Chapter 6: Lecture 25
Linear Algebra, Course 124B, Fall, 2008

Prof. Peter Dodds

Department of Mathematics & Statistics
University of Vermont

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.
Outline

The fundamental theorem of linear algebra

Approximating matrices with SVD
 The basic idea
 Guess who?
 Bonus example 1
 Bonus example 2
All the way with $A\vec{x} = \vec{b}$:
All the way with $A\vec{x} = \vec{b}$:

- Applies to any $m \times n$ matrix A.
- Symmetry of A and A^T.
All the way with $A\vec{x} = \vec{b}$:

- Applies to any $m \times n$ matrix A.
- Symmetry of A and A^T.

Where \vec{x} lives:
All the way with $A\vec{x} = \vec{b}$:

- Applies to any $m \times n$ matrix A.
- Symmetry of A and A^T.

Where \vec{x} lives:

- Row space $C(A^T) \subset R^n$.
- (Right) Nullspace $N(A) \subset R^n$.

The fundamental theorem of linear algebra

Approximating matrices with SVD

The basic idea

Guess who?

Bonus example 1

Bonus example 2
All the way with $A\vec{x} = \vec{b}$:

- Applies to any $m \times n$ matrix A.
- Symmetry of A and A^T.

Where \vec{x} lives:

- Row space $C(A^T) \subset R^n$.
- (Right) Nullspace $N(A) \subset R^n$.

Where \vec{b} lives:
All the way with $A\vec{x} = \vec{b}$:

- Applies to any $m \times n$ matrix A.
- Symmetry of A and A^T.

Where \vec{x} lives:

- Row space $C(A^T) \subset \mathbb{R}^n$.
- (Right) Nullspace $N(A) \subset \mathbb{R}^n$.

Where \vec{b} lives:

- Column space $C(A) \subset \mathbb{R}^m$.
- Left Nullspace $N(A^T) \subset \mathbb{R}^m$.
All the way with $A\vec{x} = \vec{b}$:

- Applies to any $m \times n$ matrix A.
- Symmetry of A and A^T.

Where \vec{x} lives:

- Row space $C(A^T) \subset \mathbb{R}^n$.
- (Right) Nullspace $N(A) \subset \mathbb{R}^n$.
- $\dim C(A^T) + \dim N(A) = r + (n - r) = n$

Where \vec{b} lives:

- Column space $C(A) \subset \mathbb{R}^m$.
- Left Nullspace $N(A^T) \subset \mathbb{R}^m$.
All the way with $A\vec{x} = \vec{b}$:

- Applies to any $m \times n$ matrix A.
- Symmetry of A and A^T.

Where \vec{x} lives:

- Row space $C(A^T) \subset R^n$.
- (Right) Nullspace $N(A) \subset R^n$.
- $\dim C(A^T) + \dim N(A) = r + (n - r) = n$

Where \vec{b} lives:

- Column space $C(A) \subset R^m$.
- Left Nullspace $N(A^T) \subset R^m$.
- $\dim C(A) + \dim N(A^T) = r + (m - r) = m$
All the way with $A\vec{x} = \vec{b}$:

- Applies to any $m \times n$ matrix A.
- Symmetry of A and A^T.

Where \vec{x} lives:

- Row space $C(A^T) \subset \mathbb{R}^n$.
- (Right) Nullspace $N(A) \subset \mathbb{R}^n$.
- $\dim C(A^T) + \dim N(A) = r + (n - r) = n$
- Orthogonality: $C(A^T) \bigotimes N(A) = \mathbb{R}^n$

Where \vec{b} lives:

- Column space $C(A) \subset \mathbb{R}^m$.
- Left Nullspace $N(A^T) \subset \mathbb{R}^m$.
- $\dim C(A) + \dim N(A^T) = r + (m - r) = m$
All the way with $A\vec{x} = \vec{b}$:

- Applies to any $m \times n$ matrix A.
- Symmetry of A and A^T.

Where \vec{x} lives:

- Row space $C(A^T) \subset R^n$.
- (Right) Nullspace $N(A) \subset R^n$.
- $\dim C(A^T) + \dim N(A) = r + (n - r) = n$
- Orthogonality: $C(A^T) \perp N(A) = R^n$

Where \vec{b} lives:

- Column space $C(A) \subset R^m$.
- Left Nullspace $N(A^T) \subset R^m$.
- $\dim C(A) + \dim N(A^T) = r + (m - r) = m$
- Orthogonality: $C(A) \perp N(A^T) = R^m$
Best solution \vec{x}_* when $\vec{b} = \vec{p} + \vec{e}$:
Fundamental Theorem of Linear Algebra

Now we see:

- Each of the four fundamental subspaces has a ‘best’ orthonormal basis
Fundamental Theorem of Linear Algebra

Now we see:

- Each of the four fundamental subspaces has a ‘best’ orthonormal basis
- The \hat{v}_i span \mathbb{R}^n
Fundamental Theorem of Linear Algebra

Now we see:

- Each of the four fundamental subspaces has a ‘best’ orthonormal basis
- The \hat{v}_i span \mathbb{R}^n
- We find the \hat{v}_i as eigenvectors of $A^T A$.
Fundamental Theorem of Linear Algebra

Now we see:

- Each of the four fundamental subspaces has a ‘best’ orthonormal basis
- The \(\hat{v}_i \) span \(R^n \)
- We find the \(\hat{v}_i \) as eigenvectors of \(A^T A \).
- The \(\hat{u}_i \) span \(R^m \)
Fundamental Theorem of Linear Algebra

Now we see:

- Each of the four fundamental subspaces has a ‘best’ orthonormal basis.
- The \hat{v}_i span R^n.
- We find the \hat{v}_i as eigenvectors of $A^T A$.
- The \hat{u}_i span R^m.
- We find the \hat{u}_i as eigenvectors of AA^T.
Fundamental Theorem of Linear Algebra

Now we see:

- Each of the four fundamental subspaces has a ‘best’ orthonormal basis
- The \hat{v}_i span R^n
- We find the \hat{v}_i as eigenvectors of $A^T A$.
- The \hat{u}_i span R^m
- We find the \hat{u}_i as eigenvectors of AA^T.

Happy bases

- $\{\hat{v}_1, \ldots, \hat{v}_r\}$ span Row space
Fundamental Theorem of Linear Algebra

Now we see:

- Each of the four fundamental subspaces has a ‘best’ orthonormal basis
- The \hat{v}_i span \mathbb{R}^n
- We find the \hat{v}_i as eigenvectors of $A^T A$.
- The \hat{u}_i span \mathbb{R}^m
- We find the \hat{u}_i as eigenvectors of AA^T.

Happy bases

- $\{\hat{v}_1, \ldots, \hat{v}_r\}$ span Row space
- $\{\hat{v}_{r+1}, \ldots, \hat{v}_n\}$ span Null space
Fundamental Theorem of Linear Algebra

Now we see:

- Each of the four fundamental subspaces has a ‘best’ orthonormal basis
 - The \hat{v}_i span R^n
 - We find the \hat{v}_i as eigenvectors of $A^T A$.
 - The \hat{u}_i span R^m
 - We find the \hat{u}_i as eigenvectors of AA^T.

Happy bases

- $\{\hat{v}_1, \ldots, \hat{v}_r\}$ span Row space
- $\{\hat{v}_{r+1}, \ldots, \hat{v}_n\}$ span Null space
- $\{\hat{u}_1, \ldots, \hat{u}_r\}$ span Column space
Fundamental Theorem of Linear Algebra

Now we see:

- Each of the four fundamental subspaces has a ‘best’ orthonormal basis
- The \(\hat{v}_i \) span \(R^n \)
- We find the \(\hat{v}_i \) as eigenvectors of \(A^T A \).
- The \(\hat{u}_i \) span \(R^m \)
- We find the \(\hat{u}_i \) as eigenvectors of \(AA^T \).

Happy bases

- \(\{ \hat{v}_1, \ldots, \hat{v}_r \} \) span Row space
- \(\{ \hat{v}_{r+1}, \ldots, \hat{v}_n \} \) span Null space
- \(\{ \hat{u}_1, \ldots, \hat{u}_r \} \) span Column space
- \(\{ \hat{u}_{r+1}, \ldots, \hat{u}_m \} \) span Left Null space
Fundamental Theorem of Linear Algebra

How $A\vec{x}$ works:
Fundamental Theorem of Linear Algebra

How $A \vec{x}$ works:

1. $A = U \Sigma V^T$
Fundamental Theorem of Linear Algebra

How $A\vec{x}$ works:

- $A = U\Sigma V^T$
- A sends each $\vec{v}_i \in C(A^T)$ to its partner $\vec{u}_i \in C(A)$ with a stretch/shrink factor $\sigma_i > 0$.
Fundamental Theorem of Linear Algebra

How $A\vec{x}$ works:

- $A = U\Sigma V^T$
- A sends each $\vec{v}_i \in C(A^T)$ to its partner $\vec{u}_i \in C(A)$ with a stretch/shrink factor $\sigma_i > 0$.
- A is diagonal with respect to these bases and has positive entries (all $\sigma_i > 0$).
Fundamental Theorem of Linear Algebra

How $A\vec{x}$ works:

- $A = U\Sigma V^T$
- A sends each $\vec{v}_i \in C(A^T)$ to its partner $\vec{u}_i \in C(A)$ with a stretch/shrink factor $\sigma_i > 0$.
- A is diagonal with respect to these bases and has positive entries (all $\sigma_i > 0$).
- When viewed the right way, any A is a diagonal matrix Σ.
Outline

The fundamental theorem of linear algebra

Approximating matrices with SVD
 The basic idea
 Guess who?
 Bonus example 1
 Bonus example 2
Image approximation (80x60)

Idea: use SVD to approximate images

- Interpret elements of matrix A as color values of an image.

\[
A = U \Sigma V^T = \sum_{i=1}^{\min(m, n)} \sigma_i \hat{u}_i \hat{v}_i^T
\]

- Use fact that $\sigma_1 > \sigma_2 > \ldots > \sigma_r > 0$.
- Rank $r = \min(m, n)$.
- Rank $r = \# \text{ of pixels on shortest side}$.
- For color: approximate 3 matrices (RGB).
Image approximation (80x60)

Idea: use SVD to approximate images

► Interpret elements of matrix A as color values of an image.

► Truncate series SVD representation of A:

$$A = U\Sigma V^T = \sum_{i=1}^{r} \sigma_i \hat{u}_i \hat{v}_i^T$$
Image approximation (80x60)

Idea: use SVD to approximate images

- Interpret elements of matrix A as color values of an image.
- Truncate series SVD representation of A:

$$
A = U\Sigma V^T = \sum_{i=1}^{r} \sigma_i \hat{u}_i \hat{v}_i^T
$$

- Use fact that $\sigma_1 > \sigma_2 > \ldots > \sigma_r > 0$.
Image approximation (80x60)

Idea: use SVD to approximate images

- Interpret elements of matrix A as color values of an image.
- Truncate series SVD representation of A:

$$A = U\Sigma V^T = \sum_{i=1}^{r} \sigma_i \hat{u}_i \hat{v}_i^T$$

- Use fact that $\sigma_1 > \sigma_2 > \ldots > \sigma_r > 0$.
- Rank $r = \min(m, n)$.
Image approximation (80x60)

Idea: use SVD to approximate images

- Interpret elements of matrix A as color values of an image.
- Truncate series SVD representation of A:
 \[A = U\Sigma V^T = \sum_{i=1}^{r} \sigma_i \hat{u}_i \hat{v}_i^T \]
- Use fact that $\sigma_1 > \sigma_2 > \ldots > \sigma_r > 0$.
- Rank $r = \min(m, n)$.
- Rank $r = \# \text{ of pixels on shortest side.}$
Image approximation (80x60)

Idea: use SVD to approximate images

- Interpret elements of matrix A as color values of an image.
- Truncate series SVD representation of A:

$$A = U\Sigma V^T = \sum_{i=1}^{r} \sigma_i \hat{u}_i \hat{v}_i^T$$

- Use fact that $\sigma_1 > \sigma_2 > \ldots > \sigma_r > 0$.
- Rank $r = \min(m, n)$.
- Rank $r =$ # of pixels on shortest side.
- For color: approximate 3 matrices (RGB).
Outline

The fundamental theorem of linear algebra

Approximating matrices with SVD
 The basic idea
 Guess who?
 Bonus example 1
 Bonus example 2
The fundamental theorem of linear algebra

Approximating matrices with SVD

The basic idea

Guess who?

Bonus example 1

Bonus example 2

Image approximation (80x60)

\[A = \sum_{i=1}^{1} \sigma_i \hat{u}_i \hat{v}_i^T \]
Image approximation (80x60)

\[A = \sum_{i=1}^{2} \sigma_i \hat{u}_i \hat{v}_i^T \]
Image approximation (80x60)

\[A = \sum_{i=1}^{3} \sigma_i \hat{u}_i \hat{v}_i^T \]
The fundamental theorem of linear algebra

Approximating matrices with SVD

The basic idea

Guess who?

Bonus example 1

Bonus example 2

Image approximation (80x60)

\[A = \sum_{i=1}^{4} \sigma_i \hat{u}_i \hat{v}_i^T \]
Image approximation (80x60)

\[A = \sum_{i=1}^{5} \sigma_i \hat{u}_i \hat{v}_i^T \]
Image approximation (80x60)

\[A = \sum_{i=1}^{6} \sigma_i \hat{u}_i \hat{v}_i^T \]
The fundamental theorem of linear algebra

Approximating matrices with SVD

The basic idea

Guess who?

Bonus example 1

Bonus example 2

Image approximation (80x60)

\[A = \sum_{i=1}^{7} \sigma_i \hat{u}_i \hat{v}_i^T \]
The fundamental theorem of linear algebra

Approximating matrices with SVD

The basic idea

Guess who?

Bonus example 1

Bonus example 2

Image approximation (80x60)

\[A = \sum_{i=1}^{8} \sigma_i \hat{u}_i \hat{v}_i^T \]
Image approximation (80x60)

\[A = \sum_{i=1}^{9} \sigma_i \hat{u}_i \hat{v}_i^T \]
Image approximation (80x60)

\[A = \sum_{i=1}^{10} \sigma_i \hat{u}_i \hat{v}_i^T \]
The fundamental theorem of linear algebra

Approximating matrices with SVD

The basic idea

Guess who?

Bonus example 1

Bonus example 2

Image approximation (80x60)

\[A = \sum_{i=1}^{20} \sigma_i \hat{u}_i \hat{v}_i^T \]
The fundamental theorem of linear algebra

Approximating matrices with SVD

The basic idea

Guess who?

Bonus example 1

Bonus example 2

Image approximation (80x60)

\[A = \sum_{i=1}^{30} \sigma_i \hat{u}_i \hat{v}_i^T \]
Image approximation (80x60)

\[A = \sum_{i=1}^{40} \sigma_i \hat{u}_i \hat{v}_i^T \]
The fundamental theorem of linear algebra
Approximating matrices with SVD
The basic idea
Guess who?
Bonus example 1
Bonus example 2

\[A = \sum_{i=1}^{50} \sigma_i \hat{u}_i \hat{v}_i^T \]
The fundamental theorem of linear algebra

Approximating matrices with SVD

The basic idea

Guess who?

Bonus example 1

Bonus example 2

Image approximation (80x60)

\[A = \sum_{i=1}^{60} \sigma_i \hat{u}_i \hat{v}_i^T \]
Decay of sigma values: Einstein
Image approximation (480x615)

\[A = \sum_{i=1}^{1} \sigma_i \hat{u}_i \hat{v}_i^T \]
Image approximation (480x615)

\[A = \sum_{i=1}^{2} \sigma_i \hat{u}_i \hat{v}_i^T \]
The fundamental theorem of linear algebra

Approximating matrices with SVD

The basic idea

Guess who?

Bonus example 1

Bonus example 2

Image approximation (480x615)

\[A = \sum_{i=1}^{3} \sigma_i \hat{u}_i \hat{v}_i^T \]
The fundamental theorem of linear algebra

Approximating matrices with SVD

The basic idea

Guess who?

Bonus example 1

Bonus example 2

Image approximation (480x615)

\[A = \sum_{i=1}^{4} \sigma_i \hat{u}_i \hat{v}_i^T \]
Image approximation (480x615)

\[A = \sum_{i=1}^{5} \sigma_i \hat{u}_i \hat{v}_i^T \]
Image approximation (480x615)

\[A = \sum_{i=1}^{6} \sigma_i \hat{u}_i \hat{v}_i^T \]
Image approximation (480x615)

\[A = \sum_{i=1}^{7} \sigma_i \hat{u}_i^{\top} \hat{v}_i \]
Image approximation (480x615)

\[A = \sum_{i=1}^{8} \sigma_i \hat{u}_i \hat{v}_i^T \]
Image approximation \((480x615)\)

\[
A = \sum_{i=1}^{9} \sigma_i \hat{u}_i \hat{v}_i^T
\]
The fundamental theorem of linear algebra

Approximating matrices with SVD

The basic idea

Guess who?

Bonus example 1

Bonus example 2

Image approximation (480x615)

\[A = \sum_{i=1}^{10} \sigma_i \hat{u}_i \hat{v}_i^T \]
Image approximation (480x615)

\[A = \sum_{i=1}^{20} \sigma_i \hat{u}_i \hat{v}_i^T \]
Image approximation (480x615)

\[A = \sum_{i=1}^{30} \sigma_i \hat{u}_i \hat{v}_i^T \]
Image approximation (480x615)

\[A = \sum_{i=1}^{40} \sigma_i \hat{u}_i \hat{v}_i^T \]
Image approximation (480×615)

$$A = \sum_{i=1}^{50} \sigma_i \hat{u}_i \hat{v}_i^T$$
The fundamental theorem of linear algebra

Approximating matrices with SVD

The basic idea

Guess who?

Bonus example 1

Bonus example 2

Image approximation (480x615)

\[A = \sum_{i=1}^{60} \sigma_i \hat{u}_i \hat{v}_i^T \]
Image approximation (480x615)

\[A = \sum_{i=1}^{480} \sigma_i \hat{u}_i \hat{v}_i^T \]
Outline

The fundamental theorem of linear algebra

Approximating matrices with SVD
 The basic idea
 Guess who?
 Bonus example 1
 Bonus example 2
The fundamental theorem of linear algebra

Approximating matrices with SVD

The basic idea
Guess who?
Bonus example 1
Bonus example 2

\[A = \sum_{i=1}^{1} \sigma_i \hat{u}_i \hat{v}_i^T \]
Image approximation (480x640)

\[A = \sum_{i=1}^{2} \sigma_i \hat{u}_i \hat{v}_i^T \]
Image approximation (480x640)

\[A = \sum_{i=1}^{3} \sigma_i \hat{u}_i \hat{v}_i^T \]
Image approximation (480x640)

\[A = \sum_{i=1}^{4} \sigma_i \hat{u}_i \hat{v}_i^T \]
Image approximation (480x640)

\[A = \sum_{i=1}^{5} \sigma_i \hat{u}_i \hat{v}_i^T \]
The fundamental theorem of linear algebra

Approximating matrices with SVD

The basic idea
Guess who?
Bonus example 1
Bonus example 2

Image approximation (480x640)

\[A = \sum_{i=1}^{6} \sigma_i \hat{u}_i \hat{v}_i^T \]
Image approximation (480x640)

\[A = \sum_{i=1}^{7} \sigma_i \hat{u}_i \hat{v}_i^T \]
Image approximation (480x640)

\[A = \sum_{i=1}^{8} \sigma_i \hat{u}_i \hat{v}_i^T \]
Image approximation (480x640)

\[A = \sum_{i=1}^{9} \sigma_i \hat{u}_i \hat{v}_i^T \]
Image approximation (480x640)

\[A = \sum_{i=1}^{10} \sigma_i \hat{u}_i \hat{v}_i^T \]
Image approximation (480x640)

\[A = \sum_{i=1}^{20} \sigma_i \hat{u}_i \hat{v}_i^T \]
The fundamental theorem of linear algebra

Approximating matrices with SVD

The basic idea

Guess who?

Bonus example 1

Bonus example 2

Image approximation (480x640)

$$A = \sum_{i=1}^{30} \sigma_i \hat{u}_i \hat{v}_i^T$$
Image approximation (480x640)

\[A = \sum_{i=1}^{40} \sigma_i \hat{u}_i \hat{v}_i^T \]
Image approximation (480x640)

\[A = \sum_{i=1}^{50} \sigma_i \hat{u}_i \hat{v}_i^T \]
Image approximation (480x640)

\[A = \sum_{i=1}^{60} \sigma_i \hat{u}_i \hat{v}_i^T \]
Image approximation (480x640)

\[A = \sum_{i=1}^{100} \sigma_i \hat{u}_i \hat{v}_i^T \]
Image approximation (480x640)

\[A = \sum_{i=1}^{200} \sigma_i \hat{u}_i \hat{v}_i^T \]
Image approximation (480x640)

\[A = \sum_{i=1}^{320} \sigma_i \hat{u}_i \hat{v}_i^T \]

The fundamental theorem of linear algebra
Approximating matrices with SVD
The basic idea
Guess who?
Bonus example 1
Bonus example 2
Image approximation (480x640)

\[A = \sum_{i=1}^{480} \sigma_i \hat{u}_i \hat{v}_i^T \]
Outline

The fundamental theorem of linear algebra

Approximating matrices with SVD
 The basic idea
 Guess who?
 Bonus example 1

Bonus example 2
Image approximation (480x640)

\[A = \sum_{i=1}^{1} \sigma_i \hat{u}_i \hat{v}_i^T \]
Image approximation (480x640)

\[A = \sum_{i=1}^{2} \sigma_i \hat{u}_i \hat{v}_i^T \]
Image approximation (480x640)

$$A = \sum_{i=1}^{3} \sigma_i \hat{u}_i \hat{v}_i^T$$
Image approximation (480x640)

\[A = \sum_{i=1}^{4} \sigma_i \hat{u}_i \hat{v}_i^T \]
Image approximation (480x640)

\[A = \sum_{i=1}^{5} \sigma_i \hat{u}_i \hat{v}_i^T \]
Image approximation (480x640)

\[A = \sum_{i=1}^{6} \sigma_i \hat{u}_i \hat{v}_i^T \]
Image approximation (480x640)

\[A = \sum_{i=1}^{7} \sigma_i \hat{u}_i \hat{v}_i^T \]
Image approximation (480x640)

\[
A = \sum_{i=1}^{8} \sigma_i \hat{u}_i \hat{v}_i^T
\]
The fundamental theorem of linear algebra

Approximating matrices with SVD

The basic idea

Guess who?

Bonus example 1

Bonus example 2

Image approximation (480x640)

\[
A = \sum_{i=1}^{9} \sigma_i \hat{u}_i \hat{v}_i^T
\]
Image approximation (480x640)

\[A = \sum_{i=1}^{10} \sigma_i \hat{u}_i \hat{v}_i^T \]
The fundamental theorem of linear algebra

Approximating matrices with SVD

The basic idea

Guess who?

Bonus example 1

Bonus example 2

Image approximation (480x640)

\[A = \sum_{i=1}^{20} \sigma_i \hat{u}_i \hat{v}_i^T \]
Image approximation (480x640)

\[A = \sum_{i=1}^{30} \sigma_i \hat{u}_i \hat{v}_i^T \]
Image approximation (480x640)

\[A = \sum_{i=1}^{40} \sigma_i \hat{u}_i \hat{v}_i^T \]
Image approximation (480x640)

$$A = \sum_{i=1}^{50} \sigma_i \hat{u}_i \hat{v}_i^T$$
The fundamental theorem of linear algebra

Approximating matrices with SVD

The basic idea

A = \sum_{i=1}^{60} \sigma_i \hat{u}_i \hat{v}_i^T

Bonus example 1

Bonus example 2

Image approximation (480x640)
Image approximation (480x640)

$$A = \sum_{i=1}^{100} \sigma_i \hat{u}_i \hat{v}_i^T$$
Image approximation (480x640)

\[A = \sum_{i=1}^{200} \sigma_i \hat{u}_i \hat{v}_i^T \]
Image approximation (480x640)

\[A = \sum_{i=1}^{320} \sigma_i \hat{u}_i \hat{v}_i^T \]
Image approximation (480x640)

\[A = \sum_{i=1}^{480} \sigma_i \hat{u}_i \hat{v}_i^T \]