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Scalingarama

General observation:
Systems (complex or not)
that cross many spatial and temporal scales
often exhibit some form of scaling.

Outline—All about scaling:
I Definitions.
I Examples.
I How to measure your power-law relationship.
I Scaling in metabolism and river networks.
I The Unsolved Allometry Theoricides.

http://www.uvm.edu
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Definitions

A power law relates two variables x and y as follows:

y = cxα

I α is the scaling exponent (or just exponent)
I (α can be any number in principle but we will find

various restrictions.)
I c is the prefactor (which can be important!)

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Definitions

I The prefactor c must balance dimensions.
I Imagine the height ` and volume v of a family of

shapes are related as:

` = cv1/4

I Using [·] to indicate dimension, then

[c] = [l]/[V 1/4] = L/L3/4 = L1/4.

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Looking at data

I Power-law relationships are linear in log-log space:

y = cxα

⇒ logb y = α logb x + logb c

with slope equal to α, the scaling exponent.
I Much searching for straight lines on log-log or

double-logarithmic plots.
I Good practice: Always, always, always use base 10.
I Talk only about orders of magnitude (powers of 10).

http://www.uvm.edu
http://www.uvm.edu/~pdodds


A beautiful, heart-warming example:

I G = volume of
gray matter:
‘computing
elements’

I W = volume of
white matter:
‘wiring’

I W ∼ cG1.23
I from Zhang & Sejnowski, PNAS (2000) [54]
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Why is α ' 1.23?

Quantities (following Zhang and Sejnowski):
I G = Volume of gray matter (cortex/processors)
I W = Volume of white matter (wiring)
I T = Cortical thickness (wiring)
I S = Cortical surface area
I L = Average length of white matter fibers
I p = density of axons on white matter/cortex interface

A rough understanding:
I G ∼ ST (convolutions are okay)
I W ∼ 1

2pSL
I G ∼ L3 ← this is a little sketchy...
I Eliminate S and L to find W ∝ G 4/3/T

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Why is α ' 1.23?

A rough understanding:
I We are here: W ∝ G 4/3/T
I Observe weak scaling T ∝ G 0.10±0.02.
I (Implies S ∝ G 0.9 → convolutions fill space.)
I ⇒W ∝ G 4/3/T ∝ G 1.23±0.02

http://www.uvm.edu
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Trickiness:

I With V = G + W , some power laws must be
approximations.

I Measuring exponents is a hairy business...

http://www.uvm.edu
http://www.uvm.edu/~pdodds


Scaling

Scaling-at-large
Allometry

Examples

Metabolism and Truthicide

Death by fractions

Measuring allometric
exponents

River networks

Earlier theories

Geometric argument

Blood networks

River networks

Conclusion

References

12 of 145

Good scaling:

General rules of thumb:
I High quality: scaling persists over

three or more orders of magnitude
for each variable.

I Medium quality: scaling persists over
three or more orders of magnitude
for only one variable and at least one for the other.

I Very dubious: scaling ‘persists’ over
less than an order of magnitude
for both variables.

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Unconvincing scaling:

Average walking speed as a function of city
population:

24

Two problems:
1. use of natural log, and
2. minute varation in

dependent variable.

I from Bettencourt et al. (2007) [4]; otherwise very
interesting—see later.

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Definitions

Power laws are the signature of
scale invariance:

Scale invariant ‘objects’
look the ‘same’
when they are appropriately
rescaled.

I Objects = geometric shapes, time series, functions,
relationships, distributions,...

I ‘Same’ might be ‘statistically the same’
I To rescale means to change the units of

measurement for the relevant variables

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Scale invariance

Our friend y = cxα:
I If we rescale x as x = rx ′ and y as y = rαy ′,
I then

rαy ′ = c(rx ′)α

I

⇒ y ′ = crαx ′αr−α

I

⇒ y ′ = cx ′α

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Scale invariance

Compare with y = ce−λx :
I If we rescale x as x = rx ′, then

y = ce−λrx ′

I Original form cannot be recovered.
I Scale matters for the exponential.

More on y = ce−λx :
I Say x0 = 1/λ is the characteristic scale.
I For x � x0, y is small,

while for x � x0, y is large.

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Definitions:
Isometry:

I Dimensions scale linearly
with each other.

Allometry:

Dimensions scale nonlinearly.

Allometry: (�)
I Refers to differential growth rates of the parts of a

living organism’s body part or process.
I First proposed by Huxley and Teissier, Nature, 1936

“Terminology of relative growth” [23, 45]

http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://en.wikipedia.org/wiki/Allometry
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Definitions

Isometry versus Allometry:
I Iso-metry = ‘same measure’
I Allo-metry = ‘other measure’

Confusingly, we use allometric scaling to refer to
both:

1. Nonlinear scaling of a dependent variable on an
independent one (e.g., y ∝ x1/3)

2. The relative scaling of correlated measures
(e.g., white and gray matter).

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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A wonderful treatise on scaling:

McMahon and
Bonner, 1983 [31]

http://www.uvm.edu
http://www.uvm.edu/~pdodds


The many scales of life:

p. 2, McMahon and
Bonner [31]



The many scales of life:

p. 3, McMahon and
Bonner [31]



The many scales of life:

p.
3, McMahon and
Bonner [31]
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Size range (in grams) and cell differentiation:

10−13 to 108, p.
3, McMahon and
Bonner [31]

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Non-uniform growth:

p. 32, McMahon and Bonner [31]

http://www.uvm.edu
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Non-uniform growth—arm length versus
height:

Good example of a break in scaling:

A crossover in scaling occurs around a height of 1 metre.

p. 32, McMahon and Bonner [31]

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Weightlifting: Mworldrecord ∝ M 2/3
lifter

Idea: Power ∼ cross-sectional area of isometric lifters.

p. 53, McMahon and Bonner [31]

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Titanothere horns: Lhorn ∼ L4
skull

p. 36, McMahon and Bonner [31]; a bit dubious.

http://www.uvm.edu
http://www.uvm.edu/~pdodds


Scaling

Scaling-at-large
Allometry

Examples

Metabolism and Truthicide

Death by fractions

Measuring allometric
exponents

River networks

Earlier theories

Geometric argument

Blood networks

River networks

Conclusion

References

30 of 145

Engines:
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The allometry of nails:

Observed: Diameter ∝ Length2/3 or d ∝ `2/3.

Since `d2 ∝ Volume v :
I Diameter ∝ Mass2/7 or d ∝ v2/7.
I Length ∝ Mass3/7 or ` ∝ v3/7.
I Nails lengthen faster than they broaden (c.f. trees).

p. 58–59, McMahon and Bonner [31]

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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The allometry of nails:

A buckling instability?:
I Physics/Engineering result (�): Columns buckle

under a load which depends on d4/`2.
I To drive nails in, posit resistive force ∝ nail

circumference = πd .
I Match forces independent of nail size: d4/`2 ∝ d .
I Leads to d ∝ `2/3.
I Argument made by Galileo [15] in 1638 in “Discourses

on Two New Sciences.” (�) Also, see here. (�)
I Euler, 1757. (�)
I Also see McMahon, “Size and Shape in Biology,”

Science, 1973. [29]

http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://en.wikipedia.org/wiki/Buckling
http://www.liberliber.it/biblioteca/g/galilei/discorsi_e_dimostrazioni_matematiche_intorno_a_due_nuove_etc/pdf/discor_p.pdf
http://www.liberliber.it/biblioteca/g/galilei/discorsi_e_dimostrazioni_matematiche_intorno_a_due_nuove_etc/pdf/discor_p.pdf
http://en.wikipedia.org/wiki/Two_New_Sciences
http://en.wikipedia.org/wiki/Buckling
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Rowing: Speed ∝ (number of rowers)1/9

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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From further back:

I Zipf action [55, 56] (we’ve been here already)
I Survey by Naroll and von Bertalanffy [36]

“The principle of allometry in biology and the social
sciences”
General Systems, Vol 1, 1956.

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Scaling in Cities:

I “Growth, innovation, scaling, and the pace of life in
cities”
Bettencourt et al., PNAS, 2007. [4]

I Quantified levels of
I Infrastructure
I Wealth
I Crime levels
I Disease
I Energy consumption

as a function of city size N (population).

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Urban Growth Equation. Growth is constrained by the availability
of resources and their rates of consumption. Resources, Y, are
used for both maintenance and growth. If, on average, it requires
a quantity R per unit time to maintain an individual and a
quantity E to add a new one to the population, then this
allocation of resources is expressed as Y ! RN " E (dN/dt),
where dN/dt is the population growth rate. This relation leads to
the general growth equation:

dN#t$
dt ! !Y0

E "N#t$" # !R
E"N#t$. [2]

Its generic structure captures the essential features contributing
to growth. Although additional contributions can be made, they
can be incorporated by a suitable interpretation of the param-
eters Y0, R, and E [for generalization, see supporting information
(SI) Text]. The solution of Eq. 2 is given by

N#t$ ! #Y0

R $ !N1%"#0$ #
Y0

R "exp#%
R
E #1 # "$ t$ $ 1

1%"
. [3]

This solution exhibits strikingly different behaviors depending
on whether " &1, '1, or ! 1: When " ! 1, the solution reduces
to an exponential: N(t) ! N(0)e(Y0 % R)t/E (Fig. 3b), whereas for
" &1 it leads to a sigmoidal growth curve, in which growth ceases
at large times (dN/dt ! 0), as the population approaches a finite
carrying capacity N( ! (Y0/R)1/(1%") (Fig. 3a). This solution is
characteristic of biological systems where the predictions of Eq.
2 are in excellent agreement with data (41). Thus, cities and,
more generally, social organizations that are driven by econo-
mies of scale are destined to eventually stop growing (43–45).

The character of the solution changes dramatically when growth
is driven by innovation and wealth creation, " '1. If N(0) &
(R/Y0)1("%1), Eq. 2 leads to unbounded growth for N(t) (Fig. 3c).
Growth becomes faster than exponential, eventually leading to an
infinite population in a finite amount of time given by

tc ! #
E

#" # 1$R 1n# 1 #
R
Y0

N1%"#0$$
% # E

#" # 1$R$ 1
N"%1#0$

. [4]

This growth behavior has powerful consequences because, in
practice, the resources driving Eq. 2 are ultimately limited so the
singularity is never reached; thus, if conditions remain un-
changed, unlimited growth is unsustainable. Left unchecked, this
lack of sustainability triggers a transition to a phase where
N(0) ' (R/Y0)1/("%1), leading to stagnation and ultimate collapse
(Fig. 3d).

To avoid this crisis and subsequent collapse, major qualitative
changes must occur which effectively reset the initial conditions
and parameters of Eq. 3. Thus, to maintain growth, the response
must be ‘‘innovative’’ to ensure that the predominant dynamic of
the city remains in the ‘‘wealth and knowledge creation’’ phase
where " '1 and N(0) ' (R/Y0)1/("%1). In that case, a new cycle
is initiated, and the city continues to grow following Eq. 2 and
Fig. 3c but with new parameters and initial conditions, Ni(0), the
population at the transition time between adjacent cycles. This
process can be continually repeated leading to multiple cycles,
thereby pushing potential collapse into the future, Fig. 4a.

Unfortunately, however, the solution that innovation and
corresponding wealth creation are stimulated responses to en-
sure continued growth has further consequences with potentially

Fig. 1. Examples of scaling relationships. (a) Total wages per MSA in 2004 for
the U.S. (blue points) vs. metropolitan population. (b) Supercreative employ-
ment per MSA in 2003, for the U.S. (blue points) vs. metropolitan population.
Best-fit scaling relations are shown as solid lines.

Fig. 2. The pace of urban life increases with city size in contrast to the pace
of biological life, which decreases with organism size. (a) Scaling of walking
speed vs. population for cities around the world. (b) Heart rate vs. the size
(mass) of organisms.

7304 & www.pnas.org'cgi'doi'10.1073'pnas.0610172104 Bettencourt et al.

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Scaling in Cities:

cities that are superficially quite different in form and location,
for example, are in fact, on the average, scaled versions of one
another, in a very specific but universal fashion prescribed by the
scaling laws of Table 1.

Despite the ubiquity of approximate power law scaling, there
is no simple analogue to the universal quarter-powers observed
in biology. Nevertheless, Table 1 reveals a taxonomic universality
whereby exponents fall into three categories defined by ! ! 1
(linear), !"1 (sublinear), and !#1 (superlinear), with ! in each
category clustering around similar values: (i) ! $1 is usually
associated with individual human needs (job, house, household
water consumption). (ii) ! $0.8 "1 characterizes material
quantities displaying economies of scale associated with infra-
structure, analogous to similar quantities in biology. (iii) !
$1.1–1.3 #1 signifies increasing returns with population size and
is manifested by quantities related to social currencies, such as
information, innovation or wealth, associated with the intrinsi-
cally social nature of cities.

The most striking feature of the data is perhaps the many
urban indicators that scale superlinearly (! #1). These indicators
reflect unique social characteristics with no equivalent in biology
and are the quantitative expression that knowledge spillovers
drive growth (25, 26), that such spillovers in turn drive urban
agglomeration (26, 27), and that larger cities are associated with
higher levels of productivity (28, 29). Wages, income, growth
domestic product, bank deposits, as well as rates of invention,
measured by new patents and employment in creative sectors
(21, 22) all scale superlinearly with city size, over different years
and nations with exponents that, although differing in detail, are
statistically consistent. Costs, such as housing, similarly scale
superlinearly, approximately mirroring increases in average
wealth.

One of the most intriguing outcomes of the analysis is that the
value of the exponents in each class clusters around the same
number for a plethora of phenomena that are superficially quite
different and seemingly unrelated, ranging from wages and
patent production to the speed of walking (see below). This

behavior strongly suggests that there is a universal social dynamic
at play that underlies all these phenomena, inextricably linking
them in an integrated dynamical network, which implies, for
instance, that an increase in productive social opportunities, both
in number and quality, leads to quantifiable changes in individual
behavior across the full complexity of human expression (10–
14), including those with negative consequences, such as costs,
crime rates, and disease incidence (19, 42).

For systems exhibiting scaling in rates of resource consump-
tion, characteristic times are predicted to scale as N1%!, whereas
rates scale as their inverse, N!%1. Thus, if ! "1, as in biology, the
pace of life decreases with increasing size, as observed. However,
for processes driven by innovation and wealth creation, ! #1 as
in urban systems, the situation is reversed: thus, the pace of
urban life is predicted to increase with size (Fig. 2). Anecdotally,
this feature is widely recognized in urban life, pointed out long
ago by Simmel, Wirth, Milgram, and others (11–14). Quantita-
tive confirmation is provided by urban crime rates (42), rates of
spread of infectious diseases such as AIDS, and even pedestrian
walking speeds (30), which, when plotted logarithmically, exhibit
power law scaling with an exponent of 0.09 & 0.02 (R2 ! 0.80;
Fig. 2a), consistent with our prediction.

There are therefore two distinct characteristics of cities re-
vealed by their very different scaling behaviors, resulting from
fundamentally different, and even competing, underlying dy-
namics (9): material economies of scale, characteristic of infra-
structure networks, vs. social interactions, responsible for inno-
vation and wealth creation. The tension between these
characteristics is illustrated by the ambivalent behavior of en-
ergy-related variables: whereas household consumption scales
approximately linearly and economies of scale are realized in
electrical cable lengths, total consumption scales superlinearly.
This difference can only be reconciled if the distribution network
is suboptimal, as observed in the scaling of resistive losses, where
! ! 1.11 & 0.06 (R2 ! 0.79). Which, then, of these two dynamics,
efficiency or wealth creation, is the primary determinant of
urbanization, and how does each impact urban growth?

Table 1. Scaling exponents for urban indicators vs. city size

Y ! 95% CI Adj-R2 Observations Country–year

New patents 1.27 '1.25,1.29( 0.72 331 U.S. 2001
Inventors 1.25 '1.22,1.27( 0.76 331 U.S. 2001
Private R&D employment 1.34 '1.29,1.39( 0.92 266 U.S. 2002
)Supercreative) employment 1.15 '1.11,1.18( 0.89 287 U.S. 2003
R&D establishments 1.19 '1.14,1.22( 0.77 287 U.S. 1997
R&D employment 1.26 '1.18,1.43( 0.93 295 China 2002
Total wages 1.12 '1.09,1.13( 0.96 361 U.S. 2002
Total bank deposits 1.08 '1.03,1.11( 0.91 267 U.S. 1996
GDP 1.15 '1.06,1.23( 0.96 295 China 2002
GDP 1.26 '1.09,1.46( 0.64 196 EU 1999–2003
GDP 1.13 '1.03,1.23( 0.94 37 Germany 2003
Total electrical consumption 1.07 '1.03,1.11( 0.88 392 Germany 2002
New AIDS cases 1.23 '1.18,1.29( 0.76 93 U.S. 2002–2003
Serious crimes 1.16 [1.11, 1.18] 0.89 287 U.S. 2003

Total housing 1.00 '0.99,1.01( 0.99 316 U.S. 1990
Total employment 1.01 '0.99,1.02( 0.98 331 U.S. 2001
Household electrical consumption 1.00 '0.94,1.06( 0.88 377 Germany 2002
Household electrical consumption 1.05 '0.89,1.22( 0.91 295 China 2002
Household water consumption 1.01 '0.89,1.11( 0.96 295 China 2002

Gasoline stations 0.77 '0.74,0.81( 0.93 318 U.S. 2001
Gasoline sales 0.79 '0.73,0.80( 0.94 318 U.S. 2001
Length of electrical cables 0.87 '0.82,0.92( 0.75 380 Germany 2002
Road surface 0.83 '0.74,0.92( 0.87 29 Germany 2002

Data sources are shown in SI Text. CI, confidence interval; Adj-R2, adjusted R2; GDP, gross domestic product.

Bettencourt et al. PNAS ! April 24, 2007 ! vol. 104 ! no. 17 ! 7303
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Scaling in Cities:

Intriguing findings:
I Global supply costs scale sublinearly with N (β < 1).

I Returns to scale for infrastructure.
I Total individual costs scale linearly with N (β = 1)

I Individuals consume similar amounts independent of
city size.

I Social quantities scale superlinearly with N (β > 1)
I Creativity (# patents), wealth, disease, crime, ...

Density doesn’t seem to matter...
I Surprising given that across the world, we observe

two orders of magnitude variation in area covered by
agglomerations (�) of fixed populations.

http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://en.wikipedia.org/wiki/Urban_agglomeration
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Moore’s Law: (�)

http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://en.wikipedia.org/wiki/Moore's_law
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Scaling laws for technology production:
I “Statistical Basis for Predicting Technological

Progress [35]” Nagy et al., PLoS ONE, 2013.

I yt = stuff unit cost; xt = total amount of stuff made.

I Wright’s Law, cost decreases exponentially with total stuff
made: [53]

yt ∝ x−w
t .

I Moore’s Law (�), framed as cost decrease connected with
doubling of transistor density every two years: [33]

yt ∝ e−mt .

I Sahal’s observation that Moore’s law gives rise to Wright’s
law if stuff production grows exponentially: [41]

xt ∝ egt .

I Sahal + Moore gives Wright with w = m/g.

http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://en.wikipedia.org/wiki/Moore's_law
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41 of 145production data for a period of at least 10 years, with no missing
years in between. This inclusive approach to data gathering was
required to construct a large dataset, which was necessary to
obtain statistically significant results. The resulting 62 datasets are
described in detail in File S1.

These datasets almost certainly contain significant measurement
and estimation errors, which cannot be directly quantified and are
likely to increase the error in forecasts. Including many
independent data sets helps to ensure that any biases in the
database as a whole are random rather than systematic,
minimizing their effects on the results of our analysis of the
pooled data.

To compare the performance of each hypothesis we use
hindcasting, which is a form of cross-validation. We pretend to
be at time i and make a forecast ŷy(f ,d,i)

j for time j using hypothesis
(functional form) f and data set d, where jwi. The parameters for

each functional form are fitted using ordinary least squares based
on all data prior to time i, and forecasts are made based on the
resulting regression. We score the quality of forecasts based on the
logarithmic forecasting error:

efdij~ log y(d)
j { log ŷy(f ,d,i)

j : ð5Þ

The quality of forecasts is examined for all datasets and all
hypotheses (and visualized as a three-dimensional error mountain,
as shown in File S1). For Wright’s law, an illustration of the growth
of forecasting errors as a function of the forecasting horizon is
given in Fig. 1.

An alternative to our approach is to adjust the intercepts to
match the last point. For example, for Moore’s law this
corresponds to using a log random walk of the form

Figure 3. Three examples showing the logarithm of price as a function of time in the left column and the logarithm of production as
a function of time in the right column, based on industry-wide data. We have chosen these examples to be representative: The top row
contains an example with one of the worst fits, the second row an example with an intermediate goodness of fit, and the third row one of the best
examples. The fourth row of the figure shows histograms of R2 values for fitting g and m for the 62 datasets.
doi:10.1371/journal.pone.0052669.g003

Predicting Technological Progress

PLOS ONE | www.plosone.org 3 February 2013 | Volume 8 | Issue 2 | e52669

http://www.uvm.edu
http://www.uvm.edu/~pdodds


log ytz1~ log yt{mzn(t), where n(t) is an IID noise term (see
File S1). We have not done this here to be consistent with the way
these hypotheses have been presented historically. The method we
have used also results in more stable errors.

Developing a statistical model to compare the competing
hypotheses is complicated by the fact that errors observed at
longer horizons tend to be larger than those at shorter horizons,
and errors are correlated across time and across functional forms.
After comparing many different possibilities (as discussed in detail
in File S1), we settled on the following approach. Based on a
search of the family of power transformations, which is known for
its ability to accommodate a range of variance structures, we take
as a response the square root transformation of the logarithmic
error. This response was chosen to maximize likelihood when
modeled as a linear function of the hindcasting horizon ~ target
{ origin ~j{i, using a linear mixed effects model.

Specifically, we use the following functional form to model the
response:

rfdij:Defdij D0:5~af zadz(bf zbd )(j{i)zEfdij , ð6Þ

where rfdij is the expected root error. The parameters af and bf

depend on the functional form and are called fixed effects because
they are the same for all datasets. af is the intercept and bf is the

slope parameter.
The parameters ad and bd depend on the dataset, and are called

random effects because they are not fitted independently but are

instead treated as dataset-specific random fluctuations from the
pooled data. The quantities ad and bd are additive adjustments to
the average intercept and slope parameters af and bf , respectively,

to take into account the peculiarities of each dataset d.
In order to avoid adding 62 ad parameters plus 62 bd

parameters, we treated the
ad

bd

! "
pair as a two-dimensional

random vector having a bivariate normal distribution with mean

0
0

! "
and variance-covariance matrix

y2
a yab

yab y2
b

! "
. This

approach dramatically reduces the number of parameters. We
parameterize the dataset-specific adjustments as random devia-

tions from the average
af

bf

! "
at a cost of only 3 additional

parameters instead of 2 | 62 ~ 124. This parsimonious approach
makes maximum likelihood estimation possible by keeping the
number of parameters in check.

Finally, we add an Efdij random field term to take into account
the deviations from the trend. This is assumed to be a Gaussian

stochastic process independent of the
ad

bd

! "
random vector,

having mean 0, and given ad and bd , having variance equal to a

positive s2 times the fitted values:

Figure 4. An illustration that the combination of exponentially increasing production and exponentially decreasing cost are
equivalent to Wright’s law. The value of the Wright parameter w is plotted against the prediction m=g based on the Sahal formula, where m is the
exponent of cost reduction and g the exponent of the increase in cumulative production.
doi:10.1371/journal.pone.0052669.g004

Predicting Technological Progress

PLOS ONE | www.plosone.org 4 February 2013 | Volume 8 | Issue 2 | e52669
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Scaling of Specialization:
“Scaling of Differentiation in Networks: Nervous Systems,
Organisms, Ant Colonies, Ecosystems, Businesses,
Universities, Cities, Electronic Circuits, and Legos”
M. A. Changizi, M. A. McDannald and D. Widders [8]

J. Theor. Biol., 2002.

lower than 2, and this may explain the
lower combinatorial degree of around 1.4.
Via similar reasoning, if a network possessed
attachments for which m (rather than 2) pieces
must simultaneously physically connect, we
would expect a maximum combinatorial degree
of m:

3.3. BUSINESSES AND UNIVERSITIES:

NETWORKS OF PEOPLE

There exists a long tradition of looking at
differentiation as a function of business size (e.g.
Simmel, 1902; Caplow, 1957; Hall et al., 1967;
Pugh et al., 1968; Blau, 1970; Blau & Schoen-
herr, 1971; Childers et al., 1971; and see reviews
by Kimberly, 1976; Slater, 1985), but these
researchers commonly only report the correla-
tion of degree of differentiation and organiza-
tion size. In the few cases where degree of
differentiation is plotted against organization
size (e.g. Blau, 1970; Blau & Schoenherr, 1971;
Childers et al., 1971), log–log plots were not
used, and the possibility that the data may
conform to power laws was not investigated.
Figure 4 shows log–log and semi-log plots of
degree of differentiation vs. organization size:
two are for military organizations [(a) and (b)]
[using data from Childers et al. (1971, Fig. 2)],
one from universities as businesses (c) [using
data we obtained ourselves by going to uni-
versity web sites: total number of employees was

often obtainable from university ‘‘at-a-glance’’
pages; the number of employee types was (less
often) obtainable at human resources sites,
where each job type at the university is listed],
and one from employment insurance companies
(d) [using data from Blau & Schoenherr (1971,
Figs 3-2)]. Differentiation increases in each
kind of network as a function of size. Although
each plot is, in terms of the correlation, better
described by a power law than by a logarithmic
model, the logarithmic model can be rejected
only in military vessels; in the other three kinds
of business, neither the power law nor logarith-
mic model can be rejected. (See ppower and plog
values in Table 1.) The exponents are 0.63 for
military vessels (combinatorial degree d ¼ 1:6),
0.88 for military offices (d ¼ 1:14), 0.73 for
universities (d ¼ 1:37), and 0.33 for employment
insurance companies (d ¼ 3).
We may also look at universities not as

networks of employees generally, but rather as
networks of faculty, where two faculty are
considered the same type if they are members
of the same department. The number of depart-
ments is used as the measure of the number of
faculty types. The number of students is used as
the measure of the number of faculty, since
across universities they scale nearly proportion-
ally; namely, the number of faculty scales against
the number of students as a power law with
exponent 0.987 (n ¼ 89; R2 ¼ 0:743) [this plot is
not shown here; and the data for it are taken

y = 0.7092x + 0.2706
R2 = 0.9029
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Fig. 3. Log–log (base 10) (left) and semi-log (right) plots of the number of Lego piece types vs. the total number of parts
in Lego structures (n ¼ 391). To help to distinguish the data points, logarithmic values were perturbed by adding a random
number in the interval ["0.05, 0.05], and non-logarithmic values were perturbed by adding a random number in the interval
["1, 1].

M. A. CHANGIZI ET AL.222

I Nice 2012 wired.com write-up (�)

http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.wired.com/wiredscience/2012/01/the-mathematics-of-lego/
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C ∼ N1/d , d ≥ 1:
I C = network differentiation = # node types.
I N = network size = # nodes.
I d = combinatorial degree.
I Low d : strongly specialized parts.
I High d : strongly combinatorial in nature, parts are

reused.
I Claim: Natural selection produces high d systems.
I Claim: Engineering/brains produces low d systems.

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Table 1
Summary of results*

Network Node No. data
points

Range of
logN

Log–logR2 Semi-logR2 ppower=plog Relationship
between C
and N

Comb.
degree

Exponent v
for type-net
scaling

Figure
in text

Selected networks
Electronic circuits Component 373 2.12 0.747 0.602 0.05/4e!5 Power law 2.29 0.92 2

Legost Piece 391 2.65 0.903 0.732 0.09/1e!7 Power law 1.41 F 3

Businesses
military vessels Employee 13 1.88 0.971 0.832 0.05/3e!3 Power law 1.60 F 4
military offices Employee 8 1.59 0.964 0.789 0.16/0.16 Increasing 1.13 F 4
universities Employee 9 1.55 0.786 0.749 0.27/0.27 Increasing 1.37 F 4
insurance co. Employee 52 2.30 0.748 0.685 0.11/0.10 Increasing 3.04 F 4

Universities
across schools Faculty 112 2.72 0.695 0.549 0.09/0.01 Power law 1.81 F 5
history of Duke Faculty 46 0.94 0.921 0.892 0.09/0.05 Increasing 2.07 F 5

Ant colonies
caste¼ type Ant 46 6.00 0.481 0.454 0.11/0.04 Power law 8.16 F 6
size range¼ type Ant 22 5.24 0.658 0.548 0.17/0.04 Power law 8.00 F 6

Organisms Cell 134 12.40 0.249 0.165 0.08/0.02 Power law 17.73 F 7

Neocortex Neuron 10 0.85 0.520 0.584 0.16/0.16 Increasing 4.56 F 9

Competitive networks
Biotas Organism F F F F F Power law E3 0.3 to 1.0 F

Cities Business 82 2.44 0.985 0.832 0.08/8e-8 Power law 1.56 F 10

*(1) The kind of network, (2) what the nodes are within that kind of network, (3) the number of data points, (4) the logarithmic range of network sizes N (i.e. logðNmax=NminÞ), (5) the log–log
correlation, (6) the semi-log correlation, (7) the serial-dependence probabilities under, respectively, power-law and logarithmic models, (8) the empirically determined best-fit relationship
between differentiation C and organization size N (if one of the two models can be refuted with po0:05; otherwise we just write ‘‘increasing’’ to denote that neither model can be rejected), (9)
the combinatorial degree (i.e. the inverse of the best-fit slope of a log–log plot of C versus N), (10) the scaling exponent for how quickly the edge-degree d scales with type-network size C
(in those places for which data exist), (11) figure in this text where the plots are presented. Values for biotas represent the broad trend from the literature.
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Ecology—Species-area law: (�)

Allegedly (data is messy): [52, 28]

I

Nspecies ∝ Aβ

I On islands: β ≈ 1/4.
I On continuous land: β ≈ 1/8.

http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://en.wikipedia.org/wiki/Species-area_curve
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Law and Order, Special Science Edition: Truthicide
Department
“In the scientific integrity system known as peer review,
the people are represented by two highly overlapping yet
equally important groups: the independent scientists who
review papers and the scientists who punish those who
publish garbage. This is one of their stories.”

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Animal power

Fundamental biological and ecological constraint:

P = c M α

P = basal metabolic rate

M = organismal body mass

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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P = c M α

Prefactor c depends on body plan and body temperature:

Birds 39–41 ◦C
Eutherian Mammals 36–38 ◦C

Marsupials 34–36 ◦C
Monotremes 30–31 ◦C

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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What one might expect:

α = 2/3 because . . .
I Dimensional analysis suggests

an energy balance surface law:

P ∝ S ∝ V 2/3 ∝ M 2/3

I Assumes isometric scaling (not quite the spherical
cow).

I Lognormal fluctuations:
Gaussian fluctuations in log P around log cMα.

I Stefan-Boltzmann law (�) for radiated energy:

dE
dt

= σεST 4 ∝ S

http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://en.wikipedia.org/wiki/Stefan-Boltzmann_law
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The prevailing belief of the Church of
Quarterology:

α = 3/4

P ∝ M 3/4

Huh?

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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The prevailing belief of the Church of
Quarterology:

Most obvious concern:

3/4− 2/3 = 1/12

I An exponent higher than 2/3 points suggests a
fundamental inefficiency in biology.

I Organisms must somehow be running ‘hotter’ than
they need to balance heat loss.

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Related putative scalings:

Wait! There’s more!:
I number of capillaries ∝ M 3/4

I time to reproductive maturity ∝ M 1/4

I heart rate ∝ M −1/4

I cross-sectional area of aorta ∝ M 3/4

I population density ∝ M −3/4

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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The great ‘law’ of heartbeats:

Assuming:
I Average lifespan ∝ Mβ

I Average heart rate ∝ M−β

I Irrelevant but perhaps β = 1/4.

Then:
I Average number of heart beats in a lifespan
' (Average lifespan)× (Average heart rate)

∝ Mβ−β

∝ M0

I Number of heartbeats per life time is independent of
organism size!

I ≈ 1.5 billion....

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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A theory is born:

1840’s: Sarrus and Rameaux [43] first suggested α = 2/3.

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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A theory grows:

1883: Rubner [40] found α ' 2/3.

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Theory meets a different ‘truth’:

1930’s: Brody, Benedict study mammals. [7]

Found α ' 0.73 (standard).

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Our hero faces a shadowy cabal:

I 1932: Kleiber analyzed 13 mammals. [24]

I Found α = 0.76 and suggested α = 3/4.
I Scaling law of Metabolism became known as

Kleiber’s Law (�) (2011 Wikipedia entry is
embarrassing).

I 1961 book: “The Fire of Life. An Introduction to
Animal Energetics”. [25]

http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://en.wikipedia.org/wiki/Kleiber's_law
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When a cult becomes a religion:

1950/1960: Hemmingsen [20, 21]

Extension to unicellular organisms.
α = 3/4 assumed true.

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Quarterology spreads throughout the land ...
The Cabal assassinates 2/3-scaling:
I 1964: Troon, Scotland.
I 3rd Symposium on Energy Metabolism.
I α = 3/4 made official . . . . . . 29 to zip.

I But the Cabal slipped up by publishing the
conference proceedings . . .

I “Energy Metabolism; Proceedings of the 3rd
symposium held at Troon, Scotland, May 1964,” Ed.
Sir Kenneth Blaxter [5]

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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An unsolved truthicide:

So many questions ...
I Did the truth kill a theory? Or did a theory kill the

truth?
I Or was the truth killed by just a lone, lowly

hynpothesis?
I Does this go all the way to the top?

To the National Academies of Science?
I Is 2/3-scaling really dead?
I Could 2/3-scaling have faked its own death?
I What kind of people would vote on scientific facts?

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Modern Quarterology, Post Truthicide

I 3/4 is held by many to be the one true exponent.

In the Beat of a Heart: Life, Energy, and
the Unity of Nature—by John Whitfield

I But: much controversy ...
I See ‘Re-examination of the “3/4-law” of metabolism’

by the Heretical Unbelievers Dodds, Rothman, and
Weitz [13], and ensuing madness...

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Some data on metabolic rates
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[10−Dec−2001 peter dodds]

I Heusner’s
data
(1991) [22]

I 391 Mammals
I blue line: 2/3
I red line: 3/4.
I (B = P)
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Some data on metabolic rates

0 1 2 3 4 5
−1.5

−1

−0.5

0

0.5

1

1.5

2

log
10

M

lo
g 10

B

B = 0.041 M 0.664

I Bennett and
Harvey’s data
(1987) [3]

I 398 birds
I blue line: 2/3
I red line: 3/4.
I (B = P)

I Passerine vs. non-passerine issue...
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Linear regression

Important:
I Ordinary Least Squares (OLS) Linear regression is

only appropriate for analyzing a dataset {(xi , yi)}
when we know the xi are measured without error.

I Here we assume that measurements of mass M
have less error than measurements of metabolic rate
B.

I Linear regression assumes Gaussian errors.
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Measuring exponents

More on regression:
If (a) we don’t know what the errors of either variable are,

or (b) no variable can be considered independent,

then we need to use
Standardized Major Axis Linear Regression. [42, 39]

(aka Reduced Major Axis = RMA.)
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Measuring exponents

For Standardized Major Axis Linear Regression:

slopeSMA =
standard deviation of y data
standard deviation of x data

I Very simple!
I Scale invariant.
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Measuring exponents

Relationship to ordinary least squares regression is
simple:

slopeSMA = r−1 × slopeOLS y on x

= r × slopeOLS x on y

where r = standard correlation coefficient:

r =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
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Heusner’s data, 1991 (391 Mammals)

range of M N α̂

≤ 0.1 kg 167 0.678± 0.038

≤ 1 kg 276 0.662± 0.032

≤ 10 kg 357 0.668± 0.019

≤ 25 kg 366 0.669± 0.018

≤ 35 kg 371 0.675± 0.018

≤ 350 kg 389 0.706± 0.016

≤ 3670 kg 391 0.710± 0.021

http://www.uvm.edu
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Bennett and Harvey, 1987 (398 birds)
Mmax N α̂

≤ 0.032 162 0.636± 0.103

≤ 0.1 236 0.602± 0.060

≤ 0.32 290 0.607± 0.039

≤ 1 334 0.652± 0.030

≤ 3.2 371 0.655± 0.023

≤ 10 391 0.664± 0.020

≤ 32 396 0.665± 0.019

≤ 100 398 0.664± 0.019

http://www.uvm.edu
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Hypothesis testing

Test to see if α′ is consistent with our data {(Mi ,Bi)}:

H0 : α = α′ and H1 : α 6= α′.

I Assume each Bi (now a random variable) is normally
distributed about α′ log10 Mi + log10 c.

I Follows that the measured α for one realization
obeys a t distribution with N − 2 degrees of freedom.

I Calculate a p-value: probability that the measured α
is as least as different to our hypothesized α′ as we
observe.

I See, for example, DeGroot and Scherish, “Probability
and Statistics.” [10]
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Revisiting the past—mammals

Full mass range:

N α̂ p2/3 p3/4

Kleiber 13 0.738 < 10−6 0.11

Brody 35 0.718 < 10−4 < 10−2

Heusner 391 0.710 < 10−6 < 10−5

Bennett 398 0.664 0.69 < 10−15

and Harvey

http://www.uvm.edu
http://www.uvm.edu/~pdodds


Scaling

Scaling-at-large
Allometry

Examples

Metabolism and Truthicide

Death by fractions

Measuring allometric
exponents

River networks

Earlier theories

Geometric argument

Blood networks

River networks

Conclusion

References

76 of 145

Revisiting the past—mammals

M ≤ 10 kg:
N α̂ p2/3 p3/4

Kleiber 5 0.667 0.99 0.088

Brody 26 0.709 < 10−3 < 10−3

Heusner 357 0.668 0.91 < 10−15

M ≥ 10 kg:
N α̂ p2/3 p3/4

Kleiber 8 0.754 < 10−4 0.66

Brody 9 0.760 < 10−3 0.56

Heusner 34 0.877 < 10−12 < 10−7
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Fluctuations—Things look normal...
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[07−Nov−1999 peter dodds]

I P(B |M) = 1/M2/3f (B/M2/3)

I Use a Kolmogorov-Smirnov test.

http://www.uvm.edu
http://www.uvm.edu/~pdodds


Scaling

Scaling-at-large
Allometry

Examples

Metabolism and Truthicide

Death by fractions

Measuring allometric
exponents

River networks

Earlier theories

Geometric argument

Blood networks

River networks

Conclusion

References

78 of 145

Analysis of residuals

1. Presume an exponent of your choice: 2/3 or 3/4.
2. Fit the prefactor (log10 c) and then examine the

residuals:

ri = log10 Bi − (α′ log10 Mi − log10 c).

3. H0: residuals are uncorrelated
H1: residuals are correlated.

4. Measure the correlations in the residuals and
compute a p-value.
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Analysis of residuals

We use the spiffing Spearman Rank-Order Correlation
Cofficient (�)

Basic idea:
I Given {(xi , yi)}, rank the {xi} and {yi} separately

from smallest to largest. Call these ranks Ri and Si .
I Now calculate correlation coefficient for ranks, rs:
I

rs =

∑n
i=1(Ri − R̄)(Si − S̄)√∑n

i=1(Ri − R̄)2
√∑n

i=1(Si − S̄)2

I Perfect correlation: xi ’s and yi ’s both increase
monotonically.

http://www.uvm.edu
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Analysis of residuals

We assume all rank orderings are equally likely:
I rs is distributed according to a Student’s

t-distribution (�) with N − 2 degrees of freedom.
I Excellent feature: Non-parametric—real distribution

of x ’s and y ’s doesn’t matter.
I Bonus: works for non-linear monotonic relationships

as well.
I See Numerical Recipes in C/Fortran (�) which

contains many good things. [37]
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Analysis of residuals—mammals
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0
(d)

α’
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 p (a) M < 3.2 kg,
(b) M < 10 kg,
(c) M < 32 kg,
(d) all

mammals.
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Analysis of residuals—birds
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 p (a) M < 0.1 kg,
(b) M < 1 kg,
(c) M < 10 kg,
(d) all birds.
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Other approaches to measuring exponents:
I Clauset, Shalizi, Newman: “Power-law distributions

in empirical data” [9]

SIAM Review, 2009.
I See Clauset’s page on measuring power law

exponents (�) (code, other goodies).

http://www.uvm.edu
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Recap:

I So: The exponent α = 2/3 works for all birds and
mammals up to 10–30 kg

I For mammals > 10–30 kg, maybe we have a new
scaling regime

I Possible connection?: Economos (1983)—limb
length break in scaling around 20 kg [14]

I But see later: non-isometric growth leads to lower
metabolic scaling. Oops.
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The widening gyre:

Now we’re really confused (empirically):
I White and Seymour, 2005: unhappy with large

herbivore measurements [51]. Pro 2/3: Find
α ' 0.686± 0.014.

I Glazier, BioScience (2006) [18]: “The 3/4-Power Law
Is Not Universal: Evolution of Isometric, Ontogenetic
Metabolic Scaling in Pelagic Animals.”

I Glazier, Biol. Rev. (2005) [17]: “Beyond the 3/4-power
law’: variation in the intra- and interspecific scaling of
metabolic rate in animals.”

I Savage et al., PLoS Biology (2008) [44] “Sizing up
allometric scaling theory” Pro 3/4: problems claimed
to be finite-size scaling.

http://www.uvm.edu
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Basic basin quantities: a, l , L‖, L⊥:

a
L?0

L? Lk = L
a0 ll0Lk0 I a = drainage

basin area
I ` = length of

longest (main)
stream

I L = L‖ =
longitudinal length
of basin

http://www.uvm.edu
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River networks

I 1957: J. T. Hack [19]

“Studies of Longitudinal Stream Profiles in Virginia
and Maryland”

` ∼ a h

h ∼ 0.6

I Anomalous scaling: we would expect h = 1/2...
I Subsequent studies: 0.5 . h . 0.6
I Another quest to find universality/god...
I A catch: studies done on small scales.

http://www.uvm.edu
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Large-scale networks:

(1992) Montgomery and Dietrich [32]:

Fig. 1. Without a scale bar it
is almost impossible to de-
termine even the approxi-
mate scale of a topographic
map. The upper two maps
show adjacent drainage ba-
sins in the Oregon Coast
Range and illustrate the ef-
fect of depicting an area of
similar topography at diffier-
ent scales. The map on the
right covers an area four
times as large as, and has
twice the contour interval
of, the map on the left. The
lower two maps depict very
different landscapes, and de-
tailed mapping was done to
resolve the finest scale val- - --
leys, which determine the -
extent, or scale, of landscape
dissection. The map on the
left shows a portion of a/
small badlands area at Perth
Amboy, New Jersey (28)
(scale bar represents 2 m;
contour interval is 0.3 in).
The map on the right shows
a portion of the San Gabriel
Mountains of southern Cal-
ifornia (20) (scale bar repre-
sents 100 m; contour inter-
val is 15 in). Dashed fines on
both lower maps represent
the limit of original map-
ping. The drainage basin outlet on each map is oriented toward the bottom of the page. All four maps
suggest a limit to landscape dissection, defined by the size of the hilislopes, separating valleys. This
apparent limit, however, only corresponds to the extent of valley dissection definable in the field for the
case of the lower two maps.

We collected data from small drainage
basins in a variety of geologic settings that
represent a range in climate and vegetation
(4, 5). We measured the drainage area (A),
basin length (L), and local slope (S) for
locations in convergent topography along
low-order channel networks, at channel
heads, and along unchanneled valleys in
drainage basins where we had mapped the
channel networks in the field (4, 5). Drain-
age area was defined as the area upslope of
the measurement location, basin length was
defined as the length along the main valley
axis to the drainage divide, and local slope
was measured in the field. The structural
relation ofdrainage area to basin length (10)
for our composite data set is

L = 1.78 A49 (1)

E

5
c
U

Drainage area (m2)

where L and A are expressed in meters. This
relation is well approximated by the simple,
isometric relation

L (3 A)05 (2)
Inclusion of reported drainage area and
mainstream length data from larger net-
works (11-15) provides a composite data
set that also is reasonably fit (5) by this
relation. The data span a range of more
than 11 orders of magnitude in basin area,
from unchanneled hillside depressions to
the world's largest rivers (Fig. 2). This
relation suggests that there is a basic geo-
metric similarity between drainage basins
and the smaller basins contained within
them that holds down to the finest scale to
which the landscape is dissected (Fig. 3).
In the field this scale is easily recognized as

Fig. 2. Basin length versus drainage
area for unchanneled valleys, source
areas, and low-order channels mapped
in this study (0) and mainstream
length versus drainage area data report-
ed for large channel networks (0).
Sources of mainstream length data are
given in (5).

Fig. 3. The coherence of the data in Fig. 2 across
11 orders of magnitude indicates a geometric
similarity between small drainage basins and the
larger drainage basins that contain them. Al-
though the variance about the trend in Fig. 2
indicates a range in individual basin shapes, this
general relation apparently characterizes the land-
scape down to the finest scale of convergent
topography.

that ofthe topographically divergent ridges
that separate these fine-scale valleys.
Equation 1 differs, however, from the

relation between the mainstream length
and drainage area first reported by Hack
(11), in which basin area increases as L`.
Many subsequent workers interpreted sim-
ilar relations as indicating that drainage
network planform geometry changes with
increasing scale. Relations between main-
stream length and drainage area also have
been used to infer the fractal dimension of
individual channels and channel networks
(1, 16). Mueller (15), however, reported
that the exponent in the relation of main-
stream length to drainage area is not con-
stant, but decreases from 0.6 to -0.5 with
increasing network size, and Hack (11)
noted that the exponent in this relation
varies for individual drainage networks.
We cannot compare our data more quanti-
tatively with those reported by others be-
cause the mainstream length will diverge
from the basin length in proportion to the
area upslope of the stream head. We sus-
pect that the difference in the relations
derived from our data and those reported
previously reflects variation in the head-
ward extent ofthe stream network depicted
on maps of varying scale (17) as well as
downstream variations in both channel sin-
uosity (14) and drainage density (18). The
general scale independence indicated in
Fig. 2 suggests that landscape dissection
results in an integrated network of valleys
that capture geometrically similar drainage
basins at scales ranging from the largest
rivers to the finest scale valleys. Within this
scale range there appears to be little inher-
ent to the channel network and to the
corresponding shape ofthe drainage area it
captures that provides reference to an ab-
solute scale.

Nonetheless, field studies in semiarid to
humid regions demonstrate that there is a
finite extent to the branching channel net-
work (4, 5, 19-22). Channels do not occupy
the entire landscape; rather, they typically
begin at the foot of an unchanneled valley,
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I Composite data set: includes everything from
unchanneled valleys up to world’s largest rivers.

I Estimated fit:
L ' 1.78a 0.49

I Mixture of basin and main stream lengths.
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World’s largest rivers only:

10
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mainstrea
mlengthl
(mi)

I Data from Leopold (1994) [27, 12]

I Estimate of Hack exponent: h = 0.50± 0.06
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Earlier theories

Building on the surface area idea...
I Blum (1977) [6] speculates on four-dimensional

biology:
P ∝ M (d−1)/d

I d = 3 gives α = 2/3
I d = 4 gives α = 3/4
I So we need another dimension...
I Obviously, a bit silly. . . [46]
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Earlier theories

Building on the surface area idea:
I McMahon (70’s, 80’s): Elastic Similarity [29, 31]

I Idea is that organismal shapes scale allometrically
with 1/4 powers (like trees...)

I Appears to be true for ungulate legs... [30]

I Metabolism and shape never properly connected.
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Nutrient delivering networks:
I 1960’s: Rashevsky considers blood networks and

finds a 2/3 scaling.
I 1997: West et al. [50] use a network story to find 3/4

scaling.
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‘Tattooed Guy’ Was Pivotal in Armstrong Case
[nytimes] (�)

I “... Leogrande’s doping sparked a series of events ...”
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Nutrient delivering networks:

West et al.’s assumptions:
1. hierarchical network
2. capillaries (delivery units) invariant
3. network impedance is minimized via evolution

Claims:
I P ∝ M 3/4

I networks are fractal
I quarter powers everywhere
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Impedance measures:

I Poiseuille flow (outer branches):

Z =
8µ
π

N∑

k=0

`k

r4
k Nk

I Pulsatile flow (main branches):

Z ∝
N∑

k=0

h1/2
k

r5/2
k Nk

I Wheel out Lagrange multipliers . . .
I Poiseuille gives P ∝ M1 with a logarithmic correction.
I Pulsatile calculation explodes into flames.
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Not so fast . . .

Actually, model shows:
I P ∝ M 3/4 does not follow for pulsatile flow
I networks are not necessarily fractal.

Do find:
I Murray’s cube law (1927) for outer branches: [34]

r3
0 = r3

1 + r3
2

I Impedance is distributed evenly.
I Can still assume networks are fractal.

http://www.uvm.edu
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Connecting network structure to α
1. Ratios of network parameters:

Rn =
nk+1

nk
, R` =

`k+1

`k
, Rr =

rk+1

rk

2. Number of capillaries ∝ P ∝ Mα.

⇒ α = − ln Rn

ln R2
r R`

(also problematic due to prefactor issues)

Obliviously soldiering on, we could assert:

I area-preservingness:
Rr = R−1/2

n

I space-fillingness: R` = R−1/3
n

⇒ α = 3/4

http://www.uvm.edu
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Data from real networks:
Network Rn R−1

r R−1
` − ln Rr

ln Rn
− ln R`

ln Rn
α

West et al. – – – 1/2 1/3 3/4

rat (PAT) 2.76 1.58 1.60 0.45 0.46 0.73

cat (PAT) 3.67 1.71 1.78 0.41 0.44 0.79
(Turcotte et al. [49])

dog (PAT) 3.69 1.67 1.52 0.39 0.32 0.90

pig (LCX) 3.57 1.89 2.20 0.50 0.62 0.62
pig (RCA) 3.50 1.81 2.12 0.47 0.60 0.65
pig (LAD) 3.51 1.84 2.02 0.49 0.56 0.65

human (PAT) 3.03 1.60 1.49 0.42 0.36 0.83
human (PAT) 3.36 1.56 1.49 0.37 0.33 0.94

http://www.uvm.edu
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Some people understand it’s truly a disaster:

“Power, Sex, Suicide: Mitochondria and the
Meaning of Life” (�)
by Nick Lane (2005). [26]

“As so often happens in science, the apparently solid
foundations of a field turned to rubble on closer
inspection.”

http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.amazon.com/dp/0192804812/
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Really, quite confused:

Whole 2004 issue of Functional Ecology addresses
the problem:
I J. Kozlowski, M. Konrzewski (2004). “Is West, Brown

and Enquist’s model of allometric scaling
mathematically correct and biologically relevant?”
Functional Ecology 18: 283–9, 2004.

I J. H. Brown, G. B. West, and B. J. Enquist. “Yes,
West, Brown and Enquist’s model of allometric
scaling is both mathematically correct and
biologically relevant.” Functional Ecology 19:
735–738, 2005.

I J. Kozlowski, M. Konarzewski (2005). “West, Brown
and Enquist’s model of allometric scaling again: the
same questions remain.” Functional Ecology 19:
739–743, 2005.

http://www.uvm.edu
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Simple supply networks

I Banavar et al.,
Nature,
(1999) [1]

I Flow rate
argument

I Ignore
impedance

I Very general
attempt to find
most efficient
transportation
networks

http://www.uvm.edu
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Simple supply networks

I Banavar et al. find ‘most efficient’ networks with

P ∝ M d/(d+1)

I ... but also find

Vnetwork ∝ M (d+1)/d

I d = 3:
Vblood ∝ M 4/3

I Consider a 3 g shrew with Vblood = 0.1Vbody

I ⇒ 3000 kg elephant with Vblood = 10Vbody

http://www.uvm.edu
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Simple supply networks

Such a pachyderm would be rather miserable:

http://www.uvm.edu
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Geometric argument

I “Optimal Form of Branching Supply and Collection
Networks.” Dodds, Phys. Rev. Lett., 2010. [11]

I Consider one source supplying many sinks in a
d-dim. volume in a D-dim. ambient space.

I Assume sinks are invariant.
I Assume sink density ρ = ρ(V ).
I Assume some cap on flow speed of material.
I See network as a bundle of virtual vessels:

http://www.uvm.edu
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Geometric argument

I Q: how does the number of sustainable sinks Nsinks
scale with volume V for the most efficient network
design?

I Or: what is the highest α for Nsinks ∝ Vα?

http://www.uvm.edu
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Geometric argument

I Allometrically growing regions:

Ω Ω L’2

L 1 L’

2L

1

(V)
(V’)

I Have d length scales which scale as

Li ∝ V γi where γ1 + γ2 + . . .+ γd = 1.

I For isometric growth, γi = 1/d .
I For allometric growth, we must have at least two of

the {γi} being different

http://www.uvm.edu
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Spherical cows and pancake cows:
I Question: How does the surface area Scow of our two

types of cows scale with cow volume Vcow? Insert
question from assignment 10 (�)

I Question: For general families of regions, how does
surface area S scale with volume V? Insert question
from assignment 10 (�)

http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.uvm.edu/~pdodds/teaching/courses/2013-01UVM-300/docs/{2013-01UVM-300}assignment10.pdf
http://www.uvm.edu/~pdodds/teaching/courses/2013-01UVM-300/docs/{2013-01UVM-300}assignment10.pdf
http://www.uvm.edu/~pdodds/teaching/courses/2013-01UVM-300/docs/{2013-01UVM-300}assignment10.pdf
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Geometric argument

I Best and worst configurations (Banavar et al.)

a b

I Rather obviously:
min Vnet ∝

∑
distances from source to sinks.

http://www.uvm.edu
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Minimal network volume:

Real supply networks are close to optimal:
J.S

tat.M
ech.

(2006)
P

01015
Shape and efficiency in spatial distribution networks

(a) (b) (c) (d)

Figure 1. (a) Commuter rail network in the Boston area. The arrow marks
the assumed root of the network. (b) Star graph. (c) Minimum spanning tree.
(d) The model of equation (3) applied to the same set of stations.

Table 1. Number of vertices n, route factor q, and total edge length for each of
the networks described in the text, along with the equivalent results for the star
graphs and minimum spanning trees on the same vertices. (Note that the route
factor for the star graph is always 1 and so has been omitted from the table.)

Route factor Edge length (km)

Network n Actual MST Actual MST Star

Sewer system 23 922 1.59 2.93 498 421 102 998
Gas (WA) 226 1.13 1.82 5578 4374 245 034
Gas (IL) 490 1.48 2.42 6547 4009 59 595
Rail 126 1.14 1.61 559 499 3 272

set of n − 1 edges joining them such that all vertices belong to a single component and
the sum of the lengths of the edges is minimized4.)

To make the comparison with the star graph, we consider the distance from each non-
root vertex to the root, first along the edges of the network and second along a simple
Euclidean straight line, and calculate the mean ratio of these two distances over all such
vertices. Following [18], we refer to this quantity as the network’s route factor, and denote
it q:

q =
1

n − 1

n−1∑

i=1

li0
di0

, (1)

where li0 is the distance along the edges of the network from vertex i to the root (which
has label 0), and di0 is the direct Euclidean distance. If there is more than one path
through the network to the root, we take the shortest one. Thus, for example, q = 2
would imply that on average the shortest path from a vertex to the root through the
network is twice as long as a direct straight-line connection. The smallest possible value
of the route factor is 1, which is achieved by the star graph.

The route factors for our four networks are shown in table 1. As we can see, the
networks are remarkably efficient in this sense, with route factors quite close to 1. Values

4 If we are not restricted to the specified vertex set but are allowed to add vertices freely, then the optimal solution
is the Steiner tree; in practice we find that there is little difference between results for minimum spanning and
Steiner trees in the present context.

doi:10.1088/1742-5468/2006/01/P01015 4

Gastner

and Newman (2006): “Shape and efficiency in spatial
distribution networks” [16]

http://www.uvm.edu
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Minimal network volume:

Approximate network volume by integral over region:

min Vnet ∝
∫

Ωd,D(V )
ρ ||~x || d~x

→ ρV 1+γmax

∫

Ωd,D(c)
(c2

1u2
1 + . . .+ c2

k u2
k )1/2d~u

Insert question from assignment 10 (�)

∝ ρV 1+γmax

http://www.uvm.edu
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Geometric argument
I General result:

min Vnet ∝ ρV 1+γmax

I If scaling is isometric, we have γmax = 1/d :

min Vnet/iso ∝ ρV 1+1/d = ρV (d+1)/d

I If scaling is allometric, we have γmax = γallo > 1/d :
and

min Vnet/allo ∝ ρV 1+γallo

I Isometrically growing volumes require less network
volume than allometrically growing volumes:

min Vnet/iso

min Vnet/allo
→ 0 as V →∞

http://www.uvm.edu
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Blood networks

I Material costly⇒ expect lower optimal bound of
Vnet ∝ ρV (d+1)/d to be followed closely.

I For cardiovascular networks, d = D = 3.
I Blood volume scales linearly with body volume [47],

Vnet ∝ V .
I Sink density must ∴ decrease as volume increases:

ρ ∝ V−1/d .

I Density of suppliable sinks decreases with organism
size.

http://www.uvm.edu
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Blood networks

I Then P, the rate of overall energy use in Ω, can at
most scale with volume as

P ∝ ρV ∝ ρM ∝ M (d−1)/d

I For d = 3 dimensional organisms, we have

P ∝ M 2/3

http://www.uvm.edu
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Prefactor:

Stefan-Boltzmann law: (�)
I

dE
dt

= σST 4

where S is surface and T is temperature.
I Very rough estimate of prefactor based on scaling of

normal mammalian body temperature and surface
area S:

B ' 105M2/3erg/sec.

I Measured for M ≤ 10 kg:

B = 2.57× 105M2/3erg/sec.

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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River networks

I View river networks as collection networks.
I Many sources and one sink.
I Assume ρ is constant over time:

Vnet ∝ ρV (d+1)/d = constant× V 3/2

I Network volume grows faster than basin ‘volume’
(really area).

I It’s all okay:
Landscapes are d=2 surfaces living in D=3
dimensions.

I Streams can grow not just in width but in depth...

http://www.uvm.edu
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Hack’s law
I Volume of water in river network can be calculated by

adding up basin areas
I Flows sum in such a way that

Vnet =
∑

all pixels

apixel i

I Hack’s law again:
` ∼ a h

I Can argue
Vnet ∝ V 1+h

basin = a1+h
basin

where h is Hack’s exponent.
I ∴ minimal volume calculations gives

h = 1/2

http://www.uvm.edu
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Real data:

I Banavar et al.’s
approach [1] is
okay because ρ
really is constant.

I The irony: shows
optimal basins are
isometric

I Optimal Hack’s
law: ` ∼ ah with
h = 1/2

I (Zzzzz)
From Banavar et al. (1999) [1]

http://www.uvm.edu
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Even better—prefactors match up:
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The Cabal strikes back:

I Banavar et al., 2010, PNAS:
“A general basis for quarter-power scaling in
animals.” [2]

I “It has been known for decades that the metabolic
rate of animals scales with body mass with an
exponent that is almost always < 1, > 2/3, and often
very close to 3/4.”

I Cough, cough, cough, hack, wheeze, cough.
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http://www.uvm.edu/~pdodds


Scaling

Scaling-at-large
Allometry

Examples

Metabolism and Truthicide

Death by fractions

Measuring allometric
exponents

River networks

Earlier theories

Geometric argument

Blood networks

River networks

Conclusion

References

125 of 145

Some people understand it’s truly a disaster: (�)

http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.science20.com/mark_changizi/peter_sheridan_dodds_theoretical_biologys_buzzkill
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The unnecessary bafflement continues:

“Testing the metabolic theory of ecology” [38]

C. Price, J. S. Weitz, V. Savage, J. Stegen, A. Clarke, D.
Coomes, P. S. Dodds, R. Etienne, A. Kerkhoff, K.
McCulloh, K. Niklas, H. Olff, and N. Swenson
Ecology Letters, 15, 1465–1474, 2012.
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Artisanal, handcrafted stupidity:
“Critical truths about power laws” [48]

Stumpf and Porter, Science, 2012

10 FEBRUARY 2012    VOL 335    SCIENCE    www.sciencemag.org 666

PERSPECTIVES

relationship between body size x and meta-
bolic performance y, but this relationship has 
been supported empirically over many orders 
of magnitude (from bacteria to whales). The 
clear dependence of various biological char-
acteristics on body size is, of course, insuf-
fi cient by itself to infer a causal relationship, 
but few people would dispute the reality of 
such a relationship.

Purported power laws fall loosely into 
two categories: those with statistical sup-
port—by itself a nontrivial task ( 15)—and 
those without it. Numerous scholars have 
neglected to apply careful statistical tests 
to data that were reported to exhibit power-
law relationships; so-called “scale-free” net-
works are perhaps the best known and most 
widely discussed examples ( 2,  6,  13). How-
ever, when formal statistical tools have been 
applied to network data, evidence favoring 
power-law relationships has almost always 
been negligible ( 7,  15,  16).

As a rule of thumb, a candidate power 
law should exhibit an approximately linear 
relationship on a log-log plot over at least 
two orders of magnitude in both the x and y 
axes. This criterion rules out many data sets, 
including just about all biological networks. 
Examination ( 15) of the statistical support for 
numerous reported power laws has revealed 
that the overwhelming majority of them failed 
statistical testing (sometimes rather epically). 
For example, a recent study found ( 17) that 
the number of interacting partners (i.e., the 
degree) of proteins in yeast is power-law dis-
tributed, but careful statistical analysis refutes 
this claim ( 18). Noise or incomplete data can 
further distort the picture ( 19). Trying to dis-
cern a power-law relationship by eyeballing 
straight lines (or even trying to find them 
using, for example, least-squares fi tting) on 
log-log plots of data can be appealing, but the 
human ability to detect patterns from even the 
fl imsiest of evidence might lead researchers 
to conclude the existence of a bona fi de power 
law based on purely qualitative criteria.

Even if a reported power law surmounts 
the statistical hurdle, it often lacks a genera-
tive mechanism. Indeed, the same power law 
(that is, with the same value of λ) can arise 
from many different mechanisms ( 3). In the 
absence of a mechanism, purely empirical 
fitting does have the potential to be inter-
esting, but one should simply report such 
results in a neutral fashion rather than pro-
vide unsubstantiated suggestions of univer-
sality. The fact that heavy-tailed distributions 
occur in complex systems is certainly impor-
tant (because it implies that extreme events 
occur more frequently than would otherwise 
be the case), and statistically sound empiri-

cal fi ts of event data, when used with caution, 
can help in data interpretation (as it is cer-
tainly useful to estimate how often extreme 
events occur in a given system). However, a 
statistically sound power law is no evidence 
of universality without a concrete underlying 
theory to support it. Moreover, knowledge of 
whether or not a distribution is heavy-tailed is 
far more important than whether it can be fi t 
using a power law.

Suppose that one generates a large num-
ber of independent random variables xi drawn 
from heavy-tailed distributions, which need 
not be power laws. Then, by a version of the 
central limit theorem (CLT), the sum of these 
random variables is generically power-law 
distributed ( 20). Few people today would 
express amazement at fi nding that the CLT 
holds in a given context (when one adds up 
random variables drawn from distributions 
with fi nite moments), and the CLT is a vital 
tool in statistics, providing the basis for many 
rigorous scientific analyses. It also holds 
ubiquitously, including in situations in which 
random variables are drawn from heavy-
tailed distributions; in such cases, however, 
power laws replace the Gaussian distribution 
as the limiting situation. One thus expects 
power laws to emerge naturally for rather 
unspecifi c reasons, simply as a by-product of 
mixing multiple (potentially rather disparate) 
heavy-tailed distributions. For example, it is 
possible to decompose a supposedly “power-
law” degree distribution of a metabolic net-
work into separate distributions of metabo-

lites of different types ( 16). The degree dis-
tribution for each of these metabolite classes 
is different, refl ecting the different roles that 
they play in the organism.

Finally, and perhaps most importantly, 
even if the statistics of a purported power 
law have been done correctly, there is a the-
ory that underlies its generative process, and 
there is ample and uncontroversial empiri-
cal support for it, a critical question remains: 
What genuinely new insights have been 
gained by having found a robust, mecha-
nistically supported, and in-all-other-ways 
superb power law? We believe that such 
insights are very rare.

Power laws do have an interesting and 
possibly even important role to play, but one 
needs to be very cautious when interpreting 
them. The most productive use of power laws 
in the real world will therefore, we believe, 
come from recognizing their ubiquity (and 
perhaps exploiting them to simplify or even 
motivate subsequent analysis) rather than 
from imbuing them with a vague and mistak-
enly mystical sense of universality. 

References and Notes
 1. R. M. May, Nature 261, 459 (1976).  
 2. M. E. J. Newman, Am. J. Phys. 79, 800 (2011).  
 3. J. P. Sethna, Entropy, Order Parameters, and Complexity 

(Oxford Univ. Press, Oxford, 2010).
 4. B. Gutenberg, C. F. Richter, Seismicity of the Earth and 

Associated Phenomena (Princeton Univ. Press, Princeton, 
NJ, ed. 2, 1954).

 5. G. B. West, J. H. Brown, B. J. Enquist, Science 276, 122 
(1997).  

 6. A.-L. Barabási, R. Albert, Science 286, 509 (1999).  
 7. W. Willinger, D. Alderson, J. C. Doyle, Not. Am. Math. 

Soc. 56, 586 (2009).
 8. R. Albert, A.-L. Barabási, Rev. Mod. Phys. 74, 47 (2002).  
 9. L. Bettencourt, G. West, Nature 467, 912 (2010).  
 10. N. Johnson et al., Science 333, 81 (2011).  
 11. N. Li et al., http://arxiv.org/abs/1108.0833 (2011).
 12. P. W. Anderson, Science 177, 393 (1972).  
 13. E. Fox, Keller, Bioessays 27, 1060 (2005).  
 14. D. Avnir, O. Biham, D. Lidar, O. Malcai, Science 279, 39 

(1998).  
 15. A. Clauset, C. R. Shalizi, M. E. J. Newman, SIAM Rev. 51, 

661 (2009).  
 16. R. Tanaka, M. Csete, J. Doyle, Syst. Biol. 152, 179 

(2005).
 17. H. Yu et al., Science 322, 104 (2008).  
 18. A. Clauset, Power laws in the mist (15 October 2008); 

Structure & Strangeness, www.cs.unm.edu/~aaron/blog/
archives/2008/10/power_laws_in_t_1.htm.

 19. M. P. Stumpf, C. Wiuf, R. M. May, Proc. Natl. Acad. Sci. 

U.S.A. 102, 4221 (2005).  
 20. W. Willinger, D. Alderson, J. C. Doyle, L. Li, in Proceed-

ings of the 2004 Winter Simulation Conference, R. G. 
Ingalls, M. D. Rossetti, J. S. Smith, B. A. Peters, Eds. 
(Institute for Operations Research and the Management 
Sciences, Hanover, MD, 2004), pp. 130–141; paper 
available at www.informs-sim.org/wsc04papers/016.pdf.

 21. M. P. H. Stumpf, P. J. Ingram, Europhys. Lett. 71, 152 
(2005).  

 22. We thank J. Carlson, A. Clauset, and A. Lewis for useful 
discussions and Ch. Barnes, A. MacLean, and C. Wiuf for 
helpful comments on the manuscript.

Mechanistic sophistication

S
t
a
t
i
s
t
i
c
a
l
 
s
u
p
p
o
r
t

Allometric scaling

Zipf‘s Law

C. elegans nervous system

S. cerevisiae protein interaction network

How good is your power law? The chart refl ects 
the level of statistical support—as measured in ( 16, 
 21)—and our opinion about the mechanistic sophis-
tication underlying hypothetical generative models 
for various reported power laws. Some relation-
ships are identifi ed by name; the others refl ect the 
general characteristics of a wide range of reported 
power laws. Allometric scaling stands out from the 
other power laws reported for complex systems. 10.1126/science.1216142

Published by AAAS
 o

n 
Fe

br
ua

ry
 1

0,
 2

01
2

w
w

w
.s

ci
en

ce
m

ag
.o

rg
D

ow
nl

oa
de

d 
fro

m
 

10 FEBRUARY 2012    VOL 335    SCIENCE    www.sciencemag.org 666

PERSPECTIVES

relationship between body size x and meta-
bolic performance y, but this relationship has 
been supported empirically over many orders 
of magnitude (from bacteria to whales). The 
clear dependence of various biological char-
acteristics on body size is, of course, insuf-
fi cient by itself to infer a causal relationship, 
but few people would dispute the reality of 
such a relationship.

Purported power laws fall loosely into 
two categories: those with statistical sup-
port—by itself a nontrivial task ( 15)—and 
those without it. Numerous scholars have 
neglected to apply careful statistical tests 
to data that were reported to exhibit power-
law relationships; so-called “scale-free” net-
works are perhaps the best known and most 
widely discussed examples ( 2,  6,  13). How-
ever, when formal statistical tools have been 
applied to network data, evidence favoring 
power-law relationships has almost always 
been negligible ( 7,  15,  16).

As a rule of thumb, a candidate power 
law should exhibit an approximately linear 
relationship on a log-log plot over at least 
two orders of magnitude in both the x and y 
axes. This criterion rules out many data sets, 
including just about all biological networks. 
Examination ( 15) of the statistical support for 
numerous reported power laws has revealed 
that the overwhelming majority of them failed 
statistical testing (sometimes rather epically). 
For example, a recent study found ( 17) that 
the number of interacting partners (i.e., the 
degree) of proteins in yeast is power-law dis-
tributed, but careful statistical analysis refutes 
this claim ( 18). Noise or incomplete data can 
further distort the picture ( 19). Trying to dis-
cern a power-law relationship by eyeballing 
straight lines (or even trying to find them 
using, for example, least-squares fi tting) on 
log-log plots of data can be appealing, but the 
human ability to detect patterns from even the 
fl imsiest of evidence might lead researchers 
to conclude the existence of a bona fi de power 
law based on purely qualitative criteria.

Even if a reported power law surmounts 
the statistical hurdle, it often lacks a genera-
tive mechanism. Indeed, the same power law 
(that is, with the same value of λ) can arise 
from many different mechanisms ( 3). In the 
absence of a mechanism, purely empirical 
fitting does have the potential to be inter-
esting, but one should simply report such 
results in a neutral fashion rather than pro-
vide unsubstantiated suggestions of univer-
sality. The fact that heavy-tailed distributions 
occur in complex systems is certainly impor-
tant (because it implies that extreme events 
occur more frequently than would otherwise 
be the case), and statistically sound empiri-

cal fi ts of event data, when used with caution, 
can help in data interpretation (as it is cer-
tainly useful to estimate how often extreme 
events occur in a given system). However, a 
statistically sound power law is no evidence 
of universality without a concrete underlying 
theory to support it. Moreover, knowledge of 
whether or not a distribution is heavy-tailed is 
far more important than whether it can be fi t 
using a power law.

Suppose that one generates a large num-
ber of independent random variables xi drawn 
from heavy-tailed distributions, which need 
not be power laws. Then, by a version of the 
central limit theorem (CLT), the sum of these 
random variables is generically power-law 
distributed ( 20). Few people today would 
express amazement at fi nding that the CLT 
holds in a given context (when one adds up 
random variables drawn from distributions 
with fi nite moments), and the CLT is a vital 
tool in statistics, providing the basis for many 
rigorous scientific analyses. It also holds 
ubiquitously, including in situations in which 
random variables are drawn from heavy-
tailed distributions; in such cases, however, 
power laws replace the Gaussian distribution 
as the limiting situation. One thus expects 
power laws to emerge naturally for rather 
unspecifi c reasons, simply as a by-product of 
mixing multiple (potentially rather disparate) 
heavy-tailed distributions. For example, it is 
possible to decompose a supposedly “power-
law” degree distribution of a metabolic net-
work into separate distributions of metabo-

lites of different types ( 16). The degree dis-
tribution for each of these metabolite classes 
is different, refl ecting the different roles that 
they play in the organism.

Finally, and perhaps most importantly, 
even if the statistics of a purported power 
law have been done correctly, there is a the-
ory that underlies its generative process, and 
there is ample and uncontroversial empiri-
cal support for it, a critical question remains: 
What genuinely new insights have been 
gained by having found a robust, mecha-
nistically supported, and in-all-other-ways 
superb power law? We believe that such 
insights are very rare.

Power laws do have an interesting and 
possibly even important role to play, but one 
needs to be very cautious when interpreting 
them. The most productive use of power laws 
in the real world will therefore, we believe, 
come from recognizing their ubiquity (and 
perhaps exploiting them to simplify or even 
motivate subsequent analysis) rather than 
from imbuing them with a vague and mistak-
enly mystical sense of universality. 
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Conclusion

I Supply network story consistent with dimensional
analysis.

I Isometrically growing regions can be more efficiently
supplied than allometrically growing ones.

I Ambient and region dimensions matter
(D = d versus D > d).

I Deviations from optimal scaling suggest inefficiency
(e.g., gravity for organisms, geological boundaries).

I Actual details of branching networks not that
important.

I Exact nature of self-similarity varies.
I 2/3-scaling lives on, largely in hiding.
I 3/4-scaling? Jury ruled a mistrial.
I The truth will out.
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