio
G0(z), while the number of individuals two steps away
generated byG0„G1(z)…. ~In this case, a ‘‘step’’ includes al
people who can be reached by any path via the individual
a single group. This definition is necessary to make the
dependence assumptions of the generating function form
ism correct.! There is a giant component in the network
and only if the average number of individuals two ste
away exceeds the average number of individuals one
away @12#. ~This is a natural criterion: it implies that th
number of people reachable is increasing with distan!
Thus, there is a giant component if@]z(G0„G1(z)…
2G0(z))#z51.0. Substituting forG0 and G1, this result
can be written

f 18~1!h8~1!.1. ~11!

When this condition is satisfied and there is a giant co
ponent, we defineu to be the probability that one of th
individuals to whomA is connected isnot a member of this
giant component.A is also not a member provided all of it
neighbors are not so thatu satisfies the self-consistency co
dition u5G1(u). Then the size of the giant component
given byS512G0(u).

IV. RESULTS

As an example of the application of these results, cons
the simple version of our model in which all groups have
same sizen5n. Thenh(z)5hn(z) and the degree distribu
tion is dictated solely by the distributionr m of the number of
groups to which individuals belong. We consider two e
amples of this distribution, a Poisson distribution and
power-law distribution.

Let us look first at the Poisson caser m5mme2m/m!, for
which the calculations are particularly simple. The Poiss
distribution corresponds to choosing the members of e
group independently and uniformly at random. From Eqs.~4!
and ~6! we have

^k&5pm~n21!, C5
p

11m~n21!/~n22!
. ~12!

In the right-hand panel of Fig. 2 we show results for t
size of the giant component as a function of clustering for
case of groups of sizen510 with ^k&55. As the figure
shows, the giant component size decreases sharply as
tering is increased. The physical insight behind this resu
that high clustering means more edges in all compone
including the giant component, than are strictly necessar
hold the component together—there are many redund
paths between vertices formed by the many short loops
edges. Since fixinĝk& also fixes the total number of edge
this means that the components must get smaller; the re
02612
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dant edges are in a sense wasted, and the percolation p
erties of the network are similar to those for a network w
fewer edges.

A. Epidemics

A topic of particular interest in the recent literature h
been the spread of disease over networks. The cla
susceptible/infective/recovered or SIR model of epidem
disease@22# can be generalized to an arbitrary contact n
work and mapped onto a bond percolation model on t
network with bond occupation probability equal to the tran
missibility T of the disease@23,24#. ~The transmissibility is
the mean probability that an infective individual will tran
mit the disease to a susceptible network neighbor, integra
over the entire time for which they are susceptible.! Since we
have already solved the bond percolation problem for
networks, we can also immediately solve the SIR model,
making the substitutionp→pT. We show some results in th
left-hand panel of Fig. 2 for the same choice of degree d
tributions as before. In general, we see a percolation tra
tion at some value ofT, which corresponds to the epidem
threshold for the model~denoted byR051 in traditional
mathematical epidemiology!. Above this threshold there is
giant component whose size measures the number of pe
infected in an epidemic outbreak of the disease.

The size of the epidemic tends to the size of the gi
component for the network as a whole asT→1, as repre-
sented by the dotted lines in the figure, and is therefore ty
cally smaller the higher the value of the clustering coe
cient. However, it is interesting to note also that asC
becomes large the epidemic size saturates, becoming v
ally independent ofT, long before we reachT51, suggest-
ing that in clustered networks epidemics will reach most
the people who are reachable even for transmissibilities
are only slightly above the epidemic threshold. This behav
stands in sharp contrast to the behavior of ordinary fu
mixed epidemic models, or models on random graphs w
out clustering, for which epidemic size shows no such sa

FIG. 2. Right panel: the size of the giant component of the gra
as a function of clustering coefficient for the Poisson case w
group sizen510 and mean degreêk&55. Left panel: the size of
an epidemic outbreak for a susceptible/infective/recovered mo
on our network as a function of transmissibilityT, for values ofC
from 0 to 0.6 in steps of 0.1.
1-4
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ration @22,25#. It arises precisely because of the many red
dant paths between individuals introduced by the cluste
in the network, which provide many routes for transmiss
of the disease, making it likely that most of the individua
who can catch the disease will encounter it by one route
another, even for quite moderate values ofT.

As we can also see from Fig. 2, the position of the e
demic thresholddecreaseswith increasing clustering. At firs
this result appears counterintuitive. The smaller giant co
ponent for higher values ofC seems to indicate that th
model finds it harder to percolate, and we might theref
expect the percolation threshold to be higher. In fact, ho
ever, the many redundant paths between vertices when
tering is high make it easier for the disease to spread,
harder, and so lower the position of the threshold. Thus, c
tering has both bad and good sides where the spread of
ease is concerned. On the one hand clustering lowers
epidemic threshold for a disease and also allows the dis
to saturate the population at quite low values of the transm
sibility, but on the other hand the total number of peop
infected is decreased.

B. Power-law degree distributions

Now consider the case of a power-law degree distributi
Networks with power-law degree distributions occur in ma
different settings and have attracted much recent atten
@2,6,26,27#. Percolation processes on random graphs w
power-law degree distributions notably always have a g
component, no matter how small the percolation probabi
@28#. This means, for example, that a disease will alwa
spread on such a network, regardless of its transmissib
This result can be modified by more complex network str
ture, such as correlations between the degrees of adja
vertices@29,30#, but, as we now argue, it is not affected b
clustering. To see why this is so, note that according to
findings reported here, we would have to reduce clusterin
increase the threshold above zero, but this is not poss
starting from a random graph, which hasC50 to begin with
in the limit of large size. (C is fundamentally a probability
and hence cannot take a negative value.! Mathematically, we
can demonstrate that our network always percolates u
Eq. ~11!. We can create a power-law degree distribution
making the distribution of number of groups an individu
belongs to follow a power lawr m;m2a. ~If we wish, we
can also make the distribution of group sizes follow a pow
law—it doesn’t change the qualitative form of our result!
The bond occupation probability, and hence the transmi
bility, enters Eq.~11! through the functionh(z), but does not
affect f 1(z). We havef 18(1)5(mm(m21)r m5^m2&2^m&.
For a,3, this diverges and hence Eq.~11! is always satis-
fied as long asp andT are both nonzero.

V. CONCLUSIONS

We have introduced a solvable model of a network w
nontrivial clustering and used it to demonstrate, for instan
that increasing the clustering of a network while keeping
mean degree constant decreases the size of the giant co
02612
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nent. Increasing the clustering also decreases the size o
epidemic for an epidemic process on the network. On
other hand, it also allows the epidemic to saturate the n
work even for quite low infection rates, and it decreases
epidemic threshold. Among other things, this means that
amount of clustering will provide us with a nonzero ep
demic threshold in networks with power-law degree distrib
tions.
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APPENDIX: PROBABILITIES FOR CONNECTED
GRAPHS

Equation~8! implies that we can find a general expressi
for P(kuk) if we can calculate the numberMl

k of connected
graphs with a given number of verticesk and number of
edgesl. The standard method for counting such graphs is
write down the exponential generating function for possib
disconnected graphs and perform an inverse expone
transform to give the so-called Riddell formula@31#:

(
kl

M l
k xk

k!
yl5 logS 11 (

n51

`

~11y!n(n21)/2
xn

n! D . ~A1!

Putting y→p/q, x→xAq, and making use of Eq.~8!, we
then derive the following generating function forP(kuk):

(
k51

`

q2k2/2P~kuk!
xk

k!
5 logS (

n50

`

q2n2/2
xn

n! D . ~A2!

The sum on the right-hand side is strongly divergent foruqu
,1, but progress can be made by allowingq to take a non-
physical value greater than 1 and then analytically conti
ing to the physical regime. Using the fact that the Gaussia
its own Fourier transform:

e2t2/25
1

A2p
E

2`

`

e2z2/2eiztdz, ~A3!

the sum can be written@32# as

(
n51

`
1

A2p
E

2`

`

e2z2/2eiznAlog qdz
xn

n!

5
1

A2p
E

2`

`

expS 2
1

2
z21xeizAlog qDdz, ~A4!

where we have interchanged the order of sum and integ
Unfortunately, the integral cannot be carried out in clos

form, and although some asymptotic results can be deri
using saddle-point expansions, it does not appear at pre
that a closed-form solution for the generating functionhn(z),
Eq. ~10!, can be simply derived.
1-5
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Proc. Natl. Acad. Sci. U.S.A.97, 11 149~2000!.
@7# D.J. Watts and S.H. Strogatz, Nature~London! 393, 440

~1998!.
@8# G. Caldarelli, R. Pastor-Satorras, and A. Vespignani, e-p

cond-mat/0212026.
@9# M. Molloy and B. Reed, Random Struct. Algorithms6, 161

~1995!.
@10# M. Molloy and B. Reed, Combinatorics, Probab. Comput.7,

295 ~1998!.
@11# W. Aiello, F. Chung, and L. Lu, inProceedings of the 32nd

Annual ACM Symposium on Theory of Computing~Associa-
tion of Computing Machinery, New York, 2000!, pp. 171–180.

@12# M.E.J. Newman, S.H. Strogatz, and D.J. Watts, Phys. Re
64, 026118~2001!.

@13# F. Chung and L. Lu, Annals of Combinatorics6, 125 ~2002!.
@14# K. Klemm and V.M. Eguiluz, Phys. Rev. E65, 036123~2002!.
@15# P. Holme and B.J. Kim, Phys. Rev. E65, 026107~2002!.
@16# Y. Moreno and A. Va´zquez, Eur. Phys. J. B31, 265 ~2003!.
02612
-

t

E

@17# S.N. Dorogovtsev, A.V. Goltsev, and J.F.F. Mendes, Phys. R
E 65, 066122~2002!.

@18# E. Ravasz and A.-L. Baraba´si, Phys. Rev. E67, 026112~2003!.
@19# M. Girvan and M.E.J. Newman, Proc. Natl. Acad. Sci. U.S.

99, 8271~2002!.
@20# D.J. Watts, P.S. Dodds, and M.E.J. Newman, Science296,

1302 ~2002!.
@21# J.M. Kleinberg, inProceedings of the 2001 Neural Informatio

Processing Systems Conference, edited by T.G. Dietterich, S.
Becker, and Z. Ghahramani~MIT Press, Cambridge, MA,
2002!.

@22# H.W. Hethcote, SIAM Rev.42, 599 ~2000!.
@23# P. Grassberger, Math. Biosci.63, 157 ~1983!.
@24# L.M. Sander, C.P. Warren, I. Sokolov, C. Simon, and J. Koo

man, Math. Biosci.180, 293 ~2002!.
@25# M.E.J. Newman, Phys. Rev. E66, 016128~2002!.
@26# S.N. Dorogovtsev and J.F.F. Mendes, Adv. Phys.51, 1079

~2002!.
@27# A.-L. Barabási and R. Albert, Science286, 509 ~1999!.
@28# R. Cohen, K. Erez, D. ben-Avraham, and S. Havlin, Phys. R

Lett. 85, 4626~2000!.
@29# M.E.J. Newman, Phys. Rev. Lett.89, 208701~2002!.
@30# A. Vázquez and Y. Moreno, Phys. Rev. E67, 015101~2003!.
@31# R.J. Riddell, Jr. and G.E. Uhlenbeck, J. Chem. Phys.21, 2056

~1953!.
@32# P. Flajolet, B. Salvy, and G. Schaeffer, INRIA Research Rep

No. 4581, 2002~unpublished!.
1-6


