Outline

Overview
 Introduction
 Examples
 Zipf’s law
 Wild vs. Mild
 CCDFs

References
The Don

Extreme deviations in **test cricket**
The Don

Extreme deviations in test cricket

Don Bradman’s batting average = 166% next best.
The sizes of many systems’ elements appear to obey an inverse power-law size distribution:

\[P(\text{size} = x) \sim c x^{-\gamma} \]

where \(x_{\text{min}} < x < x_{\text{max}} \)

and \(\gamma > 1 \)

- Typically, \(2 < \gamma < 3 \).
- \(x_{\text{min}} = \) lower cutoff
- \(x_{\text{max}} = \) upper cutoff
Size distributions

The sizes of many systems’ elements appear to obey an inverse power-law size distribution:

\[P(\text{size} = x) \sim c x^{-\gamma} \]

where \(x_{\text{min}} < x < x_{\text{max}} \)

and \(\gamma > 1 \)

- Typically, \(2 < \gamma < 3 \).
- \(x_{\text{min}} = \) lower cutoff
- \(x_{\text{max}} = \) upper cutoff
Size distributions

The sizes of many systems’ elements appear to obey an inverse power-law size distribution:

\[P(\text{size} = x) \sim c x^{-\gamma} \]

where \(x_{\text{min}} < x < x_{\text{max}} \)

and \(\gamma > 1 \)

- Typically, \(2 < \gamma < 3 \).
- \(x_{\text{min}} = \) lower cutoff
- \(x_{\text{max}} = \) upper cutoff
Size distributions

- Usually, only the tail of the distribution obeys a power law:

\[P(x) \sim c x^{-\gamma} \text{ as } x \to \infty. \]

- Still use term ‘power law distribution’
Usually, only the tail of the distribution obeys a power law:

$$P(x) \sim c x^{-\gamma} \text{ as } x \to \infty.$$

Still use term ‘power law distribution’
Many systems have discrete sizes k:

- Word frequency
- Node degree (as we have seen): # hyperlinks, etc.
- number of citations for articles, court decisions, etc.

$$P(k) \sim c k^{-\gamma}$$

where $k_{\text{min}} \leq k \leq k_{\text{max}}$
Power law size distributions are sometimes called **Pareto distributions** after Italian scholar Vilfredo Pareto.

- Pareto noted wealth in Italy was distributed unevenly (80–20 rule).
- Term used especially by economists
Negative linear relationship in log-log space:

$$\log P(x) = \log c - \gamma \log x$$
Outline

Overview
 Introduction
 Examples
 Zipf’s law
 Wild vs. Mild
 CCDFs

References
Size distributions

Examples:

- Earthquake magnitude (Gutenberg Richter law): $P(M) \propto M^{-3}$
- Number of war deaths: $P(d) \propto d^{-1.8}$
- Sizes of forest fires
- Sizes of cities: $P(n) \propto n^{-2.1}$
- Number of links to and from websites
Size distributions

Examples:

- Number of citations to papers: $P(k) \propto k^{-3}$.
- Individual wealth (maybe): $P(W) \propto W^{-2}$.
- Distributions of tree trunk diameters: $P(d) \propto d^{-2}$.
- The gravitational force at a random point in the universe: $P(F) \propto F^{-5/2}$.
- Diameter of moon craters: $P(d) \propto d^{-3}$.
- Word frequency: e.g., $P(k) \propto k^{-2.2}$ (variable)

(Note: Exponents range in error; see M.E.J. Newman arxiv.org/cond-mat/0412004v3)
Size distributions

Power-law distributions are..

▶ often called ‘heavy-tailed’
▶ or said to have ‘fat tails’

Important!:

▶ Inverse power laws aren’t the only ones:
 ▶ lognormals, stretched exponentials, ...
Power-law distributions are..

- often called ‘heavy-tailed’
- or said to have ‘fat tails’

Important!:

- Inverse power laws aren’t the only ones:
 - lognormals, stretched exponentials, ...
Size distributions

Power-law distributions are..

▶ often called ‘heavy-tailed’
▶ or said to have ‘fat tails’

Important!:

▶ Inverse power laws aren’t the only ones:
 ▶ lognormals, stretched exponentials, ...
Size distributions

Power-law distributions are..

► often called ‘heavy-tailed’
► or said to have ‘fat tails’

Important!:

► Inverse power laws aren’t the only ones:
 ► lognormals, stretched exponentials, ...
Outline

Overview
 - Introduction
 - Examples
 - Zipf’s law
 - Wild vs. Mild
 - CCDFs

References
Zipfian rank-frequency plots

George Kingsley Zipf:

- We’ll study Zipf’s law in depth...
George Kingsley Zipf:

- We’ll study Zipf’s law in depth...
Zipf’s way:

- $s_i = \text{the size of the } i\text{th ranked object.}$
- $i = 1 \text{ corresponds to the largest size.}$
- $s_1 \text{ could be the frequency of occurrence of the most common word in a text.}$
- Zipf’s observation:

$$s_i \propto i^{-\alpha}$$
Zipf's way:

- $s_i =$ the size of the ith ranked object.
- $i = 1$ corresponds to the largest size.
- s_1 could be the frequency of occurrence of the most common word in a text.
- Zipf's observation:

$$s_i \propto i^{-\alpha}$$
Outline

Overview

Introduction
Examples
Zipf’s law
Wild vs. Mild
CCDFs

References
Gaussians versus power-law distributions:

- Example: Height versus wealth.
- Mild versus Wild (Mandelbrot)
- Mediocristan versus Extremistan
 (See “The Black Swan” by Nassim Taleb [7])
Power law distributions

Gaussians versus power-law distributions:

- Example: Height versus wealth.
- Mild versus Wild (Mandelbrot)
- Mediocristan versus Extremistan
 (See “The Black Swan” by Nassim Taleb [7])
Power law distributions

Gaussians versus power-law distributions:

- Example: Height versus wealth.
- Mild versus Wild (Mandelbrot)
- Mediocristan versus Extremistan
 (See “The Black Swan” by Nassim Taleb [7])
Gaussians versus power-law distributions:

- Example: Height versus wealth.
- Mild versus Wild (Mandelbrot)
- Mediocristan versus Extremistan
 (See “The Black Swan” by Nassim Taleb [7])
A turkey before and after Thanksgiving. The history of a process over a thousand days tells you nothing about what is to happen next. This naïve projection of the future from the past can be applied to anything.

From “The Black Swan”[7]
Taleb’s table [7]

Mediocristan/Extremistan

- Most typical member is mediocre/Most typical is either giant or tiny
- Winners get a small segment/Winner take almost all effects
- When you observe for a while, you know what’s going on/It takes a very long time to figure out what’s going on
- Prediction is easy/Prediction is hard
- History crawls/History makes jumps
- Tyranny of the collective/Tyranny of the accidental
Mediocristan/Extremistan

► Most typical member is mediocre/Most typical is either giant or tiny

► Winners get a small segment/Winner take almost all effects

► When you observe for a while, you know what’s going on/It takes a very long time to figure out what’s going on

► Prediction is easy/Prediction is hard

► History crawls/History makes jumps

► Tyranny of the collective/Tyranny of the accidental
Taleb’s table [7]

Mediocristan/Extremistan

► Most typical member is mediocre/Most typical is either giant or tiny

► Winners get a small segment/Winner take almost all effects

► When you observe for a while, you know what’s going on/It takes a very long time to figure out what’s going on

► Prediction is easy/Prediction is hard

► History crawls/History makes jumps

► Tyranny of the collective/Tyranny of the accidental
Mediocristan/Extremistan

- Most typical member is mediocre/Most typical is either giant or tiny
- Winners get a small segment/Winner take almost all effects
- When you observe for a while, you know what’s going on/It takes a very long time to figure out what’s going on
- Prediction is easy/Prediction is hard
- History crawls/History makes jumps
- Tyranny of the collective/Tyranny of the accidental
Mediocristan/Extremistan

- Most typical member is mediocre/Most typical is either giant or tiny
- Winners get a small segment/Winner take almost all effects
- When you observe for a while, you know what’s going on/It takes a very long time to figure out what’s going on
- Prediction is easy/Prediction is hard
- History crawls/History makes jumps
- Tyranny of the collective/Tyranny of the accidental
Mediocristan/Extremistan

- Most typical member is mediocre/Most typical is either giant or tiny
- Winners get a small segment/Winner take almost all effects
- When you observe for a while, you know what’s going on/It takes a very long time to figure out what’s going on
- Prediction is easy/Prediction is hard
- History crawls/History makes jumps
- Tyranny of the collective/Tyranny of the accidental
Taleb’s table [7]

Mediocristan/Extremistan

- Most typical member is mediocre/Most typical is either giant or tiny
- Winners get a small segment/Winner take almost all effects
- When you observe for a while, you know what’s going on/It takes a very long time to figure out what’s going on
- Prediction is easy/Prediction is hard
- History crawls/History makes jumps
- Tyranny of the collective/Tyranny of the accidental
Outline

Overview
- Introduction
- Examples
- Zipf’s law
- Wild vs. Mild
- CCDFs

References
Complementary Cumulative Distribution Function:

CCDF:

\[P_{\geq}(x) = P(x' \geq x) = 1 - P(x' < x) \]

\[= \int_{x'=x}^{\infty} P(x') dx' \]

\[\propto \int_{x'=x}^{\infty} (x')^{-\gamma} dx' \]

\[= \left. \frac{1}{-\gamma + 1} (x')^{-\gamma + 1} \right|_{x'=x}^{\infty} \]

\[\propto x^{-\gamma + 1} \]
Complementary Cumulative Distribution Function:

CCDF:

\[P_{\geq}(x) = P(x' \geq x) = 1 - P(x' < x) \]

\[= \int_{x' = x}^{\infty} P(x') dx' \]

\[\propto \int_{x' = x}^{\infty} (x')^{-\gamma} dx' \]

\[= \frac{1}{-\gamma + 1} (x')^{-\gamma + 1} \bigg|_{x' = x}^{\infty} \]

\[\propto x^{-\gamma + 1} \]
Complementary Cumulative Distribution Function:

CCDF:

\[P_{\geq}(x) = P(x' \geq x) = 1 - P(x' < x) \]

\[= \int_{x' = x}^{\infty} P(x') \, dx' \]

\[\propto \int_{x' = x}^{\infty} (x')^{-\gamma} \, dx' \]

\[= \left. \frac{1}{-\gamma + 1} (x')^{-\gamma + 1} \right|_{x' = x}^{\infty} \]

\[\propto x^{-\gamma + 1} \]
Complementary Cumulative Distribution Function:

CCDF:

\[P_{\geq}(x) = P(x' \geq x) = 1 - P(x' < x) \]

\[= \int_{x'=x}^{\infty} P(x')dx' \]

\[\propto \int_{x'=x}^{\infty} (x')^{-\gamma}dx' \]

\[= \frac{1}{-\gamma + 1} (x')^{-\gamma+1} \bigg|_{x'=x}^{\infty} \]

\[\propto x^{-\gamma+1} \]
Complementary Cumulative Distribution Function:

CCDF:

\[P_{\geq}(x) = P(x' \geq x) = 1 - P(x' < x) \]

\[= \int_{x' = x}^{\infty} P(x')dx' \]

\[\propto \int_{x' = x}^{\infty} (x')^{-\gamma}dx' \]

\[= \frac{1}{-\gamma + 1} (x')^{-\gamma + 1} \bigg|_{x' = x}^{\infty} \]

\[\propto x^{-\gamma + 1} \]
Complementary Cumulative Distribution Function:

CCDF:

\[P_{\geq}(x) = P(x' \geq x) = 1 - P(x' < x) \]

\[= \int_{x' = x}^{\infty} P(x') \, dx' \]

\[\propto \int_{x' = x}^{\infty} (x')^{-\gamma} \, dx' \]

\[= \frac{1}{-\gamma + 1} (x')^{-\gamma + 1} \bigg|_{x' = x}^{\infty} \]

\[\propto x^{-\gamma + 1} \]
Complementary Cumulative Distribution Function:

CCDF:

\[P_{\geq}(x) \propto x^{-\gamma + 1} \]

- Use when tail of \(P \) follows a power law.
- Increases exponent by one.
- Useful in cleaning up data.
Complementary Cumulative Distribution Function:

\[P_{\geq}(x) \propto x^{-\gamma+1} \]

- Use when tail of \(P \) follows a power law.
- Increases exponent by one.
- Useful in cleaning up data.
Complementary Cumulative Distribution Function:

CCDF:

\[P_{\geq}(x) \propto x^{-\gamma+1} \]

- Use when tail of \(P \) follows a power law.
- Increases exponent by one.
- Useful in cleaning up data.
Complementary Cumulative Distribution Function:

CCDF:

- Use when tail of P follows a power law.
- Increases exponent by one.
- Useful in cleaning up data.
Complementary Cumulative Distribution Function:

- Discrete variables:

\[P_{\geq}(k) = P(k' \geq k) \]

- Use integrals to approximate sums.
Complementary Cumulative Distribution Function:

- Discrete variables:

\[P_{\geq}(k) = P(k' \geq k) \]

\[= \sum_{k'=k}^{\infty} P(k) \]

- Use integrals to approximate sums.
Complementary Cumulative Distribution Function:

- Discrete variables:

\[P_{\geq}(k) = P(k' \geq k) = \sum_{k' = k}^{\infty} P(k) \propto k^{-\gamma+1} \]

- Use integrals to approximate sums.
Complementary Cumulative Distribution Function:

- Discrete variables:

\[P_{\geq}(k) = P(k' \geq k) \]

\[= \sum_{k'=k}^{\infty} P(k) \]

\[\propto k^{-\gamma+1} \]

- Use integrals to approximate sums.
Size distributions

Brown Corpus (1,015,945 words):

CCDF:

Zipf:

- The, of, and, to, a, ... = ‘objects’
- ‘Size’ = word frequency
Size distributions

Brown Corpus (1,015,945 words):

CCDF:

- The, of, and, to, a, ... = ‘objects’
- ‘Size’ = word frequency
- Beep: CCDF and Zipf plots are related...
Size distributions

Observe:

- $NP_{\geq}(x) =$ the number of objects with size at least x where $N =$ total number of objects.
- If an object has size x_i, then $NP_{\geq}(x_i) =$ its rank i.
- So

$$x_i \propto i^{-\alpha} = (NP_{\geq}(x_i))^{-\alpha}$$

$$\propto x_i^{(-\gamma+1)(-\alpha)}$$

Since $P_{\geq}(x) \sim x^{-\gamma+1}$,

$$\alpha = \frac{1}{\gamma - 1}$$

A rank distribution exponent of $\alpha = 1$ corresponds to a size distribution exponent $\gamma = 2$.
Size distributions

Observe:

- \(NP_{\geq}(x) \) = the number of objects with size at least \(x \) where \(N = \) total number of objects.
- If an object has size \(x_i \), then \(NP_{\geq}(x_i) \) is its rank \(i \).
- So

\[
x_i \propto i^{-\alpha} = (NP_{\geq}(x_i))^{-\alpha}
\]

\[
\propto x_i^{(-\gamma+1)(-\alpha)}
\]

Since \(P_{\geq}(x) \sim x^{-\gamma+1} \),

\[
\alpha = \frac{1}{\gamma - 1}
\]

A rank distribution exponent of \(\alpha = 1 \) corresponds to a size distribution exponent \(\gamma = 2 \).
Size distributions

Observe:

- $NP_{\geq}(x) =$ the number of objects with size at least x where $N =$ total number of objects.
- If an object has size x_i, then $NP_{\geq}(x_i)$ is its rank i.
- So

 $$x_i \propto i^{-\alpha} = (NP_{\geq}(x_i))^{-\alpha}$$

 $$\propto x_i^{(-\gamma+1)(-\alpha)}$$

Since $P_{\geq}(x) \sim x^{-\gamma+1}$,

$$\alpha = \frac{1}{\gamma - 1}$$

A rank distribution exponent of $\alpha = 1$ corresponds to a size distribution exponent $\gamma = 2$.
Size distributions

Observe:

- $NP_\geq(x) =$ the number of objects with size at least x where $N =$ total number of objects.
- If an object has size x_i, then $NP_\geq(x_i)$ is its rank i.
- So

$$x_i \propto i^{-\alpha} = (NP_\geq(x_i))^{-\alpha}$$

$$\propto x_i^{(-\gamma+1)(-\alpha)}$$

Since $P_\geq(x) \sim x^{-\gamma+1}$,

$$\alpha = \frac{1}{\gamma - 1}$$

A rank distribution exponent of $\alpha = 1$ corresponds to a size distribution exponent $\gamma = 2$.
Size distributions

Observe:

- $NP_\geq(x) =$ the number of objects with size at least x where $N =$ total number of objects.
- If an object has size x_i, then $NP_\geq(x_i)$ is its rank i.
- So

$$x_i \propto i^{-\alpha} = (NP_\geq(x_i))^{-\alpha}$$

$$\propto x_i^{(-\gamma+1)(-\alpha)}$$

Since $P_\geq(x) \sim x^{-\gamma+1}$,

$$\alpha = \frac{1}{\gamma - 1}$$

A rank distribution exponent of $\alpha = 1$ corresponds to a size distribution exponent $\gamma = 2$.
Size distributions

Observe:

- \(NP_\geq(x) \) = the number of objects with size at least \(x \) where \(N \) = total number of objects.
- If an object has size \(x_i \), then \(NP_\geq(x_i) \) is its rank \(i \).
- So

\[
 x_i \propto i^{-\alpha} = (NP_\geq(x_i))^{-\alpha}
\]

\[
 \propto x_i^{(-\gamma+1)(-\alpha)}
\]

Since \(P_\geq(x) \sim x^{-\gamma+1} \),

\[
 \alpha = \frac{1}{\gamma - 1}
\]

A rank distribution exponent of \(\alpha = 1 \) corresponds to a size distribution exponent \(\gamma = 2 \).
Details on the lack of scale:

Let’s find the mean:

\[
\langle x \rangle = \int_{x=x_{\min}}^{x_{\max}} xP(x)dx
\]

\[
= c \int_{x=x_{\min}}^{x_{\max}} xx^{-\gamma}dx
\]

\[
= \frac{c}{2-\gamma} \left(x_{\max}^{2-\gamma} - x_{\min}^{2-\gamma} \right).
\]
Details on the lack of scale:

Let’s find the mean:

\[
\langle x \rangle = \int_{x = x_{\text{min}}}^{x_{\text{max}}} x P(x) \, dx
\]

\[
= c \int_{x = x_{\text{min}}}^{x_{\text{max}}} xx^{-\gamma} \, dx
\]

\[
= \frac{c}{2 - \gamma} \left(x_{\text{max}}^{2-\gamma} - x_{\text{min}}^{2-\gamma} \right).
\]
Details on the lack of scale:

Let’s find the mean:

\[
\langle x \rangle = \int_{x=x_{\text{min}}}^{x_{\text{max}}} x P(x) \, dx
\]

\[
= c \int_{x=x_{\text{min}}}^{x_{\text{max}}} x x^{-\gamma} \, dx
\]

\[
= \frac{c}{2-\gamma} \left(x_{\text{max}}^{2-\gamma} - x_{\text{min}}^{2-\gamma} \right).
\]
The mean:

\[\langle x \rangle \sim \frac{c}{2 - \gamma} \left(x_{\text{max}}^{2-\gamma} - x_{\text{min}}^{2-\gamma} \right). \]

- Mean blows up with upper cutoff if \(\gamma < 2 \).
- Mean depends on lower cutoff if \(\gamma > 2 \).
- \(\gamma < 2 \): Typical sample is large.
- \(\gamma > 2 \): Typical sample is small.
The mean:

\[\langle x \rangle \sim \frac{c}{2 - \gamma} \left(x_{\text{max}}^{2-\gamma} - x_{\text{min}}^{2-\gamma} \right) . \]

- Mean blows up with upper cutoff if \(\gamma < 2 \).
- Mean depends on lower cutoff if \(\gamma > 2 \).
- \(\gamma < 2 \): Typical sample is large.
- \(\gamma > 2 \): Typical sample is small.
The mean:

\[\langle x \rangle \sim \frac{c}{2 - \gamma} \left(x_{\text{max}}^{2-\gamma} - x_{\text{min}}^{2-\gamma} \right). \]

- Mean blows up with upper cutoff if \(\gamma < 2 \).
- Mean depends on lower cutoff if \(\gamma > 2 \).
- \(\gamma < 2 \): Typical sample is large.
- \(\gamma > 2 \): Typical sample is small.
\begin{align*}
\langle x \rangle & \sim \frac{c}{2 - \gamma} \left(x_{\text{max}}^{2-\gamma} - x_{\text{min}}^{2-\gamma} \right). \\
\end{align*}

- Mean blows up with upper cutoff if $\gamma < 2$.
- Mean depends on lower cutoff if $\gamma > 2$.
- $\gamma < 2$: Typical sample is large.
- $\gamma > 2$: Typical sample is small.
The mean:

\[\langle x \rangle \sim \frac{c}{2 - \gamma} \left(x_{\text{max}}^{2-\gamma} - x_{\text{min}}^{2-\gamma} \right). \]

- Mean blows up with upper cutoff if \(\gamma < 2 \).
- Mean depends on lower cutoff if \(\gamma > 2 \).
- \(\gamma < 2 \): Typical sample is large.
- \(\gamma > 2 \): Typical sample is small.
And in general...

Moments:

- All moments depend only on cutoffs.
- No internal scale dominates (even matters).
- Compare to a Gaussian, exponential, etc.
And in general...

Moments:

- All moments depend only on cutoffs.
- No internal scale dominates (even matters).
- Compare to a Gaussian, exponential, etc.
And in general...

Moments:
- All moments depend only on cutoffs.
- No internal scale dominates (even matters).
- Compare to a Gaussian, exponential, etc.
For many real size distributions:

\[2 < \gamma < 3 \]

- mean is finite (depends on lower cutoff)
- \(\sigma^2 \) = variance is ‘infinite’ (depends on upper cutoff)
- Width of distribution is ‘infinite’
Moments

- Variance is nice analytically...
- Another measure of distribution width:
 Mean average deviation (MAD) =
 \[\langle |x - \langle x \rangle| \rangle \]
- MAD is unpleasant analytically...
Moments

Standard deviation is a mathematical convenience!:

- Variance is nice analytically...
- Another measure of distribution width:
 Mean average deviation (MAD) =
 \[\langle |x - \langle x \rangle| \rangle \]

- MAD is unpleasant analytically...
Moments

Standard deviation is a mathematical convenience!:

- Variance is nice analytically...
- Another measure of distribution width:

 Mean average deviation (MAD) =

 $$\langle |x - \langle x \rangle| \rangle$$

- MAD is unpleasant analytically...
Moments

Standard deviation is a mathematical convenience!

- Variance is nice analytically...
- Another measure of distribution width:
 Mean average deviation (MAD) =
 \[\langle |x - \langle x \rangle| \rangle \]
- MAD is unpleasant analytically...
Moments

Standard deviation is a mathematical convenience!:

- Variance is nice analytically...
- Another measure of distribution width:
 Mean average deviation (MAD) =
 \[\langle |x - \langle x \rangle| \rangle \]
- MAD is unpleasant analytically...
Given $P(x) \sim cx^{-\gamma}$:

- We can show that after n samples, we expect the largest sample to be
 $$x_1 \gtrsim n^{1/(\gamma-1)}$$

- Sampling from a ‘mild’ distribution gives a much slower growth with n.

- e.g., for $P(x) = \lambda e^{-\lambda x}$, we find
 $$x_1 \gtrsim \frac{1}{\lambda} \ln n.$$
How sample sizes grow...

Given $P(x) \sim cx^{-\gamma}$:

- We can show that after n samples, we expect the largest sample to be
 \[x_1 \gtrsim n^{1/(\gamma-1)} \]

- Sampling from a ‘mild’ distribution gives a much slower growth with n.
 - e.g., for $P(x) = \lambda e^{-\lambda x}$, we find
 \[x_1 \gtrsim \frac{1}{\lambda} \ln n. \]
How sample sizes grow...

Given $P(x) \sim cx^{-\gamma}$:

- We can show that after n samples, we expect the largest sample to be

 $x_1 \gtrsim n^{1/(\gamma-1)}$

- Sampling from a ‘mild’ distribution gives a much slower growth with n.
- e.g., for $P(x) = \lambda e^{-\lambda x}$, we find

 $x_1 \gtrsim \frac{1}{\lambda} \ln n$.
References

References II

J. T. Hack.
Studies of longitudinal stream profiles in Virginia and Maryland.

A. E. Scheidegger.
The algebra of stream-order numbers.

N. N. Taleb.
The Black Swan.

G. K. Zipf.
Human Behaviour and the Principle of Least-Effort.
Addison-Wesley, Cambridge, MA, 1949.