Singular Value Decomposition
Linear Algebra, Course 124A, Fall, 2007

Prof. Peter Dodds
Department of Mathematics & Statistics
University of Vermont

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.
Approximating matrices with SVD

The basic idea
Guess who?
Bonus example 1
Bonus example 2
Bonus example 3
Bonus example 4
Bonus Puzzle
Colbert on Equations
Approximating matrices with SVD

The basic idea

Guess who?

Bonus example 1

Bonus example 2

Bonus example 3

Bonus example 4

Bonus Puzzle

Colbert on Equations
Image approximation (80x60)

- Idea: use SVD to approximate images.
- Interpret elements of matrix A as color values of an image.
- Truncate series SVD representation of A:
 \[
 A = U \Sigma V^T = \sum_{i=1}^{r} \sigma_i \hat{u}_i \hat{v}_i^T
 \]
- Use fact that $\sigma_1 > \sigma_2 > \ldots > \sigma_r > 0$.
- For color: approximate 3 matrices (RGB).
Image approximation (80x60)

- Idea: use SVD to approximate images.
- Interpret elements of matrix A as color values of an image.
- Truncate series SVD representation of A:

$$A = U\Sigma V^T = \sum_{i=1}^{r} \sigma_i \hat{u}_i \hat{v}_i^T$$

- Use fact that $\sigma_1 > \sigma_2 > \ldots > \sigma_r > 0$.
- For color: approximate 3 matrices (RGB).
Image approximation (80x60)

- Idea: use SVD to approximate images.
- Interpret elements of matrix A as color values of an image.
- Truncate series SVD representation of A:

\[
A = U\Sigma V^T = \sum_{i=1}^{r} \sigma_i \hat{u}_i \hat{v}_i^T
\]

- Use fact that $\sigma_1 > \sigma_2 > \ldots > \sigma_r > 0$.
- For color: approximate 3 matrices (RGB).
Image approximation (80x60)

► Idea: use SVD to approximate images.
► Interpret elements of matrix A as color values of an image.
► Truncate series SVD representation of A:

$$A = UΣV^T = \sum_{i=1}^{r} σ_i \hat{u}_i \hat{v}_i^T$$

► Use fact that $σ_1 > σ_2 > \ldots > σ_r > 0$.
► For color: approximate 3 matrices (RGB).
Image approximation (80x60)

- Idea: use SVD to approximate images.
- Interpret elements of matrix A as color values of an image.
- Truncate series SVD representation of A:

$$A = U\Sigma V^T = \sum_{i=1}^{r} \sigma_i \hat{u}_i \hat{v}_i^T$$

- Use fact that $\sigma_1 > \sigma_2 > \ldots > \sigma_r > 0$.
- For color: approximate 3 matrices (RGB).
Outline

Approximating matrices with SVD
 The basic idea
Guess who?
 Bonus example 1
 Bonus example 2
 Bonus example 3
 Bonus example 4
Bonus Puzzle
Colbert on Equations
Image approximation (80x60)

\[A = \sum_{i=1}^{1} \sigma_i \hat{u}_i \hat{v}_i^T \]
Image approximation (80x60)

\[A = \sum_{i=1}^{2} \sigma_i \hat{u}_i \hat{v}_i^T \]
Image approximation (80x60)

\[A = \sum_{i=1}^{3} \sigma_i \hat{u}_i \hat{v}_i^T \]
Image approximation (80x60)

\[A = \sum_{i=1}^{4} \sigma_i \hat{u}_i \hat{v}_i^T \]
Image approximation (80x60)

$$A = \sum_{i=1}^{5} \sigma_i \hat{u}_i \hat{v}_i^T$$
Image approximation (80x60)

\[
A = \sum_{i=1}^{6} \sigma_i \hat{u}_i \hat{v}_i^T
\]
Image approximation (80x60)

\[A = \sum_{i=1}^{7} \sigma_i \hat{u}_i \hat{v}_i^T \]
Image approximation (80x60)

\[A = \sum_{i=1}^{8} \sigma_i \hat{u}_i \hat{v}_i^T \]
Image approximation (80x60)

\[A = \sum_{i=1}^{9} \sigma_i \hat{u}_i \hat{v}_i^T \]
Image approximation (80x60)

\[A = \sum_{i=1}^{10} \sigma_i \hat{u}_i \hat{v}_i^T \]
Image approximation (80x60)

\[A = \sum_{i=1}^{20} \sigma_i \hat{u}_i \hat{v}_i^T \]
Approximating matrices with SVD

The basic idea

Guess who?

Bonus example 1
Bonus example 2
Bonus example 3
Bonus example 4
Bonus Puzzle

Colbert on Equations

Image approximation (80x60)

\[A = \sum_{i=1}^{30} \sigma_i \hat{u}_i \hat{v}_i^T \]
Image approximation (80x60)

\[A = \sum_{i=1}^{40} \sigma_i \hat{u}_i \hat{v}_i^T \]
Image approximation (80x60)

\[A = \sum_{i=1}^{50} \sigma_i \hat{u}_i \hat{v}_i^T \]
Image approximation (80x60)

\[A = \sum_{i=1}^{60} \sigma_i \hat{u}_i \hat{v}_i^T \]
Decay of sigma values: Einstein

\[\sigma_k \]

\[k \]

Approximating matrices with SVD

- The basic idea
- Guess who?
- Bonus example 1
- Bonus example 2
- Bonus example 3
- Bonus example 4
- Bonus Puzzle
- Colbert on Equations
Approximating matrices with SVD

The basic idea
Guess who?
Bonus example 1
Bonus example 2
Bonus example 3
Bonus example 4
Bonus Puzzle
Colbert on Equations
Image approximation (480x640)

\[A = \sum_{i=1}^{1} \sigma_i \hat{u}_i \hat{v}_i^T \]
Approximating matrices with SVD

The basic idea

Guess who?

Bonus example 1

Bonus example 2

Bonus example 3

Bonus example 4

Bonus Puzzle

Colbert on Equations

Image approximation (480x640)

\[A = \sum_{i=1}^{2} \sigma_i \hat{u}_i \hat{v}_i^T \]
Image approximation (480x640)

\[A = \sum_{i=1}^{3} \sigma_i \hat{u}_i \hat{v}_i^T \]
Image approximation (480x640)

$$A = \sum_{i=1}^{4} \sigma_i \hat{u}_i \hat{v}_i^T$$
Image approximation (480x640)

\[A = \sum_{i=1}^{5} \sigma_i \hat{u}_i \hat{v}_i^T \]
Image approximation (480x640)

\[A = \sum_{i=1}^{6} \sigma_i \hat{u}_i \hat{v}_i^T \]
Singular Value Decomposition

Approximating matrices with SVD

The basic idea

Guess who?

Bonus example 1
Bonus example 2
Bonus example 3
Bonus example 4
Bonus Puzzle

Colbert on Equations

Image approximation (480x640)

\[A = \sum_{i=1}^{7} \sigma_i \hat{u}_i \hat{v}_i^T \]
Image approximation (480x640)

\[A = \sum_{i=1}^{8} \sigma_i \hat{u}_i \hat{v}_i^T \]
Image approximation (480x640)

\[A = \sum_{i=1}^{9} \sigma_i \hat{u}_i \hat{v}_i^T \]
Image approximation (480x640)

\[A = \sum_{i=1}^{10} \sigma_i \hat{u}_i \hat{v}_i^T \]
Image approximation (480x640)

\[A = \sum_{i=1}^{20} \sigma_i \hat{u}_i \hat{v}_i^T \]
Approximating matrices with SVD

The basic idea
Guess who?
Bonus example 1
Bonus example 2
Bonus example 3
Bonus example 4
Bonus Puzzle
Colbert on Equations

Image approximation (480x640)

\[A = \sum_{i=1}^{30} \sigma_i \hat{u}_i \hat{v}_i^T \]
Image approximation (480x640)

\[A = \sum_{i=1}^{40} \sigma_i \hat{u}_i \hat{v}_i^T \]
Image approximation (480x640)

\[A = \sum_{i=1}^{50} \sigma_i \hat{u}_i \hat{v}_i^T \]
Image approximation (480x640)

\[A = \sum_{i=1}^{60} \sigma_i \hat{u}_i \hat{v}_i^T \]
Image approximation (480x640)

\[A = \sum_{i=1}^{100} \sigma_i \hat{u}_i \hat{v}_i^T \]
Singular Value Decomposition

Approximating matrices with SVD

The basic idea
Guess who?
Bonus example 1
Bonus example 2
Bonus example 3
Bonus example 4
Bonus Puzzle
Colbert on Equations

Image approximation (480x640)

\[A = \sum_{i=1}^{200} \sigma_i \hat{u}_i \hat{v}_i^T \]
Image approximation (480x640)

\[A = \sum_{i=1}^{320} \sigma_i \hat{u}_i \hat{v}_i^T \]
Approximating matrices with SVD

The basic idea

Guess who?

Bonus example 1

Bonus example 2

Bonus example 3

Bonus example 4

Bonus Puzzle

Colbert on Equations

Image approximation (480x640)

\[A = \sum_{i=1}^{480} \sigma_i \hat{u}_i \hat{v}_i^T \]
Approximating matrices with SVD

The basic idea
Guess who?
Bonus example 1
Bonus example 2
Bonus example 3
Bonus example 4
Bonus Puzzle
Colbert on Equations
Image approximation (480x640)

\[A = \sum_{i=1}^{1} \sigma_i \hat{u}_i \hat{v}_i^T \]
Image approximation (480x640)

\[A = \sum_{i=1}^{2} \sigma_i \hat{u}_i \hat{v}_i^T \]
Image approximation (480x640)

\[A = \sum_{i=1}^{3} \sigma_i \hat{u}_i \hat{v}_i^T \]
Approximating matrices with SVD

The basic idea

Guess who?

Bonus example 1

Bonus example 2

Bonus example 3

Bonus example 4

Bonus Puzzle

Colbert on Equations

\[A = \sum_{i=1}^{4} \sigma_i \hat{u}_i \hat{v}_i^T \]
Image approximation (480x640)

\[A = \sum_{i=1}^{5} \sigma_i \hat{u}_i \hat{v}_i^T \]
Image approximation (480x640)

\[
A = \sum_{i=1}^{6} \sigma_i \hat{u}_i \hat{v}_i^T
\]
Image approximation (480x640)

\[A = \sum_{i=1}^{7} \sigma_i \hat{u}_i \hat{v}_i^T \]
Image approximation (480x640)

\[A = \sum_{i=1}^{8} \sigma_i \hat{u}_i \hat{v}_i^T \]
Image approximation (480x640)

\[A = \sum_{i=1}^{9} \sigma_i \hat{u}_i \hat{v}_i^T \]
Image approximation (480x640)

\[A = \sum_{i=1}^{10} \sigma_i \hat{u}_i \hat{v}_i^T \]
Image approximation (480x640)

\[A = \sum_{i=1}^{20} \sigma_i \hat{u}_i \hat{v}_i^T \]
Image approximation (480x640)

\[
A = \sum_{i=1}^{30} \sigma_i \hat{u}_i \hat{v}_i^T
\]
Approximating matrices with SVD

The basic idea

Guess who?

Bonus example 1

Bonus example 2

Bonus example 3

Bonus example 4

Bonus Puzzle

Colbert on Equations

Image approximation (480x640)

$$A = \sum_{i=1}^{40} \sigma_i \hat{u}_i \hat{v}_i^T$$
Image approximation (480x640)

\[A = \sum_{i=1}^{50} \sigma_i \hat{u}_i \hat{v}_i^T \]
Image approximation (480x640)

\[A = \sum_{i=1}^{60} \sigma_i \hat{u}_i \hat{v}_i^T \]
Image approximation (480x640)

\[A = \sum_{i=1}^{100} \sigma_i \hat{u}_i \hat{v}_i^T \]
Image approximation (480x640)

\[A = \sum_{i=1}^{200} \sigma_i \hat{u}_i \hat{v}_i^T \]
Image approximation (480x640)

\[A = \sum_{i=1}^{320} \sigma_i \hat{u}_i \hat{v}_i^T \]
Image approximation (480x640)

\[A = \sum_{i=1}^{480} \sigma_i \hat{u}_i \hat{v}_i^T \]
Outline

Approximating matrices with SVD
- The basic idea
- Guess who?
- Bonus example 1
- Bonus example 2
- Bonus example 3
- Bonus example 4
- Bonus Puzzle
- Colbert on Equations
Image approximation (480x640)

\[A = \sum_{i=1}^{1} \sigma_i \hat{u}_i \hat{v}_i^T \]
Image approximation (480x640)

\[A = \sum_{i=1}^{2} \sigma_i \hat{u}_i \hat{v}_i^T \]
Image approximation (480x640)

\[A = \sum_{i=1}^{3} \sigma_i \hat{u}_i \hat{v}_i^T \]
Image approximation (480x640)

\[A = \sum_{i=1}^{4} \sigma_i \hat{u}_i \hat{v}_i^T \]
Image approximation (480x640)

\[
A = \sum_{i=1}^{5} \sigma_i \hat{u}_i \hat{v}_i^T
\]
Image approximation (480x640)

\[A = \sum_{i=1}^{6} \sigma_i \hat{u}_i \hat{v}_i^T \]
Image approximation (480x640)

\[A = \sum_{i=1}^{7} \sigma_i \hat{u}_i \hat{v}_i^T \]
Image approximation (480x640)

\[A = \sum_{i=1}^{8} \sigma_i \hat{u}_i \hat{v}_i^T \]
Image approximation (480x640)

\[A = \sum_{i=1}^{9} \sigma_i \hat{u}_i \hat{v}_i^T \]
Image approximation (480x640)

$$A = \sum_{i=1}^{10} \sigma_i \hat{u}_i \hat{v}_i^T$$
Approximating matrices with SVD

Image approximation (480x640)

\[A = \sum_{i=1}^{20} \sigma_i \hat{u}_i \hat{v}_i^T \]
Image approximation (480x640)

\[A = \sum_{i=1}^{30} \sigma_i \hat{u}_i \hat{v}_i^T \]
Image approximation (480x640)

\[A = \sum_{i=1}^{40} \sigma_i \hat{u}_i \hat{v}_i^T \]
Image approximation (480x640)

\[A = \sum_{i=1}^{50} \sigma_i \hat{u}_i \hat{v}_i^T \]
Approximating matrices with SVD

The basic idea

Guess who?

Bonus example 1

Bonus example 2

Bonus example 3

Bonus example 4

Bonus Puzzle

Colbert on Equations

\[A = \sum_{i=1}^{60} \sigma_i \hat{u}_i \hat{v}_i^T \]
Approximating matrices with SVD

The basic idea
Guess who?
Bonus example 1
Bonus example 2
Bonus example 3
Bonus example 4
Bonus Puzzle
Colbert on Equations

Image approximation (480x640)

\[
A = \sum_{i=1}^{100} \sigma_i \hat{u}_i \hat{v}_i^T
\]
Singular Value Decomposition

Approximating matrices with SVD

The basic idea

Guess who?

Bonus example 1

Bonus example 2

Bonus example 3

Bonus example 4

Bonus Puzzle

Colbert on Equations

Image approximation (480x640)

\[A = \sum_{i=1}^{200} \sigma_i \hat{u}_i \hat{v}_i^T \]
Image approximation (480x640)

\[A = \sum_{i=1}^{320} \sigma_i \hat{u}_i \hat{v}_i^T \]
Image approximation (480x640)

\[A = \sum_{i=1}^{480} \sigma_i \hat{u}_i \hat{v}_i^T \]
Approximating matrices with SVD
The basic idea
Guess who?
Bonus example 1
Bonus example 2
Bonus example 3
Bonus example 4
Bonus Puzzle
Colbert on Equations
Image approximation (480x640)

\[A = \sum_{i=1}^{1} \sigma_i \hat{u}_i \hat{v}_i^T \]
Image approximation (480x640)

\[A = \sum_{i=1}^{2} \sigma_i \hat{u}_i \hat{v}_i^T \]
Approximating matrices with SVD

The basic idea

Guess who?

Bonus example 1

Bonus example 2

Bonus example 3

Bonus example 4

Bonus Puzzle

Colbert on Equations

Image approximation (480x640)

\[
A = \sum_{i=1}^{3} \sigma_i \hat{u}_i \hat{v}_i^T
\]
Image approximation (480x640)

\[A = \sum_{i=1}^{4} \sigma_i \hat{u}_i \hat{v}_i^T \]
Image approximation (480x640)

\[A = \sum_{i=1}^{5} \sigma_i \hat{u}_i \hat{v}_i^T \]
Image approximation (480x640)

\[A = \sum_{i=1}^{6} \sigma_i \hat{u}_i \hat{v}_i^T \]
Image approximation (480x640)

\[A = \sum_{i=1}^{7} \sigma_i \hat{u}_i \hat{v}_i^T \]
Image approximation (480x640)

\[A = \sum_{i=1}^{8} \sigma_i \hat{u}_i \hat{v}_i^T \]
Image approximation (480x640)

\[A = \sum_{i=1}^{9} \sigma_i \hat{u}_i \hat{v}_i^T \]
Image approximation (480x640)

\[A = \sum_{i=1}^{10} \sigma_i \hat{u}_i \hat{v}_i^T \]
Image approximation (480x640)

\[A = \sum_{i=1}^{20} \sigma_i \hat{u}_i \hat{v}_i^T \]
Singular Value Decomposition

Approximating matrices with SVD

The basic idea

Guess who?

Bonus example 1

Bonus example 2

Bonus example 3

Bonus example 4

Bonus Puzzle

Colbert on Equations

Image approximation (480x640)

\[A = \sum_{i=1}^{30} \sigma_i \hat{u}_i \hat{v}_i^T \]
Image approximation (480x640)

\[A = \sum_{i=1}^{40} \sigma_i \hat{u}_i \hat{v}_i^T \]
Image approximation (480x640)

\[A = \sum_{i=1}^{50} \sigma_i \hat{u}_i \hat{v}_i^T \]
Image approximation (480x640)

\[A = \sum_{i=1}^{60} \sigma_i \hat{u}_i \hat{v}_i^T \]
Approximating matrices with SVD
The basic idea
Guess who?
Bonus example 1
Bonus example 2
Bonus example 3
Bonus example 4
Bonus Puzzle
Colbert on Equations

Image approximation (480x640)

\[
A = \sum_{i=1}^{100} \sigma_i \hat{u}_i \hat{v}_i^T
\]
Image approximation (480x640)

\[A = \sum_{i=1}^{200} \sigma_i \hat{u}_i \hat{v}_i^T \]
Image approximation (480x640)

\[A = \sum_{i=1}^{320} \sigma_i \hat{u}_i \hat{v}_i^T \]
Image approximation (480x640)

\[A = \sum_{i=1}^{480} \sigma_i \hat{u}_i \hat{v}_i^T \]
Approximating matrices with SVD

The basic idea
Guess who?
Bonus example 1
Bonus example 2
Bonus example 3
Bonus example 4

Bonus Puzzle
Colbert on Equations
The bonus puzzle
The bonus puzzle
Outline

Approximating matrices with SVD
 The basic idea
 Guess who?
 Bonus example 1
 Bonus example 2
 Bonus example 3
 Bonus example 4
 Bonus Puzzle

Colbert on Equations
The truth about mathematics

The Colbert Report on Math (February 2, 2007)