The Don

Extreme deviations in test cricket

Don Bradman’s batting average = 166% next best.

Size distributions

The sizes of many systems’ elements appear to obey an inverse power-law size distribution:

\[P(\text{size } = x) \sim c x^{-\gamma} \]

where \(x_{\text{min}} < x < x_{\text{max}} \) and \(\gamma > 1 \)

- Typically, \(2 < \gamma < 3 \).
- \(x_{\text{min}} = \text{lower cutoff} \)
- \(x_{\text{max}} = \text{upper cutoff} \)
Size distributions

- Usually, only the tail of the distribution obeys a power law:

\[P(x) \sim c x^{-\gamma} \text{ as } x \to \infty. \]

- Still use term ‘power law distribution’

Power law size distributions are sometimes called Pareto distributions after Italian scholar Vilfredo Pareto.

- Pareto noted wealth in Italy was distributed unevenly (80–20 rule).
- Term used especially by economists

Many systems have discrete sizes \(k \):

- Word frequency
- Node degree (as we have seen): # hyperlinks, etc.
- number of citations for articles, court decisions, etc.

\[P(k) \sim c k^{-\gamma} \]

where \(k_{\text{min}} \leq k \leq k_{\text{max}} \)

Negative linear relationship in log-log space:

\[\log P(x) = \log c - \gamma \log x \]
Examples:

- Earthquake magnitude (Gutenberg Richter law): \(P(M) \propto M^{-3} \)
- Number of war deaths: \(P(d) \propto d^{-1.8} \)
- Sizes of forest fires
- Sizes of cities: \(P(n) \propto n^{-2.1} \)
- Number of links to and from websites

(Examples: Number of citations to papers: \(P(k) \propto k^{-3} \).
Individual wealth (maybe): \(P(W) \propto W^{-2} \).
Distributions of tree trunk diameters: \(P(d) \propto d^{-2} \).
The gravitational force at a random point in the universe: \(P(F) \propto F^{-5/2} \).
Diameter of moon craters: \(P(d) \propto d^{-3} \).
Word frequency: e.g., \(P(k) \propto k^{-2.2} \) (variable)

(Note: Exponents range in error; see M.E.J. Newman arxiv.org/cond-mat/0412004v3 (⊞))
Zipfian rank-frequency plots

Zipf’s way:
- s_i = the size of the ith ranked object.
- $i = 1$ corresponds to the largest size.
- s_1 could be the frequency of occurrence of the most common word in a text.
- Zipf’s observation:

$$s_i \propto i^{-\alpha}$$

Power law distributions

Gaussians versus power-law distributions:
- Example: Height versus wealth.
- Mild versus Wild (Mandelbrot)
- Mediocristan versus Extremistan
 (See “The Black Swan” by Nassim Taleb\(^1\))

Taleb’s table\(^1\)

Mediocristan/Extremistan
- Most typical member is mediocre/Most typical is either giant or tiny
- Winners get a small segment/Winner take almost all effects
- When you observe for a while, you know what’s going on/It takes a very long time to figure out what’s going on
- Prediction is easy/Prediction is hard
- History crawls/History makes jumps
- Tyranny of the collective/Tyranny of the accidental

Turkeys...

From “The Black Swan”\(^1\)
Complementary Cumulative Distribution Function:

CCDF:

\[P_>(x) = P(x' \geq x) = 1 - P(x' < x) \]

\[= \int_{x'=x}^{\infty} P(x')dx' \]

\[\propto \int_{x'=x}^{\infty} (x')^{-\gamma}dx' \]

\[= \frac{1}{-\gamma + 1} (x')^{-\gamma+1} \bigg|_{x'=x}^{\infty} \]

\[\propto x^{-\gamma+1} \]

Complementary Cumulative Distribution Function:

CCDF:

\[P_>(x) \propto x^{-\gamma+1} \]

- Use when tail of \(P \) follows a power law.
- Increases exponent by one.
- Useful in cleaning up data.

Size distributions

Brown Corpus (1,015,945 words):

CCDF:

Zipf:

- The, of, and, to, a, ... = ‘objects’
- ‘Size’ = word frequency
- Beep: CCDF and Zipf plots are related...
Size distributions

Observe:

- \(NP_\geq(x) \) = the number of objects with size at least \(x \) where \(N \) = total number of objects.
- If an object has size \(x_i \), then \(NP_\geq(x_i) \) is its rank \(i \).
- So \(x_i \sim i^{-\alpha} = (NP_\geq(x_i))^{-\alpha} \)
- \(\alpha \sim x_i^{-\gamma+1} \)

Since \(P_\geq(x) \sim x^{-\gamma+1} \),
\[\alpha = \frac{1}{\gamma - 1} \]

A rank distribution exponent of \(\alpha = 1 \) corresponds to a size distribution exponent \(\gamma = 2 \).

The mean:

\[\langle x \rangle \sim \frac{c}{2 - \gamma} \left(x_{\text{max}}^{2-\gamma} - x_{\text{min}}^{2-\gamma} \right). \]
- Mean blows up with upper cutoff if \(\gamma < 2 \).
- Mean depends on lower cutoff if \(\gamma > 2 \).
- \(\gamma < 2 \): Typical sample is large.
- \(\gamma > 2 \): Typical sample is small.

Details on the lack of scale:

Let's find the mean:

\[\langle x \rangle = \int_{x=x_{\text{min}}}^{x_{\text{max}}} x P(x) \, dx \]

\[= c \int_{x=x_{\text{min}}}^{x_{\text{max}}} xx^{-\gamma} \, dx \]

\[= \frac{c}{2 - \gamma} \left(x_{\text{max}}^{2-\gamma} - x_{\text{min}}^{2-\gamma} \right). \]

And in general...

Moments:

- All moments depend only on cutoffs.
- No internal scale dominates (even matters).
- Compare to a Gaussian, exponential, etc.
Moments

For many real size distributions:

\[2 < \gamma < 3 \]

- Mean is finite (depends on lower cutoff)
- \(\sigma^2 \) = variance is ‘infinite’ (depends on upper cutoff)
- Width of distribution is ‘infinite’

How sample sizes grow...

Given \(P(x) \sim cx^{-\gamma} \):

- We can show that after \(n \) samples, we expect the largest sample to be
 \[x_1 \gtrsim n^{1/(\gamma-1)} \]
- Sampling from a ‘mild’ distribution gives a much slower growth with \(n \).
- E.g., for \(P(x) = \lambda e^{-\lambda x} \), we find
 \[x_1 \gtrsim \frac{1}{\lambda} \ln n. \]

Moments

Standard deviation is a mathematical convenience!:

- Variance is nice analytically...
- Another measure of distribution width:
 Mean average deviation (MAD) =
 \[\langle |x - \langle x \rangle| \rangle \]
- MAD is unpleasant analytically...

References

- N. N. Taleb.
 The Black Swan.

- G. K. Zipf.
 Human Behaviour and the Principle of Least-Effort.
 Addison-Wesley, Cambridge, MA, 1949.