Random walks and diffusion on networks

Complex Networks, Course 303A, Spring, 2009

Prof. Peter Dodds

Department of Mathematics & Statistics
University of Vermont

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.
Outline

Random walks on networks

References
Random walks on networks—basics:

- Imagine a single random walker moving around on a network.
- At $t = 0$, start walker at node j and take time to be discrete.
- Q: What’s the long term probability distribution for where the walker will be?
- Define $p_i(t)$ as the probability that at time step t, our walker is at node i.
- We want to characterize the evolution of $\bar{p}(t)$.
- First task: connect $\bar{p}(t + 1)$ to $\bar{p}(t)$.

Let’s call our walker Barry. Unfortunately for Barry, he lives on a high dimensional graph and is far from home. Worse still: Barry is hopelessly drunk.
Random walks on networks—basics:

- Imagine a single random walker moving around on a network.
- At $t = 0$, start walker at node j and take time to be discrete.
- Q: What’s the long term probability distribution for where the walker will be?
- Define $p_i(t)$ as the probability that at time step t, our walker is at node i.
- We want to characterize the evolution of $\bar{p}(t)$.
- First task: connect $\bar{p}(t + 1)$ to $\bar{p}(t)$.
Random walks on networks—basics:

- Imagine a single random walker moving around on a network.
- At $t = 0$, start walker at node j and take time to be discrete.
- Q: What’s the long term probability distribution for where the walker will be?
- Define $p_i(t)$ as the probability that at time step t, our walker is at node i.
- We want to characterize the evolution of $\vec{p}(t)$.
- First task: connect $\vec{p}(t + 1)$ to $\vec{p}(t)$.
Random walks on networks—basics:

- Imagine a single random walker moving around on a network.
- At $t = 0$, start walker at node j and take time to be discrete.
- **Q:** What’s the long term probability distribution for where the walker will be?
- Define $p_i(t)$ as the probability that at time step t, our walker is at node i.
- We want to characterize the evolution of $\mathbf{p}(t)$.
- First task: connect $\mathbf{p}(t + 1)$ to $\mathbf{p}(t)$.
Random walks on networks—basics:

- Imagine a single random walker moving around on a network.
- At $t = 0$, start walker at node j and take time to be discrete.
- **Q:** What’s the long term probability distribution for where the walker will be?
- Define $p_i(t)$ as the probability that at time step t, our walker is at node i.
- We want to characterize the evolution of $\mathbf{p}(t)$.
- First task: connect $\mathbf{p}(t + 1)$ to $\mathbf{p}(t)$.
Random walks on networks—basics:

- Imagine a single random walker moving around on a network.
- At $t = 0$, start walker at node j and take time to be discrete.
- **Q:** What’s the long term probability distribution for where the walker will be?
- Define $p_i(t)$ as the probability that at time step t, our walker is at node i.
- We want to characterize the evolution of $\vec{p}(t)$.
- First task: connect $\vec{p}(t + 1)$ to $\vec{p}(t)$.
Random walks on networks—basics:

- Imagine a single random walker moving around on a network.
- At $t = 0$, start walker at node j and take time to be discrete.
- **Q:** What’s the long term probability distribution for where the walker will be?
- Define $p_i(t)$ as the probability that at time step t, our walker is at node i.
- We want to characterize the evolution of $\tilde{p}(t)$.
- First task: connect $\tilde{p}(t + 1)$ to $\tilde{p}(t)$.
- Let’s call our walker Barry.
Random walks on networks—basics:

▶ Imagine a single random walker moving around on a network.

▶ At \(t = 0 \), start walker at node \(j \) and take time to be discrete.

▶ **Q:** What’s the long term probability distribution for where the walker will be?

▶ Define \(p_i(t) \) as the probability that at time step \(t \), our walker is at node \(i \).

▶ We want to characterize the evolution of \(\vec{p}(t) \).

▶ First task: connect \(\vec{p}(t + 1) \) to \(\vec{p}(t) \).

▶ Let’s call our walker **Barry**.

▶ Unfortunately for Barry, he lives on a high dimensional graph and is far from home.
Random walks on networks—basics:

- Imagine a single random walker moving around on a network.
- At $t = 0$, start walker at node j and take time to be discrete.
- Q: What’s the long term probability distribution for where the walker will be?
- Define $p_i(t)$ as the probability that at time step t, our walker is at node i.
- We want to characterize the evolution of $\bar{p}(t)$.
- First task: connect $\bar{p}(t + 1)$ to $\bar{p}(t)$.
- Let’s call our walker Barry.
- Unfortunately for Barry, he lives on a high dimensional graph and is far from home.
- Worse still: Barry is hopelessly drunk.
Where is Barry?

Consider simple undirected networks with an edge either present or absent.

Represent network by a symmetric adjacency matrix A where

\[a_{ij} = 1 \text{ if } i \text{ and } j \text{ are connected}, \]
\[a_{ij} = 0 \text{ otherwise}. \]

Barry is at node i at time t with probability $p_i(t)$.

In the next time step he randomly lurches toward one of i’s neighbors.

Equation-wise:

\[p_j(t + 1) = \sum_{i=1}^{n} \frac{1}{k_i} a_{ji} p_i(t). \]

where k_i is i’s degree.
Where is Barry?

- Consider simple undirected networks with an edges either present of absent.
- Represent network by a symmetric **adjacency matrix** A where
 \[
 a_{ij} = \begin{cases}
 1 & \text{if } i \text{ and } j \text{ are connected,} \\
 0 & \text{otherwise}.
 \end{cases}
 \]
- Barry is at node i at time t with probability $p_i(t)$.
- In the next time step he **randomly lurches** toward one of i’s neighbors.
- Equation-wise:
 \[
 p_{j(t + 1)} = \sum_{i=1}^{n} \frac{1}{k_i} a_{ji} p_i(t).
 \]
 where k_i is i’s degree.
Where is Barry?

- Consider simple undirected networks with an edges either present of absent.
- Represent network by a symmetric adjacency matrix A where

$$a_{ij} = 1 \text{ if } i \text{ and } j \text{ are connected, } a_{ij} = 0 \text{ otherwise.}$$

- Barry is at node i at time t with probability $p_i(t)$.
- In the next time step he randomly lurches toward one of i's neighbors.

- Equation-wise:

$$p_j(t+1) = \sum_{i=1}^{n} \frac{1}{k_i} a_{ji} p_i(t).$$

where k_i is i's degree.
Where is Barry?

- Consider simple undirected networks with an edges either present of absent.
- Represent network by a symmetric adjacency matrix A where

\[
 a_{ij} = 1 \text{ if } i \text{ and } j \text{ are connected,} \\
 a_{ij} = 0 \text{ otherwise.}
\]

- Barry is at node i at time t with probability $p_i(t)$.
- In the next time step he randomly lurches toward one of i’s neighbors.

- Equation-wise:

\[
 p_j(t+1) = \sum_{i=1}^{n} \frac{1}{k_i} a_{ji} p_i(t).
\]

where k_i is i’s degree.
Where is Barry?

- Consider simple undirected networks with an edges either present of absent.
- Represent network by a symmetric adjacency matrix A where

$$a_{ij} = 1 \text{ if } i \text{ and } j \text{ are connected, } a_{ij} = 0 \text{ otherwise.}$$

- Barry is at node i at time t with probability $p_i(t)$.
- In the next time step he randomly lurches toward one of i’s neighbors.
- Equation-wise:

$$p_j(t+1) = \sum_{i=1}^{n} \frac{1}{k_i} a_{ji} p_i(t).$$

where k_i is i’s degree.
Where is Barry?

- Consider simple undirected networks with edges either present or absent.
- Represent network by a symmetric adjacency matrix A where
 \[a_{ij} = 1 \text{ if } i \text{ and } j \text{ are connected}, \]
 \[a_{ij} = 0 \text{ otherwise.} \]
- Barry is at node i at time t with probability $p_i(t)$.
- In the next time step he randomly lurches toward one of i's neighbors.
- Equation-wise:
 \[p_j(t + 1) = \sum_{i=1}^{n} \frac{1}{k_i} a_{ji} p_i(t). \]
 where k_i is i's degree. Note: $k_i = \sum_{j=1}^{n} a_{ij}$.
Where is Barry?

- Linear algebra-based excitement:
 \[p_j(t + 1) = \sum_{i=1}^{n} \frac{1}{k_i} a_{ji} p_i(t) \]
 is more usefully viewed as
 \[\vec{p}(t + 1) = A K^{-1} \vec{p}(t) \]
 where \([K_{ij}] = [\delta_{ij} k_i]\) has node degrees on the main diagonal and zeros everywhere else.

- So... we need to find the dominant eigenvalue of \(A K^{-1}\).

- Expect this eigenvalue will be 1 (doesn’t make sense for total probability to change).

- The corresponding eigenvector will be the limiting probability distribution (or invariant measure).

- Extra concerns: multiplicity of eigenvalue = 1, and network connectedness.
Where is Barry?

- Linear algebra-based excitement:
 \[p_j(t + 1) = \sum_{i=1}^{n} \frac{1}{k_i} a_{ji} p_i(t) \]
 is more usefully viewed as
 \[\vec{p}(t + 1) = AK^{-1} \vec{p}(t) \]
 where \([K_{ij}] = [\delta_{ij}k_i]\) has node degrees on the main diagonal and zeros everywhere else.

- So... we need to find the dominant eigenvalue of \(AK^{-1}\).

- Expect this eigenvalue will be 1 (doesn’t make sense for total probability to change).

- The corresponding eigenvector will be the limiting probability distribution (or invariant measure).

- Extra concerns: multiplicity of eigenvalue = 1, and network connectedness.
Where is Barry?

- Linear algebra-based excitement:
 \[p_j(t + 1) = \sum_{i=1}^{n} \frac{1}{k_i} a_{ji} p_i(t) \]
 is more usefully viewed as
 \[\vec{p}(t + 1) = AK^{-1} \vec{p}(t) \]
 where \([K_{ij}] = [\delta_{ij}k_i]\) has node degrees on the main diagonal and zeros everywhere else.

- So... we need to find the **dominant eigenvalue** of \(AK^{-1}\).

- Expect this eigenvalue will be 1 (doesn’t make sense for total probability to change).

- The corresponding eigenvector will be the limiting probability distribution (or invariant measure).

- Extra concerns: multiplicity of eigenvalue = 1, and network connectedness.
Where is Barry?

- Linear algebra-based excitement:
 \[p_j(t + 1) = \sum_{i=1}^{n} \frac{1}{k_i} a_{ji} p_i(t) \]
 is more usefully viewed as
 \[\vec{p}(t + 1) = AK^{-1}\vec{p}(t) \]
 where \([K_{ij}] = [\delta_{ij}k_i] \) has node degrees on the main diagonal and zeros everywhere else.

- So... we need to find the **dominant eigenvalue** of \(AK^{-1}\).

- Expect this eigenvalue will be 1 (doesn’t make sense for total probability to change).

- The corresponding eigenvector will be the limiting probability distribution (or invariant measure).

- Extra concerns: multiplicity of eigenvalue = 1, and network connectedness.
Where is Barry?

- Linear algebra-based excitement:

 $p_j(t + 1) = \sum_{i=1}^{n} \frac{1}{k_i} a_{ji} p_i(t)$

 is more usefully viewed as

 $$\vec{p}(t + 1) = A K^{-1} \vec{p}(t)$$

 where $[K_{ij}] = [\delta_{ij} k_i]$ has node degrees on the main diagonal and zeros everywhere else.

- So... we need to find the dominant eigenvalue of AK^{-1}.

- Expect this eigenvalue will be 1 (doesn’t make sense for total probability to change).

- The corresponding eigenvector will be the limiting probability distribution (or invariant measure).

- Extra concerns: multiplicity of eigenvalue = 1, and network connectedness.
Where is Barry?

- By inspection, we see that
 \[
 \vec{p}(\infty) = \frac{1}{\sum_{i=1}^{n} k_i} \vec{k}
 \]
 satisfies \(\vec{p}(\infty) = AK^{-1} \vec{p}(\infty)\) with eigenvalue 1.

- We will find Barry at node \(i\) with probability proportional to its degree \(k_i\).

- Nice implication: probability of finding Barry travelling along any edge is **uniform**.

- Diffusion in real space smooths things out.

- On networks, uniformity occurs on edges.

- So in fact, diffusion in real space is about the edges too but we just don’t see that.
Where is Barry?

By inspection, we see that

\[\vec{p}(\infty) = \frac{1}{\sum_{i=1}^{n} k_i} \vec{k} \]

satisfies \(\vec{p}(\infty) = AK^{-1}\vec{p}(\infty) \) with eigenvalue 1.

We will find Barry at node \(i \) with probability proportional to its degree \(k_i \).

Nice implication: probability of finding Barry travelling along any edge is uniform.

Diffusion in real space smooths things out.

On networks, uniformity occurs on edges.

So in fact, diffusion in real space is about the edges too but we just don’t see that.
Where is Barry?

- By inspection, we see that

\[\vec{p}(\infty) = \frac{1}{\sum_{i=1}^{n} k_i} \vec{k} \]

satisfies \(\vec{p}(\infty) = AK^{-1} \vec{p}(\infty) \) with eigenvalue 1.

- We will find Barry at node \(i \) with probability proportional to its degree \(k_i \).

- Nice implication: probability of finding Barry travelling along any edge is uniform.

- Diffusion in real space smooths things out.

- On networks, uniformity occurs on edges.

- So in fact, diffusion in real space is about the edges too but we just don't see that.
Where is Barry?

- By inspection, we see that
 \[\vec{p}(\infty) = \frac{1}{\sum_{i=1}^{n} k_i} \vec{k} \]

 satisfies \(\vec{p}(\infty) = AK^{-1} \vec{p}(\infty) \) with eigenvalue 1.

- We will find Barry at node \(i \) with probability proportional to its degree \(k_i \).

- Nice implication: probability of finding Barry travelling along any edge is uniform.

- Diffusion in real space smooths things out.

- On networks, uniformity occurs on edges.

- So in fact, diffusion in real space is about the edges too but we just don’t see that.
Where is Barry?

- By inspection, we see that

\[\vec{p}(\infty) = \frac{1}{\sum_{i=1}^{n} k_i} \vec{k} \]

satisfies \(\vec{p}(\infty) = AK^{-1} \vec{p}(\infty) \) with eigenvalue 1.

- We will find Barry at node \(i \) with probability proportional to its degree \(k_i \).

- Nice implication: probability of finding Barry travelling along any edge is uniform.

- Diffusion in real space smooths things out.

- On networks, uniformity occurs on edges.

- So in fact, diffusion in real space is about the edges too but we just don’t see that.
Where is Barry?

- By inspection, we see that

\[\vec{p}(\infty) = \frac{1}{\sum_{i=1}^{n} k_i} \vec{k} \]

satisfies \(\vec{p}(\infty) = AK^{-1} \vec{p}(\infty) \) with eigenvalue 1.

- We will find Barry at node \(i \) with probability proportional to its degree \(k_i \).

- Nice implication: probability of finding Barry travelling along any edge is uniform.

- Diffusion in real space smooths things out.

- On networks, uniformity occurs on edges.

- So in fact, diffusion in real space is about the edges too but we just don’t see that.
Other pieces:

- **Good news:** AK^{-1} is similar to a real symmetric matrix.
- Consider the transformation $M = K^{-1/2}$:

 $$K^{-1/2}AK^{-1}K^{1/2} = K^{-1/2}AK^{-1/2}.$$

- Since $A^T = A$, we have

 $$(K^{-1/2}AK^{-1/2})^T = K^{-1/2}AK^{-1/2}.$$

- **Upshot:** AK^{-1} has real eigenvalues and a complete set of orthogonal eigenvectors.
- Can also show that maximum eigenvalue magnitude is indeed 1.
- Other goodies: next time round.
Other pieces:

- Good news: AK^{-1} is similar to a real symmetric matrix.
- Consider the transformation $M = K^{-1/2}$:
 \[
 K^{-1/2}AK^{-1}K^{1/2} = K^{-1/2}AK^{-1/2}.
 \]
- Since $A^T = A$, we have
 \[
 (K^{-1/2}AK^{-1/2})^T = K^{-1/2}AK^{-1/2}.
 \]
- Upshot: AK^{-1} has real eigenvalues and a complete set of orthogonal eigenvectors.
- Can also show that maximum eigenvalue magnitude is indeed 1.
- Other goodies: next time round.
Other pieces:

- Good news: AK^{-1} is similar to a real symmetric matrix.
- Consider the transformation $M = K^{-1/2}$:
 \[K^{-1/2}AK^{-1}K^{1/2} = K^{-1/2}AK^{-1/2}. \]
- Since $A^T = A$, we have
 \[(K^{-1/2}AK^{-1/2})^T = K^{-1/2}AK^{-1/2}. \]
- Upshot: AK^{-1} has real eigenvalues and a complete set of orthogonal eigenvectors.
- Can also show that maximum eigenvalue magnitude is indeed 1.
- Other goodies: next time round.
Other pieces:

- Good news: AK^{-1} is similar to a real symmetric matrix.
- Consider the transformation $M = K^{-1/2}$:

 $$K^{-1/2}AK^{-1}K^{1/2} = K^{-1/2}AK^{-1/2}.$$

- Since $A^T = A$, we have

 $$\left(K^{-1/2}AK^{-1/2}\right)^T = K^{-1/2}AK^{-1/2}.$$

- Upshot: AK^{-1} has real eigenvalues and a complete set of orthogonal eigenvectors.
- Can also show that maximum eigenvalue magnitude is indeed 1.
- Other goodies: next time round.
Other pieces:

- Good news: AK^{-1} is similar to a real symmetric matrix.
- Consider the transformation $M = K^{-1/2}$:

 $$K^{-1/2}AK^{-1}K^{1/2} = K^{-1/2}AK^{-1/2}.$$

- Since $A^T = A$, we have

 $$(K^{-1/2}AK^{-1/2})^T = K^{-1/2}AK^{-1/2}.$$

- Upshot: AK^{-1} has real eigenvalues and a complete set of orthogonal eigenvectors.
- Can also show that maximum eigenvalue magnitude is indeed 1.

- Other goodies: next time round.
Other pieces:

- Good news: AK^{-1} is similar to a real symmetric matrix.
- Consider the transformation $M = K^{-1/2}$:
 \[K^{-1/2}AK^{-1}K^{1/2} = K^{-1/2}AK^{-1/2}. \]
- Since $A^T = A$, we have
 \[(K^{-1/2}AK^{-1/2})^T = K^{-1/2}AK^{-1/2}. \]
- Upshot: AK^{-1} has real eigenvalues and a complete set of orthogonal eigenvectors.
- Can also show that maximum eigenvalue magnitude is indeed 1.
- Other goodies: next time round.